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Abstract

We estimate structural models of guilt aversion to measure the population level of
willingness to pay (WTP) to avoid feeling guilt by letting down another player.
We compare estimates of WTP under the assumption that higher-order beliefs are
in equilibrium (i.e. consistent with the choice distribution) with models estimated
using stated beliefs which relax the equilibrium requirement. We estimate WTP in
the later case by allowing stated beliefs to be correlated with guilt aversion, thus
providing a direct test and control for a possible (false) consensus effect. All models
are estimated using data from an experiment of proposal and response conducted
with a large and representative sample of the Dutch population. We find that equi-
librium and stated belief models both suggest that responders experience significant
guilt aversion from letting down proposers. Responders are on average willing to
pay up to 0.80 Euro to avoid letting down proposers by 1 Euro. Moreover, estimated
WTP remains positive and significant in models using stated beliefs despite signif-
icant correlation between guilt aversion and beliefs. Finally, we find no evidence
that WTP is significantly related to the observable socio-economic characteristics
of players.
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1 Introduction

Persistent findings in experimental economics suggest that in many strategic environments

people’s preferences do not only depend upon the strategies played but also on the beliefs

they hold about other people’s intentions and expectations [see e.g. Falk, Fehr, and Fis-

chbacher, 2008;, Charness and Dufwenberg, 2006]. One specific type of belief-dependent

preferences which has received a lot of attention recently is guilt aversion [Charness and

Dufwenberg, 2006; Battigalli and Dufwenberg, 2007; Vanberg, 2008; Ellingsen, Johannes-

son, Tjøtta, and Torsvik, 2009]. In that literature an individual is defined as guilt averse

if he values living up to his expectations of what other individuals expect of him. Not

doing so causes a feeling of guilt which negatively affects the individual’s utility and thus

influences decision making.

The aim of this paper is to estimate structural models of guilt aversion to measure the

population level of willingness to pay (WTP) to avoid feeling guilty. Existing work test

for the presence of guilt aversion by measuring the correlation between players’ decisions

and their second-order beliefs: their expectations of what others expect of them. The esti-

mated correlations typically suggest significant guilt aversion in student populations (e.g.

Charness and Dufwenberg, 2006). While such tests provide indications of the relevance of

guilt aversion, they provide little information concerning the quantitative importance of

guilt aversion relative to self-interest. Measuring WTP thus has the potential to provide

new insights on the quantitative importance of guilt aversion for players.

To proceed, we conducted an experiment with a large and representative sample of

the Dutch population. The experiment was based on a simple sequential two player game

of proposal and response with two additional inactive players. In the main treatment

(henceforth treatment S) responders made their decisions and were then asked to state

their second-order beliefs: their expectations of the first-order beliefs or proposers. It

has recently been argued that observing a significant correlation between responders’

decisions and their stated second-order beliefs does not necessarily imply guilt aversion

(see Charness and Dufwenberg, 2006; Vanberg, 2008; Ellingsen, Johannesson, Tjøtta, and
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Torsvik, 2009). The observed correlation may instead reflect a consensus effect which

occurs when individuals condition on their behavior (and preferences) when stating their

beliefs (Ross, Greene and House, 1977).1 This effect has been thoroughly studied in

psychology. For our simple game it means that responders’ stated second-order beliefs

are affected by their intended decisions rather than vice-versa. To address the possibility

of a consensus effect we conducted an additional treatment, henceforth treatment X.

In this treatment responders where informed of the true first-order beliefs of proposers

before they made their decisions. Hence, treatment X overcomes biases due to consensus

effects by exogenously inducing second-order beliefs independently of the preferences of

responders.2

We measure WTP in two different ways. First, we estimate WTP combining data

from both treatments with the second-order beliefs stated in treatment S. We control for

a possible bias in estimated WTP which would result from consensus effects by allowing

for correlation between stated beliefs and guilt aversion of players in treatment S.3 Fur-

thermore, combining data from both treatments allows us to evaluate how much of the

differences in measured guilt aversion across both treatments can be attributed to this

correlation.

Second, we estimate WTP assuming that beliefs are consistent with the relevant choice

distributions. This equilibrium approach is especially appealing for two reasons. First,

it is firmly grounded in theory (see e.g. Harsanyi 1967, Battigalli and Dufwenberg, 2007

and Battigalli and Dufwenberg, 2009).4 Second, the consistency requirement closes the

1We will call it a consensus effect although in the original definition Ross, Greene and House (1977)

speak of a false consensus effect. Dawes (1989, 1990) argues that the label false is not justified because

the effect can be rationalized in a Bayesian framework. Engelmann and Strobel (2000) experimentally

investigate this issue and found clear evidence against the falsity. For our purpose this distinction is

however secondary.
2Ellingson, Johannesson, Tjøtta, and Torsvik (2009) used a similar method.
3A similar econometric approach was followed by Bellemare, Kröger, and van Soest (2008). There,

they estimate a structural model of choice under uncertainty using ultimatum game data where beliefs

are allowed to be correlated with inequity averse preferences.
4Theoretical models of guilt aversion do not necessary require that beliefs be in equilibrium to generate
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model and thus circumvents the need to collect data on (higher-order) beliefs. As a result,

the equilibrium approach avoids biases due to consensus effects which arise when using

stated beliefs. Obviously, one potential drawback of the equilibrium approach is that the

consistency of decisions and beliefs may be an overly restrictive assumption in one shot

games as players do not have any opportunity to learn about the expectations of others.

Our mains results are the following. First, we find that WTP to avoid letting down

player A is significantly higher in treatment S than in treatment X when we do not allow

for a correlation between stated beliefs and guilt aversion (ie. no control for consensus

effects). Interestingly, the measured WTP to avoid letting down player A is no longer

significantly different across both treatments once we allow stated beliefs to be correlated

with guilt aversion. This is consistent with a consensus effect. Quantitatively, results

from the stated belief model suggest that second movers are on average willing to pay up

to 0.80 Euro to avoid letting down player A by 1 Euro. Third, we find that the WTP

to avoid letting down player A estimated using the equilibrium model is similar to the

level of WTP predicted by the stated belief model once correlation between guilt aversion

and beliefs is accounted for. Moreover, we do not find that WTP to avoid letting down

any player varies significantly across various socio-economic dimensions (age, education,

income, etc.).5 Finally, we find no evidence that second movers are willing to pay to avoid

letting down inactive players. This result hold for both the stated and equilibrium belief

models.

The organization of the paper is as follows. In section 2 we describe the game and

experimental setup. In section 3 we present our data. Section 4 presents a model of

simple guilt. Section 5 presents our econometric model using stated beliefs while section

6 presents our econometric model assuming equilibrium beliefs. Section 7 concludes.

predictions about behavior. Battigalli and Dufwenberg (2009) for example analyze strategic behavior in

psychological games under the weaker requirement that beliefs are rationalizable. See their section 5.2

for a discussion.
5Recent experimental studies sampling the same population (Bellemare and Kröger (2007), Belle-

mare, Kröger, and van Soest (2008)) have on the other hand found that distributional preferences vary

significantly across socio-economic dimensions.
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2 The Game and the Experimental Setup

The experiment was done via the CentERpanel, an Internet survey panel managed by

CentERdata at Tilburg University. The panel consists of about 4000 households, a rep-

resentative sample of the Dutch population. They are contacted weekly on Fridays and

are requested to answer questions until Sunday night. Most of these questions are survey

questions about household decisions but CentERdata also allows for simple interactive

experiments.6 Our experiment is based on the following game:

Player A
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yA(l)

yB(l)
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yD(l)

yA(r)

yB(r)

yC(r)

yD(r)

xA(R)

xB(R)

xC(R)

xD(R)

In this simple sequential game, there are four players: A, B, C and D. Player A can

choose either the outside option R or he can choose L to let player B decide. If player A

chooses R then the game ends and the players receive their payoffs xA(R), xB(R), xC(R)

and xD(R), respectively. If player A decides to choose L then player B has to choose

either l or r. In both cases the game ends and the players receive their corresponding

payoffs, either yA(l), yB(l), yC(l) and yD(l), respectively or yA(r), yB(r), yC(r) and yD(r),

respectively.

6For more details and a description of the recruitment, sampling methods, and past usages of the

CentERpanel see: www.centerdata.nl. Computer screens from the original experiment (in Dutch) with

translations are available upon request.
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Players C and D are dummy players whose monetary payoffs are determined by the

choices of player A and (possibly) B.7 We included C and D players to analyze how

B’s decision is affected by the presence of strategically uninvolved players. The existing

literature (e.g. Güth and Van Damme, 1998; Kagel and Wolfe, 2001) indicates that the

presence of one inactive player has a weak influence of behavior in simple games. Here,

we use two inactive players in-order to make their presence in the game more salient.

Payoffs were systematically varied across games with the help of Optimal Design Theory

(see Mueller and Ponce de Leon, 1996). Payoffs were presented in CentERpoints - the

currency that is usually used in experiments conducted with the CentERpanel. In total

we invited 3000 panel members to participate for both treatments. From all invited

participant 1962 responded and went through the whole experiment. We next describe

both treatments of our experiment in detail.

Treatment S

Treatment S was conducted at the beginning of 2007. We invited 2000 CentERpanel

members to participate in this treatment. 1666 out of the 2000 invited panel members

responded to the invitation by reading the opening screens of the experiment. They were

provided with a description of the game, the possible choices that players in the different

roles could make and their associated consequences. Before the revelation of their roles

and monetary payoffs, members were given the chance to resign from the experiment. 264

members resigned at this stage, leaving us with 1402 members who where then randomly

assigned to a specific game and to one of the four different roles A, B, C and D. Following

the information about their role and their game’s payoffs, participants were asked to make

their choices. We used the strategy method (see Selten 1967). This means that A- and

B-players made their choices simultaneously while B-players’ knew that their decision

was conditional on A not choosing “out”. This helped us overcome the problems of

7Our game is similar to that analyzed by Charness and Rabin (2005) with the difference that we

include the dummy players C and D. Furthermore, different to them, we did not ask players A to reveal

their expectations about the possible choices of player B.
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coordinating interactions in real time via the panel.

After making their decision, each A-player was asked to state their first-order be-

liefs concerning the behavior of player B if they chose to let this player decide the final

allocation. In particular, A-players were presented the following question

(First-order beliefs of A-players) What do you think, how many B-Persons out of 100 will

choose l and how many r. Please indicate this number for each possible allocation.

1. Number of B Persons out of 100 that will choose B.1 : XA

2. Number of B Persons out of 100 that will choose B.2 : Y A

The computer program automatically ensured that the numbers entered (XA+Y A) added

up to 100. To simplify the task of participants, all beliefs were elicited using natural

frequencies.8

After their decisions (l or r), B-players were asked to state their second-order beliefs.

In particular, they were asked to answer the following question:

(Second-order beliefs of B-players) What do you think about Person A’s beliefs about the

behavior of Persons B? Please indicate this number for each possible allocation.

1. Person A believes that XB B-Persons out of 100 choose B.1

2. Person A believes that Y B B Persons out of 100 choose B.2

Again, the computer program automatically ensured that the numbers XB + Y B added

up to 100.

The decisions of A- and B-players were matched after the experiment to determine the

final payoff of players A, B, C and D. Before the experiment participants were informed

that we expect at most 2000 persons to participate and that after the experiment 50

8This follows Hoffrage, Lindsey, Hertwig, and Gigerenzer (2000) who found that people are better at

working with natural frequencies than with percent probabilities.
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played games (50 players of each role) would be paid off.9 In order to increase the number

of B-player decisions which were most interesting for us, we put more persons into the

role of B than into the other roles. More specifically, we had prepared 1600 payoff-wise

different games for treatment S. Given these 1600 games, we decided a-priori to randomly

allocate each of our initial 2000 invited panel members to one of the four roles in the

following proportions: 1600 B-player roles (one for each game), 300 A-players, 50 C-

players, and 50 D-players. We randomly picked 50 out of the 300 games consisting with

A- and a B-players to which we assigned C and D players. This means, we a-priori

randomly picked 50 payoff-wise different games (out of 1600) with A-, B-, C- and D-

players which were paid off after the experiment. In the beginning of the experiment

participants were then randomly allocated to a specific role and a game ensuring that

a-priori everybody had an equal chance to be in a game which was paid off at the end (for

details see also the translated screens of the experiment in the appendix). As announced

before the experiment, participants of the games that were paid out received information

on the outcome of their game and their final payoffs a few weeks after the experiment.

Furthermore, the corresponding amounts were credited to their bank accounts. Of the

1402 participants that completed the experiment there were 1114 B-players, 214 A-players

and 74 C- and D-players.10

Treatment X

Treatment X was conducted during the summer of 2008. For this treatment, we (i) selected

all 214 games in treatment S with decisions and stated first-order beliefs of A-players, (ii)

we re-contacted the A-, C- and D-players who had played these specific games and asked

9The experiment was conducted using CentERpoints, the usual currency for CentERpanel members.

For the sake of simplicity we state directly the amounts in Euro. The exchange-rate was 100 CentERpoints

= 1 e.
10Table 1 presents data from treatment S. As can be seen, the sample size of treatment S is N=1078.

1078 represents the number of B-players (out of the 1114) for whom we had a complete record of back-

ground characteristics.
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them whether we could use their decisions and beliefs (if any) for a follow-up experiment

and (iii) invited 1000 new members of the CentERpanel to participate in the experiment.

719 out of the 1000 invited panel members responded to the invitation by reading the

opening screens of the experiment. As in treatment S, they were given the chance to

resign from the experiment after the structure of the game was explained but before they

learned their role and the detailed payoffs. 159 members resigned at this stage, leaving

us with 560 members who where then all assigned to the role of player B and confronted

with their specific game.11 In contrast to treatment S, the B-players in treatment X

were not asked for their second-order beliefs but were presented the first-order beliefs of

their matched A-player (taken from treatment S) before making their decisions. All other

features of the treatment are otherwise identical to treatment S. Similar to treatment S we

informed participants before the game that 25 games played were going to be randomly

selected and paid out. As before the subjects received information about the decisions a

few weeks later and for the players of the selected games including A-, C- and D-players

the corresponding amounts were credited to their bank account.

3 Data

Table 1 presents the sample means and standard deviations of the allocations to A-, B-,

C-, and D-players at the three end knots of the game.

[Insert Table 1 here]

The average allocation ranges between 20 and 25 Euros per player depending on the role

and the terminal node.

First-order beliefs of A players were elicited in treatment S and are provided to B-

players in treatment X. We analyze the first-order beliefs of A players in treatment S by

11Hence the 214 games were used on average more than twice. Table 1 presents data from treatment

X. The sample size of treatment X is N=540. Analogous to treatment S, 540 represents the number of

B-players (out of the 560) for whom we had a complete record of background characteristics.
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estimating the following linear regression

bA
i = α0 + α1∆yA

i + α2∆yB
i + α3∆yC

i + α4∆yD
i + εi (1)

where bA
i denotes the probability placed by player A on player B playing r (first-order

beliefs of player A), and where ∆yk
i = yk

i (r) − yk
i (l) denotes the payoff difference when

player B chooses r relative to l for player k ∈ {A,B, C, D}. The estimated equation is

the following (with standard errors in parenthesis)

b̂A
i = 0.473

(0.019)
+ 0.001

(0.001)
∆yA

i + 0.006∗∗∗
(0.001)

∆yB
i + 0.001

(0.001)
∆yC

i + 0.000
(0.000)

∆yD
i

We find that A-players expect that B-players are more likely to chose r when B-player

payoffs from doing so increase relative to payoffs from choosing l. Interestingly, first-order

beliefs do not vary significantly with payoffs of A-, C-, and D-players. This suggests

that A-players do not expect that B-players will take into account the well being of other

players when making their decisions.

4 A model of simple guilt aversion

In this section, we specify a structural econometric model of guilt version. Our starting

point is the model of ‘simple guilt’ proposed by Battigalli and Dufwenberg (2007).12 We

start by assuming that a B-player’s utility of playing r is given by

Ui(r) = yB
i (r) + φA

i GA
i (r) + φCD

i GCD
i (r) (2)

where yB
i (r) denotes his payoff, GA

i (r) denotes guilt towards player A (conditional on

player A’s beliefs), and where GCD
i (r) denotes guilt towards players (C,D) (conditional

on players C and D’s beliefs). Player B’s utility of choosing l is defined analogously by

replacing r for l and is omitted for brevity.

12Note, Battigalli and Dufwenberg (2007) also present an extended model of ‘guilt from blame’ which

assumes that a player cares about others inferences regarding the extent to which he is willing to let

down.
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The parameter φA
i controls player B’s sensitivity to guilt towards player A. Similarly,

φCD
i controls player B’s sensitivity to guilt towards players (C,D). Note, as marginal

utility of own income yB
i is normalized to 1, the (absolute) values of φA

i and φCD
i also

represent player B’s willingness to pay to avoid respectively letting down A-players and

C,D-players by 1 CentERpoint.

The guilt variables from choosing r are defined as

GA
i (r) =

[
E

(
Y A

i

)− yA
i (r)

]
1
[
yA

i (r) < yA
i (l)

]
(3)

GCD
i (r) =

[
E

(
Y CD

i

)− yCD
i (r)

]
1
[
yCD

i (r) < yCD
i (l)

]
(4)

where E
(
Y A

i

)
denotes the expected payoff of player A, where yCD

i (n) ≡ yC
i (n)+yD

i (n) for

n ∈ {l, r}, and where E
(
Y CD

i

)
denotes the expectation of the sum of payoffs of players

C and D.13 These expectations are given by

E
(
Y A

i

)
= bA

i yA
i (r) + (1− bA

i )yA
i (l) (5)

= bA
i

[
yA

i (r)− yA
i (l)

]
+ yA

i (l)

E
(
Y CD

i

)
= bCD

i yCD
i (r) + (1− bCD

i )yCD
i (l) (6)

= bCD
i

[
yCD

i (r)− yCD
i (l)

]
+ yCD

i (l)

where bA
i denotes player A’s subjective belief that player B will play r, while bCD

i denotes

players C and D’s subjective belief that player B will play r. Player B ‘lets down’ player

A by choosing r if this provides player A with a final payoff yA
i (r) below his expectation.

Similarly, player B ‘lets down’ players C and D by choosing r if this provides these players

with a final payoff yCD
i (r) below their expectation. Hence, we assume that a player cares

about the extent to which he lets other players down, where GA
i (r) and GCD

i (r) measure

the amount of let down from choosing r. From (2), (3), and (4) it also follows that player

i can only let down player A (or players CD) by choosing the alternative providing A (or

players CD) with his lowest payoff.14

13We also estimated a model allowing separate guilt from letting players C and D. The results are

essentially identical to those obtained by grouping players C and D together and led to no significant

increase in the log-likelihood function.
14For example, if yA

i (r) < yA
i (l), then GA

i (r) > 0 and GA
i (l) = 0.
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So far, the analysis has assumed that player B knows bA
i and bCD

i . In reality, player

B forms expectations (his second-order beliefs) b
A

i = E(bA
i ) and b

CD

i = E(bCD
i ) over the

possible values of the first-order beliefs of the other players. Player B’s expected utility

E(Ui(r)) (conditional on the game) can be derived by replacing bA
i in (5) with E(bA

i ) and

bCD
i in (5) with E(bCD

i ). The expectation E(Ui(l)) is derived analogously.

5 Estimation using stated beliefs

In this section we estimate the model of the previous section using stated second-order

beliefs. Our estimation framework explicitly deals with the possible correlation between

stated beliefs and guilt aversion which would arise in the presence of a consensus effect.

In our model, the existence of a consensus effect implies that B-players with guilt aversion

(i.e. higher values of φA
i ) state second-order beliefs bA

i (r) resulting in higher implied levels

of GA
i (·) of the relevant alternative. We estimate our stated belief model combining data

from both treatments. This allows us to asses how much of the differences in estimated φA

across both treatments is attributable to the possible correlation between stated beliefs

and guilt aversion in treatment S.

To proceed, we assume that the sensitivity to guilt towards player A is given by

φA
i = φA + γDi + uφA

i (7)

where uφA

i is a normally distributed idiosyncratic component of guilt aversion with mean

zero and variance σ2
φ. Di denotes a dummy variable taking a value of 1 for players

in treatment X, and 0 otherwise. This variable captures differences of φ across both

treatments which are not accounted for by the model.15

We next model stated second-order beliefs b
A

i in treatment S. Since reported proba-

bilities may well be zero or one, we allow for censoring at 0 and 1, as in a two-limit tobit

model. In particular, we model the stated second-order beliefs as:

15We also estimated a model where we allowed φA
i to depend on observable characteristics of players

(age, gender, education, and income). We failed to find any significant increase in the model log-likelihood.

Results are available upon request.
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b
A?

i (r) = x′iδ − ρuφA

i 1[yA
i (r) < yA

i (l)] + ρuφA

i 1[yA
i (r) > yA

i (l)] + ub
i

b
A

i = 0 if b
A?

i < 0

= b
A?

i if 0 < b
A?

i < 1

= 1 if b
A?

i > 1

where ub
i denotes a mean zero normally distributed random variable with variance σ2

b ,

and xi denotes a vector of payoffs characterizing the game. Note, the model above allows

the unobserved part of guilt aversion uφA

i to affect the stated beliefs in a manner which

is consistent with the consensus hypothesis when ρ > 0. To see this, consider first games

where playing right provides guilt to player B, that is games such that yA
i (r) < yA

i (l).

Recall that there is no guilt from playing left in this case. Then it follows from (5) that

B-players with relatively higher guilt aversion (higher values of uφA

i ) are more likely to

think that player A expects that a lower proportion of B players will choose r. Hence,

lower values of b
A

i will be stated which (from (3) and (5) ) results in higher guilt GA
i (r)

from choosing r. Next consider games where playing left provides guilt to player B, that

is games such that yA
i (r) > yA

i (l). Recall that there is no guilt from playing right in this

case. Then it follows from (5) that B players with relatively higher guilt aversion (higher

values of uφA

i ) are more likely to think that player A expects that a higher proportion of

B players will choose r. Hence, higher values of b
A

i will be stated which results in higher

guilt GA
i (l) from choosing l.

The previous discussion implies that any positive correlation between second-order be-

liefs and guilt aversion may lead to an overstatement of the importance of guilt aversion.

A formal test of the correlation between guilt aversion and beliefs can be performed by

testing the null hypothesis ρ = 0 against the alternative ρ > 0. In the event that ρ > 0,

a value of γ significantly different from zero would suggest that accounting for correla-

tion between stated beliefs and guilt aversion is not sufficient to explain the behavioral

differences across both treatments.

As second-order beliefs of B-players concerning C- and D-players were not elicited, it

will not be possible to estimate φCD
i . However, it is possible to control for the effect of
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guilt towards inactive players when estimating φA
i . To do so, we replace (6) into (4) and

(4) into (2). Taking expectations over bA
i we get an expression of the expected utility of

player B from choosing r

E(Ui(r)) = yB
i (r) + φA

i GA
i (r) (8)

+φCD
i (1− b

CD

i )(yCD
i (l)− yCD

i (r))1
[
yCD

i (r) < yCD
i (l)

]

where GA
i (r) is now evaluated at b

A

i . Note from (8) that guilt towards inactive players

is a function of a known variable (yCD
i (l)− yCD

i (r))1
[
yCD

i (r) < yCD
i (l)

]
and an unknown

parameter φCD
i (1− b

CD

i ) which can be estimated.16

Finally, we assume that player B has private information about a part of his utility

of choosing left and of choosing right. We model this by adding λεr
i to E(Ui(r)) in (8)

and λεl
i to E(Ui(l)) (not presented), where λ denotes a scale parameter. We assume that

the unobserved private utilities εn
i for n ∈ {l, r} are i.i.d across players and choices and

follow a type 1 extreme value distribution. The model is estimated using full information

maximum simulated likelihood.17

We estimated a restricted and unrestricted version of the model with stated beliefs.

The restricted model was estimated setting ρ = 0, thus imposing independence between

stated beliefs and guilt aversion. Our unrestricted version of the model consisted of esti-

mating all parameters including ρ, thus allowing for a correlation between guilt aversion

and stated beliefs.

[Insert Table 2 here]

Table 2 presents the results of the restricted and unrestricted versions of the model

using stated beliefs. We discuss first the results of the restricted model. We find that the

16Estimating φCD
i (1− b

CD

i ) as a single parameter implicitly assumes that φCD
i (1− b

CD

i ) does not vary

across i. We also experimented with a random coefficient specification allowing φCD
i (1 − b

CD

i ) to vary

across i. This did not lead to a signification increase in the log-likelihood function value. We thus report

point estimates of φCD
i (1− b

CD

i ).
17Details concerning the log-likelihood function and computation can be found in the appendix of the

paper.
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estimate of φA is -1.429 and significant, indicating significant guilt aversion in treatment

S. The estimated magnitude of φA is surprisingly large. It suggests that B players are on

average willing to pay up to 1.429 Euros to avoid letting down A players by 1 Euro. As

argued before the estimated value of φA in the restricted model could be biased downward

by the presence of a consensus effect. Evidence of such a bias is provided by the positive

and significant estimate of γ. The later result suggests that estimated guilt aversion in

treatment X is significantly weaker than that of treatment S. Nonetheless, the estimated

level of guilt aversion in treatment X is significant.18 The estimated value of φCD
i (1−b

CD

i )

is negative and insignificant, suggesting weak guilt aversion from letting down inactive

players. The estimated variance of uφA

i is small and insignificant, indicating that this

parameter is not well identified in the restricted model.

Concerning the parameters in the belief equations, we find that B-players’ payoffs have

a significant effect on stated beliefs and are of the predicted sign: B-players state higher

probabilities of choosing r when their payoffs of playing right yB(r) is higher, and lower

probabilities when their payoffs of playing left yB(l) is higher. We also find that B-players

state significantly higher probabilities b
A

i of choosing r when the payoff of player A when

choosing r increases.

We next discuss results of the unrestricted model. First, note that the estimate of

ρ is positive and significant, indicating a significant positive correlation between guilt

aversion and stated beliefs. As we discussed above, a positive and significant estimate

of ρ is consistent with the consensus hypothesis. Allowing for this correlation has an

important impact on our main model estimates. In particular, the estimated value of φA

remains negative and significant. Interestingly, the estimated level of guilt aversion in

treatment S is now -0.792, almost half the estimated magnitude in the restricted model.

This suggests that B-players are now on average willing to pay up to 0.792 Euros to

avoid letting down A players by 1 Euro. Furthermore, the estimated value of γ is no

longer significantly different from zero once correlation between guilt aversion and beliefs

18A chi-square test of the null hypothesis that φA +γ = 0 against the alternative φA +γ < 0 is rejected

at conventional levels (p-value = 0.033).
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is accounted for. This indicates that the correlation between guilt aversion and beliefs

accounts for most of the differences in measured WTP across both treatments. Together

these results indicate that ignoring the correlation between the sensitivity to guilt and

stated beliefs in treatment S leads to a substantial bias of the estimated level of guilt

aversion.

Concerning guilt towards the inactive players, the estimated value of φCD
i (1 − b

CD

i )

remains negative and insignificant, suggesting again weak guilt aversion from letting down

players C and D.

Finally, the estimated parameters of the belief equation in the unrestricted model are

similar to those of the restricted model. In particular, B-players state higher probabilities

of choosing r when their payoffs of playing right yB(r) is higher, and lower probabilities

when their payoffs of playing left yB(l) is higher. We also find that B-players state signif-

icantly higher probabilities b
A

i of choosing r when the payoff of player A when choosing r

increases. Hence, it seems that B-players think that A players will expect them to take

into account their well being when making their decisions.

6 Estimation assuming equilibrium beliefs

In this section we estimate WTP to avoid guilt under the assumption that second-order

beliefs are in equilibrium. We do so using only data from treatment S. Estimation of

an equilibrium model using data from treatment S is reasonable given that B-players

made their decisions in that treatment before knowing that they later had to state their

second-order beliefs. As a result, decisions in treatment S could not have been influenced

by the beliefs elicitation procedure. We exclude data from treatment X at this point since

each B−player in that treatment was provided the first-order beliefs of player A before

making his decision. As these first-order beliefs were not restricted to be consistent with

the choice distributions, imposing consistency for estimation of the model parameters in

treatment X would almost surely result in a misspecified model.

To estimate the equilibrium model, we use the following specifications of φA
i and φCD

i

15



φA
i = φA + uφA

i (9)

φCD
i = φCD + uφCD

i (10)

where the elements of (9) have been defined previously in (7), φCD denotes the mean of

φCD
i , and where uφCD

i is a normally distributed idiosyncratic component with mean zero

and variance σ2
φ.

19 Contrary to (7), (9) and (10) do not include the treatment dummy Di

as data from treatment X is not used in the estimation. Under these assumptions, the

probability pi(r) that player B will play r in a given game given beliefs (b
A

i , b
CD

i ) is given

by

pi(r) =

∫ ∫
exp (E(Ui(r))/λ)

exp(E(Ui(r))/λ) + exp(E(Ui(l))/λ)
hA(uφA

i )hCD(uφCD

i )duφA

i duφCD

i (11)

where the integration is taken over the distributions of uφA

i and uφCD

i and where E(Ui(r))

is given in (8).

To close the model, we assume that beliefs of B-players are consistent with the choice

distribution. This restriction implicitly suggests the following assumptions on the infor-

mation sets of the players in the game. First, we assume that A, C, and D players know

the distributions of φA
i and φCD

i . They do not know however the exact values of φA
i and

φCD
i of the B-player they are matched with. Second, A, C, and D-players do not know

the private component εi(n) of the B-player they are matched with, but they know their

population distributions. All other elements of the utility function are assumed to be

known. Hence, A, C and D players can use this information to derive their first-order

beliefs concerning the behavior of player B. These first-order beliefs have two character-

istics. First, they are identical across players (bA
i = bCD

i ) given all players share the same

information set. Second, first-order beliefs will coincide with the observed distribution

pi(r) given in (11). Finally, B-players are assumed to know all this, i.e. they know what

19Hence we assume that the variances of uφA

i and uφCD

i are identical. Allowing these variances to differ

does not produce significant increases in the log-likelihood function value (p-value = 0.912).
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A, C, and D-players can infer. Hence, they align their second-order beliefs with the first-

order beliefs of other players. This implies that the following equilibrium restrictions are

assumed to hold

b
A

i = b
CD

i = pi(r) for all i = 1, 2, ..., N (12)

Note that the equilibrium restrictions imply that φCD
i can be identified. This differs from

the stated belief approach where only the product φCD
i (1−b

CD

i ) is identified. Identification

of φCD
i follows from (8) and the equilibrium restrictions (12) which provide identification

of b
CD

i .

To estimate our equilibrium model, let di(r) denote a binary decision variable taking

a value of 1 when player i ∈ {1, 2, ..., N} chooses r, and 0 otherwise. The model log-

likelihood is given by

QN (θ) =
1

N

N∑
i=1

log [di(r) · pi(r) + (1− di(r)) · (1− pi(r))] (13)

where θ denotes the vector of model parameters. Estimation of θ is done iteratively. In

particular, for a given value of θ, it is simple to solve for the fixed point pi(r) for each

player i. Given these fixed points, we then update θ to maximize (13) given the games

{
(yA

i (l), yA
i (r), yB

i (l), yB
i (r), yCD

i (l), yCD
i (r)) : i = 1, 2, ..., N

}

As a result, the fixed points are updated iteratively with each new value of θ until equation

(13) is maximized.

Estimates of the equilibrium model are given in the last column of Table 2. We find

that the estimated value of φA is -0.655 and significantly different from zero. Interest-

ingly, the estimated value of φA in the equilibrium model is similar to the corresponding

value estimated in the unrestricted version of the stated belief model. Furthermore, the

estimated guilt aversion towards the inactive players φCD is small and insignificant. This

parallels our findings using the stated belief model and indicates that we do not loose

much by excluding guilt towards inactive players. This result is in line with earlier ex-

perimental research documenting the insensitivity towards inactive players (see e.g. Güth
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and van Damme (1998), Kagel and Wolfe (2001)). Finally, we find that σ2
φ is positive but

imprecisely measured suggesting that guilt aversion does not vary significantly across the

population.

7 Conclusion

This paper has focused on estimating the population level of WTP to avoid guilt using

equilibrium and stated belief models of guilt aversion. Our application focused on a simple

game of proposal and response played by a large and representative sample of the Dutch

population.

Results from both equilibrium and stated beliefs models provide the same insight:

responders have a significant WTP to avoid guilt. In line with the consensus hypothesis,

we found a significant correlation between stated beliefs and guilt aversion in the stated

belief model. We also found that this correlation had an important impact on the mea-

sured level of WTP. In particular, our estimates indicate that the estimated WTP in the

stated belief model can be exaggerated by a factor close to 2 if consensus effects are not

taken into account. Interestingly, the estimated WTP in the equilibrium model is close to

the estimated WTP in the stated belief model. We interpret this finding as an indication

that the equilibrium model provides a good first approximation of the level of WTP in the

population even in one shot games. Future research is needed to investigate whether this

result applies to more general models incorporating second-order beliefs (see Dufwenberg

and Kirchsteiger, 2004).

Overall, our estimates suggest that B-players are on average willing to pay up to 0.80

Euros to avoid letting down A players by 1 Euro. On the other hand, we fail to find that

players are willing to pay to avoid letting down inactive players. This result holds both

for the equilibrium and stated belief models.

Finally, our experimental design shares important similarities with the one used by

Ellingsen, Johannesson, Torsvik and Tjøtta (2009). Nevertheless, our results indicate that

significant guilt aversion remains after controlling for consensus effects. An interesting
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direction for future research is to examine the factors which can explain this difference.

Socio-economic and cultural differences across subject pools are in principle possible ex-

planations. Yet, we found no evidence that guilt aversion varies significantly across socio-

economic dimensions (e.g. age, education, income) which distinguish our representative

subject pool from student subject pools. This suggests that cultural (or other unobserv-

able) characteristics can possibly account for the differences in measured guilt aversion

across both populations.
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A Technical appendix

We present here the log-likelihood function of the model with stated beliefs. We observe

for each player in treatment S a choice and a stated belief. Let ci ∈ {l, r} denote the

choice of player i, and let b
A

i denote his stated second-order belief concerning the choice

of playing r. Finally, define xi = {(yj
i (r), y

j
i (l)) : j ∈ {A,B,CD}} as the relevant payoff

vector for player i.

Given our model assumptions, it follows that conditional on uφA

i , the likelihood of

observing
(
ci, b

A

i

)
is the product of the conditional choice and belief likelihoods

L(ci, b
A

i |xi, u
φA

i ) = 1 [ci = l] Pr
(
ci = l|xi, u

φA

i

)
F

(
b
A

i |xi, u
φA

i

)

+1 [ci = r] Pr
(
ci = r|xi, u

φA

i

)
F

(
b
A

i |xi, u
φA

i

)

where

Pr
(
ci = r|xi, u

φA

i

)
=

exp (E(Ui(r))/λ)

exp (E(Ui(r))/λ) + exp (E(Ui(l))/λ)

Pr
(
ci = l|xi, u

φA

i

)
= 1− Pr

(
ci = r|xi, u

φA

i

)

and

F
(
b
A

i |xi, u
φA

i

)

= Φ

(
−x′iδ+ρuφA

i 1[yA
i (r)<yA

i (l)]−ρuφA

i 1[yA
i (r)>yA

i (l)]
σb

)
, if b

A

i = 0

= f

(
b
A
i −x′iδ+ρuφA

i 1[yA
i (r)<yA

i (l)]−ρuφA

i 1[yA
i (r)>yA

i (l)]
σb

)
/σb , if 0 < b

A

i < 1

= Φ

(
1−x′iδ+ρuφA

i 1[yA
i (r)<yA

i (l)]−ρuφA

i 1[yA
i (r)>yA

i (l)]
σb

)
, if b

A

i = 1,

where Φ (·) and f (·) denote respectively the standard normal cumulative and density

functions. The likelihood contribution of player i is obtained by integrating out over the

distribution of uφA

i

L(ci, b
A

i |xi) =

∫
L(ci, b

A

i |xi, u
φA

i )h
(
uφA

i

)
duφA

i (14)
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where h (·) denotes the normal density function with mean zero and variance σ2
φ. For

players in the treatment X, beliefs are assumed exogenous. Hence, their likelihood con-

tribution is simply their conditional choice probability

L(ci|xi) =

∫
L(ci|xi, u

φA

i )h
(
uφA

i

)
duφA

i (15)

=

∫ [
1 [ci = l] Pr

(
ci = l|xi, u

φA

i

)
+ 1 [ci = r] Pr

(
ci = r|xi, u

φA

i

)]
h

(
uφA

i

)
duφA

i

The sample log-likelihood is given by

1

N

N∑
i=1

(
log

(
L(ci, b

A

i |xi)
)

Ti + log (L(ci|xi)) [1− Ti]
)

where Ti is a dummy variable taking the value of 1 when player i took part in treatment

X, and 0 otherwise. Given no closed form solution exists to this integrals in (14) and

(15), a numerical approximation must be performed. In the paper, we approximate the

likelihood contribution by simulation. In particular, we approximate (14) and (15) using

the following simulators

L̃(ci, b
A

i |xi) =
1

R

R∑
r=1

L(ci, b
A

i |xi, u
φA

i,r )

L̃(ci|xi) =
1

R

R∑
r=1

L(ci|xi, u
φA

i,r )

where
{

uφA

i,r : r = 1, ..., R
}

denotes a sequence of R draws taken from the distribution

h
(
uφA

i

)
. Sequences are randomly drawn for each of the N players in the experiment.

We use Halton draws to lower the simulation noise of the estimator (see Train (2003) for

details).
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Stated beliefs - Treatment S Exogenous beliefs - Treatment X
x yl yr x yl yr

Player A 24.935 20.634 20.617 24.648 19.683 21.441
(9.978) (16.750) (16.416) (9.900) (16.778) (16.491)

Player B 24.860 22.498 21.511 24.851 24.420 19.904
(7.806) (17.703) (17.138) (8.022) (17.574) (16.964)

Player C 25.102 20.782 20.449 25.250 19.920 21.575
(2.194) (16.393) (16.120) (2.039) (16.722) (16.780)

Player D 25.102 21.327 21.250 25.250 19.918 21.855
(2.194) (16.683) (16.768) (2.039) (15.826) (16.717)

Table 1: Sample mean and standard deviations of the allocations across players in treat-
ments S (N = 1078) and X (N = 540). Entries are measured in Euros.
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Stated beliefs Equilibrium beliefs
Restricted (ρ = 0) Unrestricted (ρ̂ = 0.042∗∗∗)

Preference parameters
φA -1.429** -0.792** -0.655***

(0.217) (0.312) (0.167)
φCD (see note) -0.025 -0.026 -0.006

(0.078) (0.080) (0.205)
γ 0.870*** 0.406 -

(0.288) (0.411)
λ 3.360*** 3.022*** 3.138***

(0.258) (0.238) (0.087)
σ2

φ 0.002 5.749** 1.733
(0.111) (2.351) (1.613)

Belief parameters
yA(r) 0.012** 0.013**

(0.005) (0.005)
yA(l) -0.000 -0.022***

(0.005) (0.005)
yB(r) 0.071*** 0.067***

(0.005) (0.005)
yB(l) -0.066*** -0.061***

(0.005) (0.005)
xA -0.000 0.000

(0.001) (0.001)
σ2

b 0.072*** 0.054***
(0.003) (0.004)

Constant 0.491*** 0.484***
(0.038) (0.035)

Log-likelihood -1136.910 -1108.500 -664.339

Table 2: Estimated parameters of the stated belief model using data from treatments S and
X. Asymptotic standard errors are in parenthesis. Estimates for the stated belief model

presented under the heading φCD correspond to estimates of φCD
i (1 − b

CD

i ). See section
5 for details. ’*’,’**’,’***’ denote significance at the 10%, 5%, and 1% level respectively.
Estimates are based on 1078 and 540 B-players in treatments S and X.

23



References

Battigalli, P., and M. Dufwenberg (2007): “Guilt in Games,” American Economic
Review Papers and Proceedings, 97, 170–176.

(2009): “Dynamic Psychological Games,” Journal of Economic Theory, 144,
1–35.
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