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Abstract This paper identifies convex distributional preferences as a possible cause
for the empirical observation that agents belonging to the same group tend to behave
similarly in risky environments. We first show theoretically that convex distributional
preferences imply social interaction effects in risky choices in the sense that observ-
ing a peer choose a risky (safe) option increases the agent’s incentive to choose the
risky (safe) option as well, even when lotteries are stochastically independent and
the agent can only observe the lottery chosen by the peer but not the corresponding
outcome. We then confirm our theoretical predictions experimentally.
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1 Introduction

People mostly act in social contexts rather than in isolation, and thus social com-
parison is typically part of an individual’s decision making process. A possible
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consequence of social comparison is that a decision maker (DM) makes his choice
dependent on what he observes others in his reference group do. We shall refer to
the latter as a social interaction effect if (i) the dependence is positive, i.e. if the
DM'’s propensity to choose a given activity is higher when (more) peers engage in
the corresponding activity; and (ii) the dependence results from an increase in the
DM’s utility payoff but not his material payoff when (more) peers engage in the
corresponding activity.! Social interaction effects have been invoked to explain cor-
relations in risky choices in a great variety of different domains — for instance, in
savings and investment decisions, employment choices, college entry and schooling
decisions, substance use and criminal activity (see Scheinkman 2008 for a discussion
of the literature).

Social comparison might not only affect decision making in risky environments, it
is also a core element of some prominent models of distributional preferences.* Pref-
erences featuring inequality or inequity aversion (Fehr and Schmidt 1999; Bolton and
Ockenfels 2000) have this property, as do maximin (Charness and Rabin 2002; Engel-
mann and Strobel 2004) or Leontief preferences (Andreoni and Miller 2002; Fisman
et al. 2007) and envy (Bolton 1991; Kirchsteiger 1994; Mui 1995). Also, for altruism
(Becker 1974; Andreoni and Miller 2002), surplus maximization (Engelmann and
Strobel 2004), spite (Levine 1998) and concerns for relative income (Duesenberry
1949), which may be modeled without any reference to social comparison, there is
ample empirical evidence indicating that social comparison influences behavior. For
instance, Andreoni and Miller (2002) find that the choices of a large majority of
givers in dictator games are consistent with convex altruistic preferences. Similarly,
Kerschbamer (2015) reports that almost all subjects reveal (weakly) more benevolent
(less malevolent) preferences in the domain of advantageous than in the domain of
disadvantageous inequality — a pattern implied by convex distributional preferences.
Convexity here refers to the property that a DM’s benevolence toward another indi-
vidual increases (or that malevolence decreases) as the income of the other individual
decreases along an indifference curve, and its strict incarnation obviously calls for
social comparison.’

1 Part (i) of our definition is not met if, for instance, there are informational externalities such that
the DM can learn something about the consequences of a given choice by observing his peers’ behav-
ior — as in the literature on social learning (or herd behavior, or informational cascades; see Gale 1996
for a survey). Or, if there are direct material-payoff complementarities implying that an action becomes
more profitable for the DM in material terms if others choose the same action — as, for instance, in
the models studied in the network externality literature (see Farrell and Saloner 1985, among others).
Finally, correlation of individual characteristics and influence of group characteristics or of a com-
mon environment on behavior might lead to a positive correlation in decisions (see Manski 1993 for a
discussion).

2The defining feature of distributional preferences is that DMs care not only about their own (material)
well-being, but also about the (material) well-being of others.

3Here and throughout the paper convexity refers to the shape of upper contour sets. Considering a two
person context, denoting the DM’s own material payoff by m and the peer’s payoff by o, and assuming that
the DM’s well-being is strictly increasing in m, upper contour sets are to the right of the DM’s indifference
curves in (m, o)-space. Increasing benevolence (or decreasing malevolence) as o increases (that is, as one
moves southward) along an indifference curve is then equivalent to convexity of upper contour sets (see
Cox et al. 2008 for details).
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Convex distributional preferences have been invoked as potential explanation for
non-standard behavior in important market and non-market environments — see Sobel
(2005) and Fehr and Schmidt (2006) for excellent surveys of theoretical models and
empirical evidence, and Cox et al. (2008) for an elegant theoretical investigation of
the implications of convexity. The main focus of previous studies, however, has been
on deterministic choices, while the effects of distributional preferences on behavior
when choices are risky have found much less attention in the literature.

The novelty of this paper is to bring social interaction effects and distributional
preferences together in a framework where the consequences of choices are risky and
where lotteries are stochastically independent. More specifically, our main research
question is whether and how the behavior of a DM with a concern for the material
welfare of others is affected when risky choices are made in a context where the DM
has the possibility to observe the choices of others in similar situations before mak-
ing a decision. Our main theoretical result is that convex distributional preferences
imply social interaction effects in risky choices. In particular, when a DM has con-
vex distributional preferences and knows that a reference person (the “peer’’) chooses
a risky or safe option, following the peer’s choice increases the DM’s utility payoff
even if his material payoff remains unaffected. The intuition for this result is that with
convex distributional preferences an increase (decrease) in the final material payoff
of a peer compared to the DM’s own final payoff increases (decreases) the relative
weight the DM puts on own income. This introduces an asymmetry in the evalua-
tion of unequal outcomes and thereby gives an incentive to behave similarly in risky
environments.

We then test our predictions empirically. As pointed out by Manski (1993), a large
part of the empirical literature on social interaction effects in risky choices is based
on field data suffering from severe identification problems. We therefore set up our
empirical investigation as a laboratory experiment, as such experiments allow for
more control than other data sources. More specifically, since we are interested in the
impact of information regarding a peer’s decisions on a DM’s choices in a risky envi-
ronment without informational externalities and material payoff complementarities,
the ideal data source would contain observations of the same DM’s choices in two
such environments which differ only in the DM’s information regarding the action
choice of the peer. While it seems almost impossible to get such data points in the
field, in a lab experiment we can create an artificial environment that generates such
points.

In our experiment, we investigate the choices of subjects in two risky environ-
ments that differ only in the information regarding the choices of a peer. We find
large peer group effects in the aggregate data even though a subject’s decision has
no impact on the peer’s monetary payoff, lotteries are stochastically independent,
and the subject can only observe the lottery chosen by the peer but not the corre-
sponding outcome. The problem of correctly identifying the relevant reference group
of the subject is circumvented by providing only information about the behavior of
a single peer. Since information externalities and material payoff complementarities
are absent in the implemented environment, these potential sources for a positive
correlation in the choices of the subject and the peer cannot explain our data. The
fact that we observe the behavior of the same subject in two different environments
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in a within-subject design controls for self-selection and exogenous correlation of
individual characteristics, and the fact that the two environments differ only in the
information about the peer’s decisions excludes contextual and correlated effects as
possible explanations. We therefore conclude that social interaction effects caused by
convex distributional preferences are a plausible source for the observed correlation
between the risky choices of DMs and their peers in the aggregate data.

To obtain further evidence in support of our hypothesis that social interaction
effects are driven by convex distributional preferences, we also test our main predic-
tions on the individual level. Using a non-parametric procedure to classify subjects
regarding their distributional preferences, we find that social interaction effects are
more pronounced for subjects with convex than for subjects with linear distributional
preferences — which corresponds to the theoretical prediction. We also find some evi-
dence in support of the theoretical prediction that the size of the social interaction
effect is smaller for risk-neutral DMs than for risk-averse or risk-loving ones — as
predicted by our model.

In risky environments, conformity has often been quoted as an explanation for
differences between individual decision making and decisions within groups or with
peers (see e.g. Bolton et al. 2015, or Lahno and Serra-Garcia 2015). As Cialdini and
Goldstein (2004) put it, “conformity refers to the act of changing one’s behavior to
match the responses of others.” Defined that way, conformity is not a motivation
but rather an observed behavior based on some other underlying motivation. Thus,
while what we observe might be called conformity, we provide an explanation for
the observed behavior based on existing models of preferences. Specifically, in the
theory part of the paper we show that existing models of social preferences imply a
motive for conformist behavior when distributional preferences are convex; and in
the experimental part we provide results that document social interaction effects in
risky choices.

The rest of the paper is organized as follows. Section 2 discusses the related lit-
erature. Section 3 introduces the model and derives the theoretical results. Section 4
details the design, the predictions and the results of our experiment and compares the
actual choices in the lab to the predicted behavior. Section 5 concludes. An Appendix
in the Electronic Supplementary Material contains additional theoretical results and
the experimental instructions.

2 Related literature

In our discussion of the literature focusing on the interaction between social pref-
erences and risk, we distinguish between situations where choices affect only the
own material payoff of the DM, situations where choices affect the DM’s own
payoff and possibly also the payoff of others, and situations where decisions are
made entirely on behalf of others. The latter decisions are often called choices
of impartial spectators, and the focus in the respective literature is on how the
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distribution of risk across different members of a society is perceived. Rohde and
Rohde (2015) find that spectators are ex-ante inequality averse but ex-post inequal-
ity seeking in their choices of allocations of risk over groups of people. In Cettolin
and Riedl (2016), the final outcome of spectators’ allocation decisions is uncer-
tain, which induces large heterogeneity in justice views regarding the allocation
of risk.

Turning to the literature investigating the choices of stakeholders that may affect
others, Bolton and Ockenfels (2010) consider a context in which each DM chooses
between a safe and a risky option, where the safe (risky) option implies a safe (risky)
payoff for an anonymous recipient as well. The authors find that when the safe option
yields inequality, the risky option is taken significantly more often, while the inequal-
ity resulting from the risky option does not affect risk taking. Similar in spirit are
results reported by Giith et al. (2008) and by Brennan et al. (2008), who also inves-
tigate situations where DMs’ choices affect timing, risk or expected values of the
payoffs of other agents.*

In contrast to the literature discussed thus far, in our model and in our experi-
ments the choices of a DM have no effect on the material payoffs of other subjects.
Specifically, we investigate a scenario where (i) lotteries of the DM and the peer are
stochastically independent, (ii) the DM does not affect the material payoff of the peer
and (iii) there is no information on the outcome of the peer’s lottery choice. We are
aware of only one study investigating a constellation with those features: In Cooper
and Rege (2011) subjects face individual gambles that differ in their ambiguity, and
a subject’s choice has no impact on the material payoffs of other subjects. Differ-
ent treatments control for a subject’s information regarding the choices of his peers.
Cooper and Rege find large peer group effects in their aggregate data and present an
explanation for these effects based on “social regret”, referring to a DM’s disutility
when a non-chosen action would have led to higher payoffs ex-post, and where that
regret is less intense if others have chosen the same action. Social regret then yields
the result that observing a peer make a risky (safe) choice increases the incentive for
the DM to choose the risky (safe) option as well. By contrast, we derive social inter-
action effects in a risky environment directly from existing models of distributional
preferences and test the theoretical prediction both with aggregate data and on the
individual level.

Somewhat less related to the present paper are the articles by Rohde and Rohde
(2011), Bursztyn et al. (2014) and Lahno and Serra-Garcia (2015). Rohde and Rohde
(2011) investigate whether one’s own risk attitude is affected by the risk others face.

4While Giith et al. (2008) find that other-regarding concerns are behaviorally relevant when the DM’s own
payoff is safe and immediate, but irrelevant when it is risky or delayed, Brennan et al. (2008) find that the
risk in the outcome of others is much less important for decision making than the risk in the DM’s own
outcome.
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They find only little evidence that the risk exposure of others affects subjects’ own
choice between risky alternatives, even though subjects showed concerns for inequal-
ity in a risk-free setting. The field experiment by Bursztyn et al. (2014) finds that
social learning and social utility are important drivers for peer effects in financial
decision making. Lahno and Serra-Garcia (2015) try to disentangle different chan-
nels for peer effects. Having the peer actively choose a lottery in one treatment while
randomly assigning a lottery choice to the peer in another treatment allows them to
distinguish between conformism and social preferences as possible explanations for
the observed peer effects. Their results suggest that both channels contribute to the
observed peer effects.

Other studies on risk taking in a social context investigate different research
questions and environments: Corazzini and Greiner (2007) study whether inequality
aversion can explain herding behavior in a social learning environment with com-
mon gambles; Linde and Sonnemans (2012) ask whether and how the payoff (rather
than the decision) of a peer affects risk taking when the peer’s payoff is fixed either
at a higher or a lower level than all possible lottery outcomes; Beckman et al. (2016)
study how behavior toward risk is influenced by the position in the income distri-
bution; Cettolin and Tausch (2015) apply the question of how a DM’s and a peer’s
choice between risky options affects risk sharing, which implies redistribution, and
Wakker et al. (2017) investigate how risky choices are affected by putting oneself in
another person’s shoes.

3 Theoretical model

Our workhorse model throughout the theory part of the paper is the piecewise lin-
ear utility or motivation function originally introduced by Fehr and Schmidt (1999)
as a description of self-centered inequality aversion and later extended by Charness
and Rabin (2002) to allow for other forms of distributional concerns. For sim-
plicity, we concentrate on the case of two agents and two binary lotteries in the
main text, deferring the more general case with more than two agents and more
than two lotteries to Appendix A.l in the Electronic Supplementary Material. For
the two-agents case, the reciprocity-free version of the Charness and Rabin model
reads

m+o(0—m) for o>m

m+plo—m) for o<m Vo<Lp<l M

Upo(m, o) = {

where m (“my”) and o (“other”) stand for the material payoff of the DM and the peer,
respectively. For the two parameters of the model we assume p < l and o0 < 1 to
guarantee strict monotonicity of utility in own material payoff.

Depending on the relation between the two parameters p and o we distinguish
between the following three cases:

(i) p>o:indifference curves in the (m, o)-space that are convex; such preferences
are thus referred to as convex distributional preferences;
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(ii)) p = o:indifference curves in the (m, 0)-space are linear; such preferences are
thus referred to as linear distributional preferences

(ili) p < o: indifference curves in the (m, 0)-space are concave; such preferences
are thus referred to as concave distributional preferences.

Convex indifference curves in the (m, o)-space imply that the DM is more benev-
olent (or less malevolent) in the domain of advantageous compared to the domain
of disadvantageous inequality. Many well-known distributional preference models,
such as inequity or inequality aversion, envy, maximin, Rawlsian or Leontief prefer-
ences, necessarily have this property, while some less prominent ones such as equity
or equality aversion necessarily violate it.> Altruism, surplus maximization and social
welfare maximization, as well as spiteful or competitive preferences and concerns
for relative income may or may not have this property.®

Suppose now a DM with preferences represented by the utility function (1) faces
the choice between the two lotteries L, (“riskier”) and L (“safer”). L, yields out-
come x, with probability p, and zero with probability 1 — p,, and Ly yields outcome
x5 with probability p, and zero with probability 1 — p, , where x, > x5 and p, < p;
(note that we allow for p; = 1). Throughout we assume that when both agents —- DM
and peer — choose the same lottery, each agent faces idiosyncratic risk, as our main
research question is how the mere observation of the peer’s choice affects the DM’s
decision between the two lotteries. We refer to a DM as risk-neutral if he prefers the
lottery with the higher expected value, as risk-averse if he prefers the safer of two
lotteries even for some range of lottery parameters where the risky lottery has the
higher expected value, and as risk-loving if he prefers the riskier of two lotteries even
for some range where the safer lottery has the higher expected value.

To calculate expected utilities, all possible final outcomes are evaluated and
weighted by their respective probabilities. That is, in the sense of Fudenberg and
Levine (2012), or Saito (2013), we assume that agents care for ex-post fairness in
making their choices under risk. Fudenberg and Levine (2012) and Saito (2013) also
discuss the alternative perspective where agents care for ex-ante fairness — that is,
for fair lotteries instead of fair outcomes. Here it is important to note that the focus
of these papers on social preferences under risk — as well as that of the most related
experimental studies (see, e.g., Rohde and Rohde 2011, or Cettolin and Riedl 2016)
— is on a DM who can sacrifice own payoff for the peer’s benefit, and vice versa.
The question in this context then is — as Saito (2013) puts it — whether there is a

3Tn the piecewise linear model above, inequality aversion translates to the parameter restriction min {—o,
p} > 0, with the special case of —o > p > 0 for the Fehr and Schmidt model. For an envious DM,
we have —o > p = 0. A DM with maximin preferences, Rawlsian preferences, or Leontief preferences
decides as if p > o = 0. Note that all distributional preference types mentioned up to now fit into
the parameter restriction p > o. This is not the case with equity aversion (Charness and Rabin 2002),
or equality aversion (Hennig-Schmidt 2002), which imply min {0, —p} > 0, and therewith p < o. See
Kerschbamer (2015) for details.

6 Altruistic, surplus maximizing or social welfare preferences translate to the parameter restriction min
{o, p} > 0. For DMs who are spiteful, competitive, status-seeking or interested in relative income we have
max {o, p} < 0.
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preference for equality of opportunities or equality of outcomes. In our setting, each
DM makes his own choice between independent lotteries, and a DM is not directly
responsible for the outcome of another DM through his own choice. The only way
the peer’s choice can affect the DM’s utility (and vice versa) is through a comparison
of outcomes, since choices and lotteries are independent. In such a context we con-
sider it to be unlikely that a DM’s choice is driven by a concern for ex-ante fairness.
Rather, the DM’s concern about his own standing compared to that of a peer’s seems
more likely to be shaped by a comparison of final outcomes.

Our first result summarizes how the DM’s risk attitudes are affected by social
comparisons.

Proposition 1 (Distributional Preferences and Risk Attitudes with Risk-Neutral-
ity in Isolation) Suppose the preferences of a DM can be represented by a utility
function as defined in Eq. 1. Then the DM displays the following behavior in a social
context:

(i) Given that the DM observes the peer choose lottery L,, he makes a risk-neutral
choice independently of whether his distributional preferences are convex,
linear, or concave.

(i) Given that the DM observes the peer choose lottery Lg, he makes a risk-
averse choice if his distributional preferences are convex, a risk-neutral choice
if his distributional preferences are linear, and a risk-loving choice if his
distributional preferences are concave.

Proof Let uj, denote the DM’s expected utility when he chooses lottery L;, with
| = r,s, while his peer chooses L,, with n = r, s. That is, u,, denotes the DM’s
expected utility when both agents choose L,, u,; denotes the DM’s expected utility
when the DM chooses L, while the peer chooses L, etc. Then we have

Uy = pixr + pr(l = p) (e — pxp) + (1 = P proxy; )
urs = prpslxr — pGxr —x9)1+ pr(1 — ps)(xr — pxr) + (1 — pr)psoxs; (3)
ugr = psprlxs + o —x)] + ps(1 — pr)(xs — px) + (1 — py)proxy; (4)
tgs = pixs + ps(1 = po)(xs — px;) + (1 — ps) psoxs. 5)

For (i), suppose the peer chooses the riskier lottery L,. Then the DM prefers L to
L, if and only if ug, > u,,, which simplifies to

psxs[1—p+ pr(o—0)] > prx;[1 — p+ pr(p—0)] (6)

It is now straightforward to verify that independent of whether the DM has convex,
linear, or concave distributional preferences the term in brackets is strictly positive.
For convex distributional preferences this follows directly from p < 1 and ¢ < p,
for the linear case it follows from p < 1 and 0 = p. For concave distributional
preferences note that 1 —p+p,(0—o) > 0 canbe restated as 1 —op, > p(1—p;), and
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that the LHS of the latter condition is decreasing in o and has its infimum at 1 — p,,
while the RHS is increasing in p and has its supremum at 1 — p,. Thus, for all three
considered cases of distributional preferences, condition (6) is equivalent to psx; >
prxr, implying that if the peer chooses the riskier lottery, the DM chooses the lottery
with the higher expected value, i.e. his choice is independent of the distributional
parameters o and p.

For (ii), suppose that the peer chooses the safer lottery L. Then the DM prefers
L over L, if and only if ugs > u,g, which simplifies to

p—0 PrXr — PsXs
l—p PsXs(ps — pr)

For a DM with convex distributional preferences the LHS is strictly positive since
o < p < 1, for a DM with linear distributional preferences the LHS is zero since
o = p < 1, and for a DM with concave distributional preferences the LHS is strictly
negative since p < o < 1. Thus, as long as the safer lottery has the higher expected
value, a DM with convex distributional preferences prefers it. He may prefer the safer
lottery even when it has a lower expected value, as long as the expected value is not
too much lower than that of the riskier lottery, where the exact condition is given in
Eq. 7. According to our definition of risk attitudes above, he thus makes a risk-averse
choice in a social context, even though he was assumed to be risk-neutral in isolation.
The argument for the other two cases is similar. O

. @)

Proposition 1 shows that social comparisons affect the risky choices of a DM
with non-linear distributional preferences even when the DM is an expected-value
maximizer when acting in isolation. Social information can thus be an independent
source driving risky choices. Proposition 1 has important implications. An immediate
one is that the well-known inequality aversion model of Fehr and Schmidt (1999)
implies risk-averse behavior in a social environment when the peer chooses the safer
of two lotteries, even though risk neutrality is assumed when acting in isolation.
The same is true for the quasi-maximin model of Charness and Rabin (2002) and
for many other distributional preference models in use in experimental economics
and beyond. This is an important insight because it might help explain why subjects
in the lab tend to behave in a risk-averse manner despite the low stakes involved.
Since the overwhelming majority of DMs who are not exclusively interested in the
maximization of their own material income has convex distributional preferences (for
experimental evidence see, e.g., Fehr and Schmidt 1999; Andreoni and Miller 2002;
Fisman et al. 2007), Proposition 1 predicts risk-averse behavior, on average, even if
all subjects would behave in a risk-neutral manner in isolation.

Our next result summarizes the impact of the peer’s behavior on the choices of
the DM in a risky environment. When comparing risky choices of a DM in different
environments, it is useful to consider the DM’s indifference point between the lotter-
ies, i.e. the probabilities p, and p; at which the DM is just indifferent between L,
and L. If information regarding the choice of a peer has any effect, this indifference
point must change. In other words, rather than being indifferent between lotter-
ies, the new information induces the DM to have a strict preference for one of the
lotteries.
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Proposition 2 (Distributional Preferences and Social Interaction Effect with
Risk-Neutrality in Isolation) Suppose a DM whose preferences can be represented
by a utility function as in Eq. 1 is indifferent between lotteries L, and L; when he
observes the peer choose Lg (L, ). Then observing the peer choose L, (Lg) instead
induces the following behavior: If the DM’s distributional preferences are

(i) convex then he chooses L, (Ly);
(i1) linear then he is indifferent between the two lotteries and chooses either L, or
Ly;
(iii) concave then he chooses Ly (L, ).

Proof For (i), we have to show that for a DM with convex distributional preferences
we have

(@) Uy = ugy = Ups < Ugg, and
(b) urs = Uss = Upr > Ugy.

Consider part (a): Recall from Proposition 1 that in a social context the DM makes
risk-neutral choices if the peer chooses L. Thus, we can have u,, = ug, if and only
if psxs = prx,. Then, using Egs. 3 and 5, we have

Urs < ugs = prxr(1 —p) < psxs[1 — p + (ps — pr)(o — 0], (3

which is satisfied since p > o by convexity, p < 1 by monotonicity, and p,x, =
PsXxs by risk-neutrality of the DM. Now consider part (b): Recall from Proposition 1
that in a social context a DM with convex distributional preferences makes risk-
averse choices if the peer chooses L. Thus, we can have u,s = ugg only if p,x, >
psxs. Then, using Eqgs. 2 and 4, we have

urr > gy = prXe[1—p+pr(p—0)l+prxro > psxs[1—p+pr(p—0)]+prxro,

©)
which is satisfied since p > o by convexity, p < 1 by monotonicity, and p,x, >
psXs by risk-aversion of the DM. The proofs for (ii) and (iii) follow similar lines. [

Remark Proposition 2 extends to the case of common gambles, i.e. when the lottery
outcomes are perfectly correlated across agents. We show this in Appendix A.2 in
the Electronic Supplementary Material.

Proposition 2 contains our main theoretical result regarding social interaction
effects. It states that convex distributional preferences imply social interaction effects
in risky choices in the sense that observing a peer choose a risky (safe) option
increases the agent’s incentive to choose the risky (safe) option as well, even when
lotteries are stochastically independent and the agent can only observe the lottery
chosen by the peer but not the corresponding outcome. This is a result with impor-
tant empirical implications if one takes into account the ample existing evidence for
convex distributional preferences.

So far, we have only considered the case where agents are risk-neutral in isola-
tion. We now allow for more general risk attitudes in isolation by assuming that the
DM values his own material payoff with the von-Neumann-Morgenstern utility func-
tion v(m). In this context, risk-averse (risk-loving) preferences are captured by the
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concavity (convexity) of v(m). Appendix B in the Electronic Supplementary Material
describes in detail how Proposition 2 extends to the case where the DM has non-
linear risk attitudes in isolation. Assuming that in a social comparison context the
DM is risk-neutral regarding the difference between his own and his peer’s payoff,
but may display other risk attitudes regarding his own material payoff, the extension
of Proposition 2 (Proposition A3 in Appendix B) states that for an agent with convex
distributional preferences, observing a peer choose a risky (safe) option increases the
agent’s incentive to follow the peer’s choice. Analogously, a DM with concave dis-
tributional preferences has the tendency to deviate from the peer’s behavior. We also
show that the impact of the peer’s behavior on the DM’s choice in a risky environ-
ment is larger for a DM who is not risk-neutral in isolation. The DM does not need to
know the peer’s risk preferences, as he only relies on the peer’s actual choices, irre-
spective of the motivation behind the choices. Next we test these predictions in an
experimental setting.

4 Experiment
4.1 Experimental setup

Our experimental design features three treatments which differ in the information
provided to subjects regarding a peer’s choices in a risky environment. Within each of
the three treatments, there are two distinct parts: In Part 1 we elicit subjects’ distribu-
tional preferences using a non-parametric elicitation procedure. In Part 2 subjects are
exposed to 30 binary choices between a sure payoff and a lottery. We first describe
the decision tasks in the two parts (which are identical across treatments), then the
treatments (differing in the information subjects receive in Part 2 of the experiment),
and finally the experimental procedures.

Decisions in Part 1 We follow the Equality Equivalence Test introduced by Ker-
schbamer (2015). In this procedure, each subject is exposed to a series of choices
between two allocations, each specifying a payoff for the subject (“the DM”) and
one for an anonymous partner (“the passive agent”). In each choice task, one of
the two allocations is symmetric (that is, it involves equal material payoffs) while
the other allocation is asymmetric. In one half of the choice tasks the asymmetric
allocation is such that the DM is ahead, in the other half the asymmetric allocation
is such that the DM is behind. The former choice tasks are labeled as “Advan-
tageous Inequality Block™ in Table I, the latter as “Disadvantageous Inequality
Block™.

We used the parametrization of the procedure displayed in Table 1, with an
exchange rate of 0.10 Euro per Experimental Currency Unit (ECU). When making
their choices, subjects knew that (i) their earnings for this part of the experiment
would be determined at the end of the experiment; (ii) they would receive two cash
payments for this task, one as a DM and one as a passive agent; (iii) for their earnings
as a DM one of the 10 decision problems would be selected by a random draw made
separately for each participant and the alternative chosen in this decision problem
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Table 1 Test for distributional
preferences: Paired choices Disadvantageous inequality block Advantageous inequality block

Left Right Left Right

You Other You Other You Other You Other

15 30 20 20 15 10 20 20
19 30 20 20 19 10 20 20
20 30 20 20 20 10 20 20
21 30 20 20 21 10 20 20
25 30 20 20 25 10 20 20

would be paid out; and (iv) their earnings as a passive agent would come from another
participant (i.e., not from the passive agent of the subject under consideration).

As shown by Kerschbamer (2015), in each of the decision blocks a rational DM
switches at most once from the symmetric to the asymmetric allocation, and the
switch points in the two blocks are informative about the DM’s type and intensity of
distributional preferences. Moreover, they can also be used to obtain estimates of the
two parameters p and o of the functional form (1).” This is the information we are
interested in, and we use this information to classify subjects as having either convex
(p > o), linear (p = o), or concave (p < o) distributional preferences.

Decisions in Part 2 Here, subjects were exposed to a series of 30 binary choices
between a cash gamble and a sure payoff. The binary choices were shown one by
one on the screen, and in a given decision round all participants faced the same pair
of alternatives. Participants knew that in each decision round they would have either
an active or a passive role. A pair of alternatives could show up more than once,
and in case it appeared again, subjects in an active role had to make a new decision,
while for subjects in a passive role the computer would automatically implement the
decision they made the first time they saw this pair of alternatives.® In each deci-
sion round, subjects were privately informed about whether they were in an active
or passive role. In some decision rounds, participants in an active role were also
informed about the decision of a subject in the passive role.” Actual earnings of a
subject were determined at the end of the experiment and depended on the realization
of two separate random variables — one was session-specific, determining which of
the 30 decision rounds would be payoff-relevant for all subjects in that session, and
the other was subject-specific, determining the personal lucky number for the subject

"The procedure relies on minimal assumptions regarding the rationality of a DM. In terms of axioms on
preferences the assumptions are ordering (completeness and transitivity) and strict (own-money) mono-
tonicity — see Kerschbamer (2015) for details. In the main text, DMs whose preferences satisty those two
basic axioms are referred to as “rational”.

8The latter subjects served as peers without being labeled as such in the instructions.
9We had one treatment without a peer, where these points are not relevant.
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Table 2 Test for risk

preference: Paired choices Pair No. Sure payoff Lottery
1 50 100 with p = 0.40,0 with 1 — p
2 50 100 with p =0.45,0 with 1 — p
3 50 100 with p = 0.50,0 with 1 — p
4 50 100 with p = 0.55,0 with 1 — p
5 50 100 with p = 0.60, 0 with 1 — p
6 50 100 with p = 0.65,0 with 1 — p
7 50 100 with p = 0.70, 0 with 1 — p
8 50 100 with p = 0.75, 0 with 1 — p
9 50 100 with p = 0.80,0 with 1 — p
10 50 100 with p = 0.85,0 with 1 — p

under consideration in case this subject chose the lottery in the payoff-relevant
pair.'0

Subjects were informed about all this at the beginning. They were made aware
that each participant’s decision had consequences for his own earnings only. The
instructions pointed out that a subject in the active role who is informed about the past
decision of an (anonymous) peer knows precisely how this peer decides in the current
round.!! They were also made aware that the two random draws for the determination
of the earnings ensured that subject and peer receive their earnings from the same
decision task and that in case both subjects decided for the risky option in that task,
the realizations of the risky option are stochastically independent. The 30 decision
tasks (which are the same for all subjects and in all treatments) are then presented in
3 blocks.

Block 1 contained the 10 choices between a sure payoff and a lottery displayed in
Table 2. Choices were presented in an ordered sequence (a screen shot is provided
in Appendix C in the Electronic Supplementary Material). Since the sure payoff was
always 50 ECUs while the lottery yielded 100 ECUs with probability p and 0 ECU
with probability 1 — p, and since the probability p increased from one pair to the
next, a rational DM switches at most once from the sure payoff to the cash gamble
(and never in the other direction) and the switch point is informative about the DM’s
risk attitude.'? For simplicity, we will use the number of safe choices in Block 1

10This design feature makes sure that (i) all subjects are paid for the same decision task; and (ii) if two
or more agents decide for the same lottery the realizations are stochastically independent (“individual
gambles”).

"This is due to the fact that this other subject has a passive role in the current round and thus cannot make
a new decision; the computer implements his past decision for the current round.

12 Again ordering (completeness and transitivity) and strict monotonicity are the two requirements for
rationality. Note that we will not be able to identify a subject’s precise indifference probability (as defined
in the theory section), as the experiment features only discrete changes in probabilities. Instead, a lower
and upper bound for the indifference probability of a rational subject is identified by the probability p in
the last pair for which the subject decides for the sure payoff and the probability p in the first pair for
which the subject decides for the cash gamble.
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as a proxy for a subject’s indifference probability in isolation.'> Since a risk-neutral
subject would be indifferent between the sure payoff and the cash gamble for pair 3
in Table 2, subjects who make two or three safe choices are classified as risk-neutral,
subjects who make at most one safe choice are classified as risk-loving and subjects
who make at least four safe choices are defined as risk-averse. In Block 2 and Block 3
subjects faced the same 10 paired choices as in Block 1, now with the additional
information on their own previous decision for the corresponding pair in Block 1
and in some treatments also with information about a peer’s decision (as explained
below).

Treatments Our experimental design features three treatments: In treatments RLF
(Risk Loving First) and RAF (Risk Averse First) information about the choices of a
peer was presented to subjects in an active role, while in treatment NOP (No Peer)
peer information was absent. In each session of a treatment with peer information, the
computer program identified the most risk-loving and the most risk-averse subject
from the decisions in Block 1. Each of these two subjects was in the passive role in
one of the following two blocks, while all other subjects were in the active role. A
subject in the passive role in a given block served as the peer for the other subjects
in that block. In RLF, the most risk-loving subject in Block 1 served as the peer in
Block 2, and the most risk-averse subject in Block 1 served as the peer in Block 3.
In treatment RAF, this order was reversed — that is, the most risk-averse subject in
Block 1 served as the peer in Block 2, and the most risk-loving subject in Block 1
served as the peer in Block 3.'* By comparing the choices a subject in the active role
made in Block 2 to those he made in Block 3, we address the question of whether
the peer’s choice affected the decisions of the subject under consideration, as the
choices in the two blocks differ only in the information about the peer’s decisions. In
treatment NOP, where peer information was absent, subjects faced the same 10 paired
choices (as displayed in Table 2) in the three blocks, with information in Block 2 and
Block 3 only about their own past choice in Block 1.

Procedures The experiment was computer-based, using the software z-Tree (Fisch-
bacher 2007). It consisted of 9 sessions conducted at the Innsbruck-Econ-Lab. A total
of 166 subjects were recruited among undergraduate students of any major at the
University of Innsbruck in May 2012 via the software ORSEE (Greiner 2015). Fifty-
five subjects participated in RLF, 55 in RAF and 56 in NOP. Since we conducted 3
sessions for each treatment, and since each session except those for NOP included 2
peers, we remain with 49 subjects in the active role in treatments RLF and RAF, and
56 subjects in NOP, which gives a total of 154 subjects whose decisions will be ana-
lyzed below. Upon arrival, the instructions of Part 1 (identical for all subjects across

13Strictly speaking, the theoretical concept of an indifference probability would require consistent choices,
implying at most one switch from the sure payoff to the lottery. Taking the number of safe choices as a
proxy for the indifference probability allows us to include all observed choices.

14By using the two subjects with the most extreme risk attitudes in Block 1 as peers in Block 2 and Block 3
we tried to maximize the number of choices for which the peer in Block 2 made a decision different from
the peer in Block 3.
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all treatments) were read aloud to ensure common knowledge. Subjects then had time
to read the instructions in private and to ask questions. After Part 1 was completed,
instructions for Part 2 (identical for all subjects of a session) were distributed and
read aloud, and subjects again had time to read them in private and to ask questions.
At the end of each session a bingo cage with numbered balls was used for the ran-
dom draws in the lab, and all draws could be followed by all participating subjects
of a session. Sessions lasted about 45 minutes and participants averaged earnings of
10.30 Euro.

4.2 Experimental predictions

Our main hypothesis for the aggregate data is motivated by the empirical evidence
gathered by psychologists and experimental economists in the last decades show-
ing that (i) distributional preferences are behaviorally relevant in many contexts,
and (ii) the overwhelming majority of subjects who are not exclusively interested
in the maximization of their own material income have convex distributional prefer-
ences. According to our theoretical results, convex distributional preferences imply
that observing the peer choose a risky (safe) option increases the DM’s propensity
to choose the risky (safe) option as well, even when lotteries are stochastically inde-
pendent and the agent can only observe the lottery chosen by the peer but not the
corresponding outcome. Our main prediction for the aggregate data is therefore:

Prediction 1 (Social Interaction Effect in Aggregate Data) For two decision
blocks with identical ordered pairs of lottery choice options for the DM and the peer,
but different actual choices of the peer, subjects on average follow the behavior of
the peer.

We will test Prediction 1 by comparing the number of safe choices in Block 2 to
the corresponding number in Block 3.!3 For treatment RLF, evidence indicating that
this number is lower in Block 2 than in Block 3 is interpreted as evidence in support of
the prediction, as is evidence in RAF indicating that this number is higher in Block 2
than in Block 3. An alternative way to test Prediction 1 is to ask — for those subjects
who change their behavior between Block 2 and Block 3 — in which direction they
change their behavior. If convex distributional preferences are the main driver for the
changes in behavior, then more subjects should adjust their behavior in the direction
of the peer than in the opposite direction, and we will search for evidence in support
of this prediction.

The next two predictions look at the individual level. First, individual data should
confirm that subjects classified as having convex distributional preferences are more
likely to change their behavior in the direction of the peer than subjects with linear
distributional preferences (which include material payoff maximizers).

150ne could also compare behavior in Block 1 to behavior in Block 2 or Block 3, but since we did not
derive a formal result for a comparison of situations with and without information about the peer’s choice,
our main focus will be on the change in behavior from Block 2 to Block 3.
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Table 3 Number of safe choices by block and treatment

Treatment RLF Treatment RAF Treatment NOP

blsafe  b2safe  Db3safe  blsafe  b2safe  b3safe  blsafe  b2safe  b3safe

Mean 4.51 3.96 4.61 4.77 5.58 5.10 5.08 5.61 55
Median 4 3 4 4 6 5 4.5 6 5.5
Std.Dev.  2.64 2.31 2.40 2.99 2.89 291 3.27 2.77 2.74

change —0.65 0.47 0.11
t-test p <0.01 p <0.03 p =038

We define change = b2safe-b3safe

Prediction 2 (Social Interaction Effect at the Individual Level) For two decision
blocks with identical ordered pairs of lottery choice options for the DM and the peer,
but different actual choices of the peer, subjects with convex distributional prefer-
ences have a more pronounced tendency to follow the behavior of the peer than other
subjects.

We will test Prediction 2 by comparing the changes in the number of safe
choices from Block 2 to Block 3 of subjects classified as having convex distri-
butional preferences to those of subjects classified as having linear distributional
preferences. '

Our last prediction regards the extension of Proposition 2, which showed that for
any combination of the distributional preference parameters p and o the impact of
the peer’s choice is less pronounced for risk-neutral DMs than for risk-loving and
risk-averse agents (see Proposition A3 in Appendix B).

Prediction 3 (Risk Preferences and Social Interaction Effect) For two decision
blocks with identical ordered pairs of lottery choice options for the DM and the peer,
but different actual choices of the peer, risk-neutral subjects have a less pronounced
tendency to follow the behavior of the peer than risk-loving or risk-averse subjects.

We will test Prediction 3 by comparing the changes in the number of safe choices
from Block 2 to Block 3 of subjects classified as having risk-neutral preferences to
those of subjects classified as having either risk-loving or risk-averse preferences.

4.3 Experimental results

We start by looking at the aggregate data. Table 3 displays summary statistics for the
number of safe choices in Blocks 1, 2 and 3, denoted as blsafe, b2safe and b3safe,

16proposition 2 would also predict that subjects with concave distributional preferences have a tendency
to deviate from the behavior of the peer. However, since concave distributional preferences are empirically
irrelevant, we do not search for evidence in accordance with this prediction in our data.

@ Springer



J Risk Uncertain

Block 1 to Block 2 Block 2 to Block 3
1 1
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0.6 0.6
0.4 0.4
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o N 0 [
RLF RAF NOP RLF RAF NOP
M increased decreased unchanged

M increased decreased unchanged
Fig. 1 Change in fraction of safe choices over blocks

for each of the three treatments. A comparison of blsafe across treatments shows no
significant differences across populations (Kruskal-Wallis test: p = 0.71), indicat-
ing that the random assignment of subjects to the three treatments was successful.
Since our main interest is the impact of a change in the peer’s choice on subjects’
decisions, we define the variable change = b2safe-b3safe as a measure of the rel-
evant shift in the indifference probability. Recall that in treatment RLF the peer in
Block 2 makes fewer safe choices compared to the peer in Block 3. Thus, if sub-
jects follow the peer’s choice on average, then change should be negative. This is
exactly what we find in the data — see Table 3. By contrast, in RAF the peer in
Block 2 makes more safe choices compared to the peer in Block 3, and thus fol-
lowing the peer would imply that change is now positive, which is again what we
observe, on average. On the aggregate, we thus find that irrespective of the order
in which peer choices are presented (RAF vs. RLF), subjects’ behavior follows
peers’ behavior. Instead, our treatment without any peer (NOP), while also show-
ing some change from Block 1 to Block 2, does not display a significant change
from Block 2 to Block 3: The t-tests in Table 3 indicate that only in the two treat-
ments with peers is change significantly different from zero and has the expected
sign.

Turning to within-subject comparisons, Fig. 1 displays the proportion of subjects
for whom the number of safe choices changed when moving from one block to the
next. Again, our main focus is on the change in behavior when moving from Block 2
to Block 3.!7 Here, in RLF we find that 47% of subjects change the number of safe
choices; all but one of these subjects change their behavior into the peer direction;
in RAF 41% change their behavior, and 80% of those who change move into the
peer’s direction. Finally, we observe that in NOP 39% of subjects also change their
behavior, and that 73% of those who change move to more risk-loving choices in

17Figure 1 shows that subjects also tend to follow the peer when moving from Block 1 to Block 2. As
mentioned earlier, this might be regarded as a comparison between behavior without information about
the choice of a peer and behavior with a peer, which is related to — but not identical with — the comparison
we are mainly interested in.
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Table 4 Logit regression of

individual choices Regressor Coefficient (Rob. SE) P>z

blchoice 4410 (0.203) 0.000
Logit regression for choice; N = peerRA 0.113 ©.131) 0.387
3080; Std. Err. adjusted for 154  peer —0.678 (0.250) 0.007
clusters; peer*peerRA 0.504 (0.186) 0.007
Prob > x? = 0.000; Pseudo cons —1.732 0.217) 0.000
R? = 0.5247

Block 3, even though they do not have any information except their own past choices.
The Wilcoxon Signed Rank (WSR) test confirms that our proxy for the indifference
probability shifts into the predicted direction in the treatments with a peer (p < 0.01
for both, RLF and RAF). However, our treatment NOP without peer also displays
a significant shift in behavior from Block 2 to Block 3 toward more risky choices
(WSR: p < 0.07). That is, subjects in NOP seem to display a change in behavior
that is qualitatively similar to that in RAF. The shift in NOP, however, cannot be
based on any exogenous factor, since subjects face identical decisions and identical
information as in the previous block.

Since we observe changes in behavior for all three treatments, we test whether the
change of subjects’ decisions in treatments RLF and RAF can really be attributed
to the information about the peer’s choice. To address this question, we define the
binary variable choice taking the value 1 if a subject chose the sure payoff and 0
if the subject chose the lottery in a given decision. Table 4 shows the results of a
logit regression, where the dependent variable choice for Block 2 and Block 3 is
explained by blchoice — representing a subject’s own past choice in Block 1 — and
by the influence of the peer. In this regression, we treat the observed choices in NOP
as if the same peer information was present as in RAF, i.e. the variable peerRA,
representing an indicator variable for a risk-averse peer, is set to 1 in Block 2 of RAF
and NOP, while it is set to 1 in Block 3 of RLF.

The variable peer indicates whether or not there was a peer present, and the cross-
term peerRA*peer should then give an indication of whether the choices in NOP
can be explained in the same way as the choices in RAF. In line with theory and
experimental design, the results displayed in Table 4 show that the choices in RAF
and those in NOP are not explained by the same model: While the coefficient for
peerRA is not significant, the coefficient for the cross-term peerRA*peer is highly
significant. That is, only if there is a real peer and the peer decides in a risk-averse
manner does this increase the probability of making the safe choice.!® We summarize
our results based on aggregate data as follows:

Result 1 (Social Interaction Effect in Aggregate Data) In line with Prediction 1,
subjects in treatments RLF and RAF follow, on average, the behavior of the peer.

18The fact that the coefficient for peer is significant and negative indicates that the choices in Block 2 and
Block 3 of treatment NOP are more risk-averse than those of RLF and RAF.
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One might try to explain Result 1 by arguing that social information helps subjects
operationalize their risk attitudes. While they are unsure what to prefer initially, they
know better what to do when they receive information about the peer’s choice. This
would be in line with social learning theory (see Bandura 1977) and with findings
from social psychology (see, e.g., Yechiam et al. 2008). In our setting, however, it is
not known whether following the peer’s choice leads to a better decision, since the
consequences of his choices are not known. A low number of safe choices within a
block might be attributed to the peer’s risk-loving attitude, but such information is
not necessarily helpful for the DM’s own evaluation of the prospects, given his own
risk attitude. It therefore seems rather unlikey that social learning is the main driver
behind Result 1. More importantly, a learning story is hard to bring in line with the
correlations on the individual level we report next.

To test Prediction 2 on the individual level, we distinguish between two classes
of distributional preferences: convex preferences (p > o) and linear preferences
(p = o). While 64 of 154 subjects (42%) fall into the former class, 68 (44%) are
found in the latter, implying that we cover 86% of all subjects with this classification.
If we now compare our proxy for the changes in the indifference probability (change)
across the two classes, we find that in treatments RLF and RAF 53% of subjects with
convex distributional preferences change behavior with changing peer information,
while the corresponding fraction for linear types is only 25%. Pooled data of the two
treatments shows that this difference is significant ( x2-test: p < 0.05). By contrast,
this explanation fails in treatment NOP, as subjects with convex distributional prefer-
ences are not more likely to change behavior: 75% of convex types display unchanged
behavior when moving from Block 2 to Block 3, while 47% of linear types display a
change in the number of safe choices (y2-test: p = 0.16). This supports our hypoth-
esis that the social interaction effect we found in the aggregate data is mainly caused
by subjects with convex distributional preferences.

The regression shown in Table 5 — based on the subset of data produced by subjects
classified as having either convex or linear distributional preferences — confirms this
result. We define peereffect as O when the subject does not change his behavior when
he faces a different peer’s choice, 1 if he follows the peer’s choice, and 2 if the change
goes against the peer’s choice. Again, we treat treatment NOP as if there were peer

Table 5 Social interaction effect explained by distributional preferences

peereffect 1 (follow peer) 2 (against peer)

Regressor Coefficient (Rob. SE) Prob > 7 Coefficient (Rob. SE) Prob > z
blsafe 0.013 (0.063) 0.836 —0.212 (0.137) 0.121
peer —0.331 (0.544) 0.544 —1.676 (1.242) 0.177
convex —0.869 (0.688) 0.207 —0.882 (1.339) 0.510
peer*convex 1.517 (0.827) 0.067 2.775 (1.788) 0.221
cons —0.496 (0.495) 0.316 —0.873 (0.726) 0.229

Multinomial Logit for peereffect (0 is base outcome); N = 132; Prob > X2 = 0.02, Pseudo R? = 0.05
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Fig. 2 Risk attitude and social interaction effect

information just like in RAF, due to the apparent similarity in observed behavior. The
regression results show that while the existence of a peer alone does not explain the
peer effect, the cross-term peer*convex (using indicator variable convex) does. Thus,
only for subjects who are classified as having convex distributional preferences and
who face a peer (in RLF and RAF) can we explain the peer effect. We therefore
conclude:

Result 2 (Distributional Preferences and Social Interaction Effect) In line with
Prediction 2, the social interaction effect observed in the aggregate data is mainly
caused by subjects with convex distributional preferences.

Our approach in the theory part of the paper was to derive the social interaction
effect directly from a DM’s underlying preferences rather than referring to con-
formism that is not explicitly modeled on the preference level as an explanation.
Given Result 2, we conclude that as long as we do not have a good theory about
how conformism and convex distributional preferences are related, our approach
offers a more direct preference-based explanation of the observed peer effect. Con-
formity — in the way the term it is used in the economics literature — does not
seem to provide a preference-based explanation for why people make the choices we
observe.!”

In addition to the causal effect of convex distributional preferences on con-
formistic behavior, our model predicts that the social interaction effect is less
pronounced for a risk-neutral DM compared to a risk-loving or risk-averse DM.
The left hand side of Fig. 2 shows that in the two treatments with peers (RLF and
RAF pooled), about two-thirds of the subjects classified as risk-neutral display no
change in the number of safe choices, while for subjects classified as risk-loving

19Basic motivations that imply conformistic behavior are discussed in the psychology literature — see Cial-
dini and Goldstein (2004), for instance. None of the discussed motivations, however, predicts a correlation
between convex distributional preferences and conformity.
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or risk-averse, about 50% display changes. Although the difference between those
frequencies is quite large, it is not statistically significant (x2-test: p = 0.14).%0
One could argue that using blsafe to define risk-neutrality may not be appropri-
ate since it allows a subject to behave inconsistently (by switching more than once
between the safe and the risky alternative or by switching in the ‘wrong direction’).
If, instead, we consider only subjects who switch at most once from the safe to the
risky alternative (and never in the other direction), then 30 are classified as risk-
neutral, while 68 subjects are risk-loving or risk-averse. Of the risk-neutral subjects,
67% display no change in the number of safe choices, for 33% the point of indif-
ference changes by 1 and no risk-neutral subject displays a change of more than 1.
Of the risk-loving or risk-averse subjects, 51% display no change, 33% a change
of 1 and 16% a change of more than 1. Comparing those frequencies, we now find
significantly different changes in the number of safe choices between consistently
deciding subjects who are risk-neutral and consistently deciding subjects who are not
risk-neutral (x2-test: p < 0.05) — which is in line with our Prediction 3. In sum,
while for our previous definition of risk-neutrality (based on blsafe) the results are
qualitatively in line with Prediction 3 but statistically insignificant, for the alterna-
tive definition based only on consistently deciding subjects, the correlation between
risk attitude and change in the number of safe choices is both qualitatively in line
with Prediction 3 and statistically significant. For treatment NOP, on the other hand,
we observe no such correlations between risk attitudes and change in the number
of safe choices, for either definition of risk-neutrality (x>-test: p = 0.44 in both
cases).

Result 3 (Risk preferences and social interaction effect) Regarding Prediction 3,
we find weak evidence that risk-neutral subjects in treatments RLF and RAF have
a less pronounced tendency to follow the behavior of the peer than risk-loving or
risk-averse subjects.

5 Conclusion

The term social interaction effect refers to a particular form of strategic comple-
mentarity in which the action choices of agents in a reference group have a positive
impact on the DM’s propensity to choose the corresponding action without affecting
the DM’s material payoffs. Social interaction effects potentially have important eco-
nomic consequences, because any change in the environment has not only a direct
effect on behavior but also an indirect effect (resulting from the change in the peers’
behavior) of the same sign, and thus a small change in fundamentals might result in
a large change in aggregate behavior via the so called “social multiplier”.

20The fact that our definition of risk-neutrality may include slightly risk-loving and slightly risk-averse
subjects is perfectly consistent with the theory, since in theory the curve for the size of the difference in
indifference probabilities as a function of risk attitude is U-shaped with the minimum at risk-neutrality.
See Appendix B for details.
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We have shown theoretically that convex distributional preferences imply social
interaction effects in risky choices, even when the outcomes of a given lottery are
stochastically independent across agents deciding for that lottery and even when the
DM can only observe the lotteries chosen by the peers but not the corresponding
outcomes. Indeed, convex altruistic, inequality averse, maximin, envious, and spite-
ful preferences all imply that observing (more) peers choose a risky (safe) option
increases the DM’s propensity to choose the risky (safe) option as well, although
the DM’s material payoffs for the different options remain unaffected by the peers’
choices.

Our experimental results show strong peer group effects in the choices between
pairs of lotteries in the sense that observing a peer choose a risky (safe) option
increases the DM’s propensity to choose the risky (safe) option as well, although
in the experiment the outcomes of a given lottery are stochastically independent
across agents and the DM can only observe the lottery chosen by the peer but not
the corresponding outcome. Taking advantage of the controlled environment, we
have excluded standard identification problems (self-selection, correlated effects, and
contextual effects), material payoff externalities and informational externalities as
possible explanations and we have concluded that a plausible cause for the observed
correlation in risky choices is social interaction effects caused by convex distribu-
tional preferences. Support for this conclusion comes from the data analysis on the
individual level, which reveals correlations in line with our theory: The social inter-
action effect observed in the aggregate data is mainly caused by subjects with convex
distributional preferences, and the effect seems to be more pronounced for subjects
with non-linear risk attitudes than for risk-neutral subjects, although the evidence for
this latter comparison is less conclusive.
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