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The goal of this paper is to develop a new theory of individual decision 
making under risk that fulfills three basic requirements. First, a theory is 
developed in a general framework of von Neumann and Morgenstern (1944). In 
other words, possible outcomes (consequences) are arbitrary and not restricted 
only to monetary payoffs. Second, a theory is derived from basic assumptions 
(axioms) about individual preferences over risky alternatives and it has a 
normatively appealing interpretation (both in terms of economic intuition and 
aesthetically pleasing algebra). Third, a theory is descriptively adequate in a 
sense that it is consistent with all major behavioral regularities. In particular, it 
does not violate the first-order stochastic dominance and it can account for the 
Allais paradox (Allais, 1953).  

A new theory can be summarized as follows. Let L: X → [0,1] denote a 
lottery, i.e., a probability distribution on an arbitrary set X  of possible 
outcomes. An individual has a preference relation ≿ over lotteries. We assume 
that this preference relation is complete, transitive, continuous and satisfies the 
transformed independence axiom. The first three axioms are standard 
assumptions about individual preferences (cf.  von Neumann and Morgenstern, 
1944). The transformed independence axiom is a new preference condition that 
is not used in the existing literature. 

If a preference relation ≿ satisfies four proposed axioms then there 
exist a utility function u:X→ℝ and a constant ρ ∈[-1,1] such that:
(1) L ≿ L'        if and only if      U(L)-ρ·r (L) ≥ U(L' )-ρ·r (L' ),
where
(2) U(L)=∑x∈X L(x)u(x) 
is the expected utility of lottery L  and
(3)   r (L)=0.5∑x∈X L(x)·|U(L)-u(x)| 
is the mean absolute semideviation of utility of L's outcomes from the expected 
utility of L. Model (1)-(3) is a parsimonious one-parameter generalization of 
expected utility theory. The latter emerges as a special case of representation 
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(1) when coefficient ρ  is equal to zero.
Model (1)-(3) has an intuitive economic interpretation. Quantity r (L) 

captures utility dispersion of lottery L. In particular, r (L)=0 when L  is a 
degenerate lottery that yields one outcome for certain (i.e., L  bares no risk) or 
when an individual is indifferent between all outcomes in L  that have a strictly 
positive probability of occurrence (i.e., L  has de facto  no risk exposure). For all 
other lotteries quantity r (L)  is strictly positive. Quantity r (L) is related to risk 
measures commonly used in engineering and finance. 

If quantity r (L) measures utility dispersion of lottery L then it is natural 
to think that a coefficient ρ ∈[-1,1] captures individual attitude towards risk. A 
positive value of ρ∈(0,1]  denotes risk aversion. In this case, representation (1) 
is simply a linear trade-off between expected utility and risk. An individual 
prefers lotteries with a higher expected utility and a lower utility dispersion. A 
negative value of ρ∈[-1,0) denotes risk seeking (loving). In this case, there is no 
trade-off: an individual prefers lotteries with higher expected utility and higher 
utility dispersion. In a special case when ρ=0 an individual does not care about 
utility dispersion and acts as a neoclassical expected utility maximizer.

Model (1)-(3) is not only a simple and intuitively appealing theory but it 
also has a significant descriptive merit. The model is consistent with all major 
behavioral regularities. Moreover, it can account for most behavioral patterns 
only when its coefficient ρ  is positive (cf. Table 1 below). This is in line with 
economic intuition behind the model. Most behavioral regularities can be driven 
by a simple fact that people do not only seek to maximize their expected utility 
but they are also exhibiting aversion to utility dispersion. 

Behavioral regularities listed in Table 1 have seemingly little in common, 
except for the fact that they are all persistently documented over and over 
again in empirical studies. However, these diverse behavioral patterns fit 
together as pieces of one puzzle once we look at them through the lens of risk 
aversion. This is perhaps the most important contribution of this paper.
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╔═══════════════════════╦═══════════╗
║             Behavioral regularity  ║Necessary condition ║
╠═══════════════════════╬═══════════╣
║Stochastic dominance is not violated ║     ρ ∈[-1,1] ║
╠═══════════════════════╬═══════════╣
║The common ratio effect ║      ρ ∈(0,1) ║
╠═══════════════════════╬═══════════╣
║The common consequence effect (Allais paradox) ║      ρ ∈(0,1] ║
╠═══════════════════════╬═══════════╣
║Vertical fanning-in in the probability triangle ║      ρ ∈(0,1] ║
╠═══════════════════════╬═══════════╣
║The betweenness axiom is violated ║        ρ ≠0 ║
╠═══════════════════════╬═══════════╣
║The fourfold pattern of risk attitudes ║ρ∈(0,1] & u(.) is convex ║
║ ║ρ∈[-1,0) & u(.) is concave║
╠═══════════════════════╬═══════════╣
║Switching behavior in the Samuelson's example ║      ρ ∈(0,1] ║
╚═══════════════════════╩═══════════╝

Table 1 Necessary conditions in model (1)-(3) for various behavioral regularities

The model presented in this paper resembles the mean-variance 
approach (Markowitz, 1952). However, there is a fundamental difference 
between the two. The mean-variance approach lacks axiomatic foundation. It 
uses an ad hoc risk measure (variance or standard deviation) that violates 
stochastic dominance (e.g., Borch, 1969). In contrast, the model presented in 
this paper is derived from four basic assumptions about individual preferences. 
This imposes a good deal of rational structure on the derived representation. In 
particular, our model always respects (first-order) stochastic dominance. 

There is also another important difference. The mean-variance approach 
does not use the concept of utility, i.e., the risk of a lottery is an objective 
characteristic. In contrast, representation (1) has a subjective utility function. In 
this model, people care about subjective utility dispersion not an objective risk, 
i.e. two individuals may disagree on the riskiness of the same lottery. 

In terms of descriptive merit, there are only few other theories that can 
accommodate all behavioral regularities listed in Table 1. One of them is the 
perceived relative argument model (PRAM) recently proposed by Loomes (2008). 
PRAM does not have axiomatic foundation and allows for intransitive 
preferences over risky alternatives. In contrast, the model presented in this 
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paper is derived from four primitive assumptions about individual preferences. 
One of these assumptions is transitivity of preferences.

Another prominent descriptive model is rank-dependent utility theory 
(RDU) proposed by Quiggin (1981). RDU has axiomatic foundation (e.g. 
Abdellaoui, 2002) but the model faces difficulties when it comes to explaining 
the Samuelson's example. That is why Tversky and Kahneman (1992) extended 
RDU model by introducing the possibility of loss aversion. The extended model 
is known as cumulative prospect theory (CPT). CPT rationalizes all behavioral 
patterns listed in Table 1 as a consequence of either non-linear probability 
weighting or loss aversion. In contrast, the model presented in this paper is 
more parsimonious—behavioral regularities listed in Table 1 are explained by 
individual aversion to utility dispersion. Additional behavioral assumptions, 
such as loss aversion, are not necessary within this model.

The remainder of the paper is structured as follows. The next section 
presents a formal framework, four proposed axioms and the representation 
theorem. Section 2 goes over behavioral implications of this model. Section 3 
concludes with a general discussion.
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1. Theory
Let X  be a finite non-empty set of possible outcomes (consequences). 

Set X is an abstract set, not necessarily a subset of the Euclidian space ℝn. A 
lottery L: X → [0,1] is a probability distribution on X, i.e., L(x)∈[0,1] for all x∈X
and ∑x∈X L(x)=1. For simplicity, a degenerate lottery that yields one outcome 
x∈X  with probability one is denoted by x. The set of all lotteries is denoted by 
ℒ. Notation LαL'  denotes a compound lottery that yields lottery L with 
probability α∈[0,1] and lottery L'  with probability 1-α.

A decision maker has a preference relation ≿ on ℒ. As usual, the sign ≻ 
denotes the asymmetric component of ≿ and the sign ~ denotes the symmetric 
component of ≿. We assume that the preference relation ≿ satisfies the 
following three axioms.
Axiom 1 (Completeness) For any L,L' ∈ℒ either L ≿ L'  or L' ≿ L (or both).
Axiom 2 (Transitivity) For any L, L', L" ∈ℒ if L ≿ L'  and L' ≿ L"  then L ≿ L".
Axiom 3 (Continuity) For any L, L', L" ∈ℒ  the sets {α∈[0,1] : LαL' ≿L" } and   
{α∈[0,1] : L" ≿LαL' } are closed.

Before presenting the fourth and final assumption about individual 
preferences, it is necessary to introduce a new concept of a transformed lottery. 
Consider a binary lottery L that yields either an outcome x∈X  or an outcome 
y∈X, x≿y. This lottery can be transformed into a new lottery Lρ as follows:       
Lρ(x)=L(x)·[1-ρ·L(y)] and Lρ(y)=L(y)·[1+ρ·L(x)]. Note that if ρ ∈[-1,1] then the 
transformed lottery Lρ is a well-defined probability distribution on X (i.e., Lρ∈ℒ) 
for any binary lottery L∈ℒ. If lottery L is a degenerate lottery that yields one 
outcome for certain then the transformed lottery Lρ is the same degenerate 
lottery (i.e., Lρ=L). In a special case when ρ=0, the transformed lottery Lρ  is 
identical to the original lottery L for any binary lottery L∈ℒ. 

When ρ∈(0,1], the transformation works as follows. On the one hand, 
the probability of a desirable outcome x  is decreased. In percentage terms, this 
decrease is proportionate to the probability of an undesirable outcome y  in the 
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original lottery L. On the other hand, the probability of an undesirable outcome 
y  is increased. In percentage terms, this increase is proportionate to the 
probability of a desirable outcome x  in the original lottery L. Intuitively, when 
ρ∈(0,1], we can imagine that the transformed lottery Lρ  is the perception of a 
risky lottery L by a risk averse individual who downplays (exaggerates) the 
likelihood of a desirable (undesirable) outcome. 

When ρ∈[-1,0), the transformation works in the opposite direction. 
Probability of a desirable outcome increases and probability of an undesirable 
outcome decreases. Intuitively, in this case, we can imagine that the 
transformed lottery is the perception of lottery L by a risk loving individual.

Let us now consider a more general case when lottery L yields more than 
two outcomes. Suppose that an outcome z∈X  and any outcome that is at least 
as good as z  are desirable outcomes (all remaining outcomes are undesirable). 
Then any lottery L∈ℒ can be transformed into a new lottery Lρ  as follows:

 L(x)·[1-ρ·∑y∈X, z≻y L(y)], for any x∈X such that x ≿z
(4)        Lρ (x) = 

        L(x)·[1+ρ·∑y∈X, y≿z L(y)], for any x∈X such that z ≻x.

If ρ ∈[-1,1] then the transformed lottery Lρ  is a well-defined probability 
distribution on X (i.e., Lρ∈ℒ) for any lottery L∈ℒ. Note that the transformed 
lottery Lρ is identical to the original lottery L only in two cases: when L  is a 
degenerate lottery that yields one outcome for certain and when ρ=0. When   
ρ∈(0,1] the transformation works as follows. The probability of any desirable 
outcome is decreased. In percentage terms, this decrease is proportionate to 
the cumulative probability of all undesirable outcomes in the original lottery L. 
The probability of any undesirable outcome is increased. In percentage terms, 
this increase is proportionate to the cumulative probability of all desirable 
outcomes in the original lottery L. When ρ∈[-1,0) the probability of any 
desirable outcome is increased and the probability of any undesirable outcome 
is decreased during the transformation.
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╔═════╦═════╦═════╦═════╦═════╗
║ ρ ║     Lρ (a ) ║     Lρ (b ) ║     Lρ (c ) ║     Lρ (d ) ║
╠═════╬═════╬═════╬═════╬═════╣
║ -1 ║ 0.04 ║ 0.06 ║ 0.24 ║ 0.66 ║
╠═════╬═════╬═════╬═════╬═════╣
║ -0.5 ║ 0.12 ║ 0.06 ║ 0.22 ║ 0.61 ║
╠═════╬═════╬═════╬═════╬═════╣
║ -0.2 ║ 0.17 ║ 0.05 ║ 0.21 ║ 0.57 ║
╠═════╬═════╬═════╬═════╬═════╣
║ 0 ║ 0.20 ║ 0.05 ║ 0.20 ║ 0.55 ║
╠═════╬═════╬═════╬═════╬═════╣
║ 0.2 ║ 0.23 ║ 0.05 ║ 0.19 ║ 0.53 ║
╠═════╬═════╬═════╬═════╬═════╣
║ 0.5 ║ 0.28 ║ 0.05 ║ 0.18 ║ 0.50 ║
╠═════╬═════╬═════╬═════╬═════╣
║ 1 ║ 0.36 ║ 0.04 ║ 0.16 ║ 0.44 ║
╚═════╩═════╩═════╩═════╩═════╝

Table 2 Transformed lottery Lρ  (d ≻ c ≻b ≻a , only a  is undesirable)

Table 2 presents an example of transformation (4). The set of outcomes 
is {a, b, c, d } such that d ≻ c ≻b ≻a.  Suppose that only outcome a  is 
undesirable and all other outcomes are desirable. The original lottery is shown 
in the line that corresponds to ρ=0. Other lines in Table 2 present the 
transformed lottery Lρ  for different values of ρ. For example, the probability of 
the worst outcome a  is 0.2 in the original lottery. This probability is 
transformed into 0.36 (0.04) when ρ=1 (ρ=-1). This simple example illustrates 
that an individual with a positive (negative) coefficient ρ  can significantly 
exaggerate (downplay) the chance of an undesirable outcome. 

Now it remains only to define which outcomes are desirable and which 
are not. Clearly, the desirability of an outcome depends on a lottery. Consider a 
lottery that yields 100 Euros with probability 90%, 10 Euros with probability 5% 
and nothing with probability 5%. In the context of this lottery, a payoff of 10 
Euros is likely to be an undesirable outcome for the majority of people. Now 
consider another lottery that yields 100 Euros with probability 5%, 10 Euros 
with probability 5% and nothing with probability 90%. In this context, a payoff 
of 10 Euros is likely to be a desirable outcome for the majority of people.
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A natural candidate for capturing such lottery-dependent desirability of 
outcomes is elation/disappointment decomposition of lottery outcomes (Gul, 
1991, p. 671). Gul (1991) divides the outcomes of lottery L  into two groups: 
those that are preferred to the certainty equivalent of L (elation outcomes) and 
those that are not (disappointment outcomes). In our framework, the set of 
outcomes is not restricted to be a subset of ℝn, i.e. lotteries generally do not 
have certainty equivalents. Thus, elation/disappointment decomposition is not 
directly feasible but we can exploit the same idea in a roundabout manner.  

Since the set of lottery outcomes X  is finite and the preference relation 
≿ on X  is complete and transitive (Axioms 1 and 2), there must be the most 
preferred outcome x ̄∈X  (i.e., x ̄ ≿x  for any x∈X ) and the least preferred 
outcome x ̱∈X  (i.e., x ≿x ̱   for any x∈X ). Furthermore, since the preference 
relation ≿ is continuous (Axiom 3), for any outcome x∈X,  there is a number 
αx∈[0,1] such that x ~ x ̄αxx ̱. Finally, this number αx is unique if x ̄αx ̱ ≻ x ̄βx ̱  for 
any α>β. The latter property follows from Axiom 4 introduced below and there 
is no need to assume it explicitly.

To sum up, given our assumptions about preferences, for any outcome 
x∈X  we can find a unique number αx∈[0,1] such that x ~ x ̄αxx.̱ In principle, we 
can use this number αx as a measure of "goodness" of outcome x  as it is done 
in von Neumann and Morgenstern (1944). However, such approach warrants 
some caution. Suppose that an individual is indifferent between a degenerate 
lottery that yields x  for certain and a binary lottery that yields x ̄  with 
probability αx and x ̱otherwise. The first lottery is a degenerate lottery that 
bares no risk. In contrast, the second lottery is a risky distribution. Hence, 
number αx  does not only capture the "goodness" of outcome x  but it also has 
some risk premium built into it. In other words, in general, number αx  
overestimates the "goodness" of outcome x.  To correct for this bias, we need 
to scale αx down. We scale αx down using the same transformation, as already 
described above (for binary lotteries): αx,ρ =αx·[1-ρ·(1-αx)].
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We treat number αx,ρ  as a measure of "goodness" of outcome x∈X. In a 
similar vein, number ∑y∈X L(y)·αy,ρ  captures the "goodness" of lottery L∈ℒ. It is 
natural to assume that an outcome x ∈X  in lottery L∈ℒ is desirable when      
αx,ρ  ≥ ∑y∈X L(y)·αy,ρ  and it is undesirable when  αx,ρ  < ∑y∈X L(y)·αy,ρ . This 
completes our definition of a transformed lottery. For convenience, this notion 
is summarized in Definition 1 below.
Definition 1  A transformed  lottery Lρ of a lottery L∈ℒ is defined as

 L(x)·[1-ρ·∑y∈X, z≻y L(y)], for any x∈X such that x ≿z
       Lρ (x) = 

        L(x)·[1+ρ·∑y∈X, y≿z L(y)], for any x∈X such that z ≻x,

where ρ ∈[-1,1] is a constant, z ∈X  denotes the least preferred outcome such 
that αz·[1-ρ·(1-αz)] ≥ ∑y∈X L(y)·αy·[1-ρ·(1-αy)] and αy∈[0,1] denotes a number 
such that y ~ x ̄αyx ̱  for any outcome y ∈X.

Given the above definition, we can impose the fourth axiom on the 
preference relation ≿.
Axiom 4 (Transformed Independence Axiom)  There exist ρ ∈[-1,1] such that   
for any L, L', L" ∈ℒ  and any α∈[0,1]  we have L ≿ L'  if and only if S ≿ S'  where S, 
S' ∈ℒ  are two lotteries such that Sρ =LραL"  and S'ρ =L'ραL".

In a special case when ρ=0, Axiom 4 becomes the independence axiom 
of expected utility theory (cf.  von Neumann and Morgenstern, 1944). 
Intuitively, we can think of Axiom 4 as follows. When making decisions under 
risk, people first mentally transform lotteries how they actually perceive them. 
Risk averse individuals downplay (exaggerate) the likelihood of desirable 
(undesirable) outcomes. Risk loving individuals make the opposite 
transformation. Once transformed, lotteries are treated as in the classical 
independence axiom. If two transformed lotteries are mixed in identical 
proportions with the third one, individual preference over two compound 
lotteries is independent of the third lottery. Viewed from another perspective, 
Axiom 4 postulates that preferences over lotteries are linear in transformed  
probabilities (but not in original probabilities, except for the case when ρ=0).
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Theorem 1 A preference relation ≿ satisfies Axioms 1-4 if and only if there 
exists a utility function u:X→ℝ such that for any L, L' ∈ℒ  we have
(5) L ≿ L'  if and only if U(L)-ρ·r (L)≥U(L' )-ρ·r (L' ),
where U(L)=∑x∈X L(x)u(x) is the expected utility of lottery L,  ρ ∈[-1,1] is a 
constant and r (L)=∑x∈X, u(x)<U(L) L(x)·[U(L)-u(x)]=0.5∑x∈X L(x)·|U(L)-u(x)| is the 
mean absolute semideviation of lottery L (measured on utility scale).
Proof. It is relatively straightforward to verify the necessity of Axioms 1-4 for 
representation (5). We shall prove only the sufficiency of Axioms 1-4. Define a 
new preference relation Lρ≿ρ L'ρ  if L ≿ L'. If Axioms 1-4 hold then the 
preference relation ≿ρ is complete, transitive, continuous and it satisfies the 
independence axiom. Von Neumann and Morgenstern (1944) prove that such 
preference relation admits expected utility representation, i.e. there exist a 
utility function u:X→ℝ such that for any Lρ,L'ρ∈ℒ  we have  Lρ≿ρ L'ρ  if and only 
if ∑x∈X Lρ(x)u(x) ≥ ∑x∈X L'ρ(x)u(x). Using Definition 1 we can rearrange the latter 
inequality into U(L) - ρ·r (L) ≥ U(L' ) - ρ·r (L' ).  Q.E.D.

Representation (5) is a simple one-parameter generalization of 
neoclassical expected utility theory. Individual preferences over lotteries are 
represented by a linear trade-off between standard expected utility U(L) and a 
quantity r (L), which we interpret as a risk measure. Indeed, quantity r (L) has all 
the properties of a standard risk measure, some of which are listed below. 

First, r (L)=0 if L is a degenerate lottery that yields one outcome for 
certain (i.e., L bears no risk). Second, r (L)=0 if an individual is indifferent 
between all outcomes of lottery L (all outcomes in L bring the same utility and, 
hence, L is de facto not risky). Third, r (L) is strictly positive in all remaining 
cases when L yields at least two outcomes that an individual is not indifferent 
between (i.e., L bears some risk). Fourth, r (xαy) is a quasiconcave function of 
probability α∈[0,1] with a maximum at α=0.5. This implies, inter alia, that 
among all probability mixtures of two outcomes x,y ∈X  the 50%-50% mixture 
is the riskiest. Fifth, r (xαz)=r (xαy)+r (yαz)  for any α∈[0,1] and any x,y,z∈X  
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such that x≿y ≿z, i.e. risk is additive across outcomes. Sixth, r (LαL´)=α·r (L)+ 
+(1-α)·r (L´)  for any  α∈[0,1] and any L, L´∈ℒ  such that u(L)=u(L´). In other 
words, risk is linear in probabilities if lotteries yield the same expected utility.

Risk measure r (L) is related to the engineering concept of risk. In many 
hazardous industries risk is defined as the probability of an accident times 
losses per accident. If "an accident" is a situation when an ex post outcome of a 
lottery brings a lower utility compared to an ex ante expectation (i.e., expected 
utility), we immediately obtain formula (6). Risk is measured by expected utility 
deviations below the expected utility of a lottery. 
(6)        r (L)=∑x∈X, u(x)<U(L) L(x)·[U(L)-u(x)]

Risk measure r (L) is also related to the financial concept of risk. In 
finance, risk is defined as the expected volatility of asset returns. If expected 
volatility is captured through the mean absolute deviation, we end up with 
formula (7). Risk is nothing but the average absolute semideviation of a lottery 
(measured on the utility scale).
(7)        r (L)=0.5∑x∈X L(x)·|U(L)-u(x)|

If quantity r (L) is interpreted as a risk measure then it is natural to think 
that coefficient ρ ∈[-1,1] captures individual attitude towards risk. Positive  
values of ρ  indicate risk aversion. A risk averse individual prefers lotteries with 
a higher expected utility and a lower utility dispersion. Negative values of ρ  
indicate risk seeking (loving). A risk seeking individual prefers lotteries with a 
higher expected utility and a higher utility dispersion. In fact, for such an 
individual, there is no tradeoff between expected utility and risk. In a special 
case when ρ=0, an individual does not care about risk and acts as a classical 
expected utility maximizer.

In the remainder of the paper, coefficient ρ  is interpreted as individual 
attitude towards risk. This interpretation allows us to think of representation (5) 
in very intuitive terms but it is, by no means, necessary. Risk attitude may be 
linked to the curvature of utility function u(.) with no relation to parameter ρ.
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2. Behavioral Implications
2.1. First-Order Stochastic Dominance

People seldom violate stochastic dominance, at least when the 
dominance relation is transparent. For example, Hey (2001) finds only 24 
violations of transparent dominance in 1590 choice decisions (rate of violation 
1.5%). Stochastic dominance is also believed to be one of fundamental 
principles of rationality. Any model that allows for violations of stochastic 
dominance is unlikely to have a significant normative appeal. Let us first define 
(first-order) stochastic dominance for an arbitrary outcome set X.
Definition 2 Lottery L∈ℒ stochastically dominates lottery L´∈ℒ if ∑x∈X, x≾y L(x) ≤ 
≤∑x∈X, x≾y L´(x) for all y∈X, with a strict inequality for at least one outcome y∈X.
Theorem 2 In model (1)-(3), if L stochastically dominates L´ then L ≿ L´.

Proof is presented in the Appendix.
Note that if ρ ∉ [-1,1] then it is always possible to construct two 

lotteries L, L´∈ ℒ such that L  stochastically dominates L´ but L´ ≿ L. The 
following example illustrates this. Consider a degenerate lottery that yields 
outcome x for certain and a binary lottery xαy. If y ≿x  then lottery xαy  
stochastically dominates the degenerate lottery x for any α∈[0,1). According to 
representation (1), a decision maker finds x  at least as good as xαy  whenever
(8) α·[1-ρ·(1-α)]·[u(y)-u(x)] ≤ 0.

Obviously, if ρ >1 then it is always possible to find probability α  
sufficiently close to zero (specifically, α < 1-1/ρ ) such that inequality (8) is 
satisfied and a decision maker violates first-order stochastic dominance.

On the other hand, if x ≿y  then lottery x  stochastically dominates 
lottery xαy  for any α∈[0,1). A decision maker prefers xαy  over x  if
(9) α·[1+ρ·(1-α)]·[u(x)-u(y)] ≤ 0.

If ρ <-1 then it is always possible to find probability α  sufficiently close 
to zero (specifically, α < 1+1/ρ ) such that inequality (9) is satisfied and a 
decision maker violates first-order stochastic dominance.
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2.2. The Common Ratio Effect 
Consider two lotteries x[αβ]z  and yαz,  where α,β∈[0,1]  and x,y,z∈X, 

such that x ≻y ≻z. The common ratio effect is an empirical observation that 
people who prefer yαz  to x[αβ]z  when α =1 often switch their preference and 
prefer x[αβ]z  to yαz  as probability α  approaches zero. According to the 
representation (1), an individual prefers yαz  to x[αβ]z  when α =1 if the 
following inequality holds:
(10) [u(y) - u(z)] / [u(x) - u(z)] ≥ β·[1-ρ·(1-β)].
At the same time, this individual prefers x[αβ]z  to yαz  for some α <1 if 
(11) [u(y) - u(z)] / [u(x) - u(z)] ≤ β·[1-ρ·(1-α·β)] / [1-ρ·(1-α)].

If an individual cares only about the maximization of expected utility, 
i.e., when coefficient ρ  is zero, right hand sides of inequalities (10) and (11) are 
the same. In this case, there can be no systematic common ratio effect. 

If ρ ∈(0,1) then the right hand side of inequality (11) is always strictly 
greater than the right hand side of inequality (10) for all  α <1. In this case it is 
possible to observe a systematic common ratio effect. This result is quite 
intuitive. When α =1 an individual chooses between a degenerate lottery y  and 
a binary lottery xβz. An individual averse to utility dispersion (for whom ρ >0) 
may prefer a riskless lottery y  over a risky lottery xβz, even if the latter yields a 
slightly higher expected utility. When α  approaches zero both lotteries become 
risky and lottery yαz  loses its comparative advantage over x[αβ]z.

2.3. The Common Consequence Effect (the Allais Paradox)
Let L  denote a lottery that yields outcome x  with probability β, outcome 

y  with probability 1-α  and outcome z  with probability α -β,  for some α, β∈
(0,1) such that α >β  and x,y,z∈X  such that x ≻y ≻z. The common 
consequence effect occurs when an individual prefers a degenerate lottery y  
over lottery L  but prefers lottery xβz  over lottery yαz.  The Allais paradox is a 
famous example of the common consequence effect (Allais, 1953). 

According to representation (1), a decision maker prefers lottery xβz  
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over lottery yαz  if the following inequality is satisfied:
(12) [u(y) - u(z)] / [u(x) - u(z)] ≤ [β -ρ·β·(1-β)] / [α -ρ·α·(1-α)].

For any ρ ≥0, the right hand side of (12) is less than or equal to the ratio 
β/α.  Hence, inequality (12) may hold only if its left hand side is less than or 
equal to the ratio β/α.  The latter condition is equivalent to u(y) ≤ u(L). Given 
this necessary inequality, an individual prefers lottery y  over lottery L  if  
(13) [u(y) - u(z)] / [u(x) - u(z)] ≥ [β -ρ·β·(1-β)] / [α -ρ·β·(1-α)].

If a decision maker does not care about utility dispersion, i.e., when a 
coefficient ρ  is zero, the right hand side in both inequalities (12) and (13) is 
equal to β/α. In this case, there can be no systematic common consequence 
effect. If a decision maker is averse to utility dispersion, i.e., when a coefficient 
ρ  is strictly positive, the right hand side of inequality (12) is strictly greater 
than the right hand side of inequality (13) because α>β.  In this case, 
inequalities (12) and (13) may hold simultaneously as strict inequalities. In 
other words, an individual may reveal a systematic common consequence effect.

The intuition behind the common consequence effect is simple. A risk 
averse individual may prefer a riskless lottery y  over a risky lottery L  even if 
the latter yields a slightly higher expected utility. Now take lotteries y  and L
and shift the same probability mass 1-α  from outcome y  to outcome z  in 
both lotteries. This creates a new pair of lotteries yαz and xβz  such that the 
second lottery still has a slightly higher expected utility compared to the first 
lottery. However, both lotteries yαz and xβz  are risky. In other words, the first 
lottery no longer has a clear comparative advantage over the first lottery, when 
it comes to risk. Hence, an individual may prefer y  over L  and xβz  over yαz.

2.4. Vertical Fanning-In
Let L´ denote a lottery that yields outcome x  with probability β-α, 

outcome y  with probability α  and outcome z  with probability 1-β,  for some 
α,β∈(0,1) such that β >α  and x,y,z∈X  such that x ≻y ≻z. A decision maker 
reveals vertical fanning-in when she prefers a degenerate lottery y  to lottery L´ 
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but prefers lottery xβz  over lottery xαy.  This behavioral pattern is called 
vertical fanning-in because the map of implied indifference curves plotted in 
the Marschak-Machina probability triangle exhibits a fanning-in pattern along 
the vertical axis. 

According to our model, an individual prefers xβz  over xαy  if 
(14) [u(x) - u(y)] / [u(x) - u(z)] ≥ [(1-β)·(1+ρ·β)] / [(1-α)·(1+ρ·α)].
The right hand side of (14) is greater than or equal to the ratio (1-β)/(1-α) for 
all ρ ≥0  because β >α.  Therefore, inequality (14) may hold only if its left hand 
side is greater than or equal to the ratio (1-β)/(1-α). The latter condition is 
equivalent to u(y) ≤ u(L´). Given this necessary inequality, an individual prefers 
lottery y  over lottery L´  if  
(15) [u(x) - u(y)] / [u(x) - u(z)] ≤ [(1-β)·(1+ρ·(β-α))] / [1-α -ρ·α·(β-α))].

If an individual ignores risk (i.e., ρ=0)  the right hand side in inequality 
(14) is the same as in inequality (15). In this case, there can be no systematic 
common consequence effect. If an individual is averse to risk (i.e., ρ>0)  the 
right hand side in inequality (15) is always strictly greater than the right hand 
side in inequality (14). In this case, inequalities (14) and (15) may both hold as 
strict inequalities, i.e., an individual may reveal systematic vertical fanning-in.

The intuition behind vertical fanning-in is similar to the intuition for the 
common consequence effect. A decision maker who is averse to risk may prefer 
a riskless lottery y  over a risky lottery L´ even if the latter yields a slightly 
higher expected utility. We can obtain lotteries xαy  and xβz  by shifting 
probability mass α  from outcome y  to outcome x  in lotteries y  and L´. 
Therefore, if lottery L´ has a slight expected utility advantage over a degenerate 
lottery y  then lottery xβz  has the same expected utility advantage over lottery 
xαy. However, both lotteries xαy  and xβz  are risky, i.e., lottery xαy  does not 
have a clear advantage over xβz  in terms of risk. Thus, it is entirely possible 
for a risk averse individual to prefer y  over L´ (on the grounds that y  is less 
risky) and xβz  over xαy (on the grounds that xβz yields a higher utility).
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2.5. Violations of the Betweenness Property
According to the betweenness axiom, if a decision maker is indifferent 

between two lotteries then any probability mixture of these two lotteries is 
equally good. Despite its normative appeal, the betweenness property is often 
violated (cf. Camerer and Ho, 1994). The model presented in this paper does 
not imply the betweenness property. According to our model, an individual is 
indifferent between L and L´ if
(16) u(L) - ρ·r (L) = u(L´) - ρ·r (L´). 
This individual is also indifferent between a probability mixture LαL´ and L  if
(17) α·u(L) + (1-α)·u(L´) - ρ·r (LαL´) = u(L) - ρ·r (L),  α∈(0,1). 

If an individual does not care about risk (i.e., ρ=0), equation (16) implies 
that lotteries L and L´ have the same expected utility, in which case equation 
(17) is always satisfied. This is a standard result: an expected utility maximizer 
never violates the betweenness. If the individual takes utility dispersion into 
account (i.e., ρ≠0) and equation (16) holds then equation (17) may hold only if
(18) r (LαL´) = α·r (L)+(1-α)·r (L´). 

The last equation is always satisfied if lotteries L and L´ have the same 
expected utility. Otherwise, it needs not to hold. Hence, an individual whose 
preferences are represented by equation (1) may violate the betweenness 
property. This implication is quite intuitive. The betweenness property 
effectively means that indifference curves are linear in probability. Expected 
utility is a linear function of probability but quantity r (L)  is not (cf. equation 3). 
Thus, an individual who cares about utility dispersion always has nonlinear 
indifference curves and violates the betweenness property.

2.6. The Fourfold Pattern of Risk Attitudes
The fourfold pattern of risk attitudes is observed when lotteries have 

monetary outcomes, i.e., X⊂ℝ. Let v (α ) denote the expected value of lottery 
xαy, α∈[0,1], x,y ∈ℝ such that x>y.  Outcomes x  and y  can be positive 
("gains") or negative ("losses"). The fourfold pattern of risk attitudes occurs if an 

17



individual prefers lottery xαy  over a degenerate lottery v (α )  when probability 
α  is close to zero, but at the same time she prefers v (1-α ) for certain over 
lottery x[1-α]y  (cf. Tversky and  Kahneman, 1992). According to representation 
(1) an individual prefers xαy  over v (α ) for certain, for some α  close to zero, if 
the following inequality is satisfied:
(19) α·u(x) + (1-α)·u(y) - ρ·α·(1-α )·[u(x)-u(y)] ≥ u(α·x + (1-α)·y).
At the same time, this individual prefers v (1-α ) for certain over x[1-α]y  if
(20) (1-α)·u(x) + α·u(y) - ρ·α·(1-α )·[u(x)-u(y)] ≤ u((1-α)·x + α·y).

If utility function u(.) is linear, inequalities (19) and (20) cannot hold 
simultaneously as strict inequalities because an individual can be either risk 
averse (i.e., ρ>0) or risk seeking (i.e., ρ<0) but not both at the same time. 
Intuitively, lottery xαy  is exactly as risky as its "mirror" lottery x[1-α]y. Hence, 
in this context, the behavior of an individual who cares about risk is not much 
different from the behavior of an expected value maximizer. 

If utility function u(.) is nonlinear, weak inequalities (19) and (20) can 
both hold as strict inequalities. In particular, this can happen when utility 
function is convex on [y,x] but ρ>0, or when utility function is concave on [y,x] 
but ρ<0. The intuition is quite simple. For example, consider the first case. If 
utility function is convex, the expected utility of both lotteries xαy  and x[1-α]y  
is higher than the utility of their expected values (due to Jensen's inequality). 
However, if a decision maker is averse to risk (i.e., ρ>0), she discounts the 
expected utility of risky lotteries xαy  and x[1-α]y  in comparison to riskless 
lotteries v (α)  and v (1-α ) correspondingly. Hence, it is possible that her 
preference for a risky lottery, based on expected utility alone, reverses into a 
preference for a degenerate lottery, when risk is taken into account.

Whether this reversal occurs in the first lottery pair, in the second lottery 
pair or in both depends on the shape of individual utility function. For example, 
consider a power utility function normalized so that u(y)=0 and u(x)=1:
(21) u(z) = ([z-y ]/[x-y ])a , z∈[y,x] , a =const.
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If an individual has this utility function, then inequalities (19) and (20) are both 
satisfied whenever risk attitude ρ  falls into the following interval:
(22) [1-(1-α)a-1]/α ≤ρ ≤[1-α a-1]/(1-α). 

If a ∈(1,2) then the left hand side of inequality (22) is strictly less than 
its right hand side for all α<0.5. Thus, if an individual has a mildly convex 
power utility function (with a power coefficient between one and two) and she is 
also averse to risk (with risk attitude ρ  falling into interval (22)), then this 
individual always exhibits the fourfold pattern of risk attitudes. On the other 
hand, if a decision maker has a power utility function that is "more convex" than 
quadratic utility, then both sides of inequality (22) are greater than one, i.e., 
there are no plausible risk attitudes that may satisfy such inequality.

2.7. Samuelson's example
Samuelson (1963) presents the following example. Lottery L yields a 

50%-50% chance either to gain $200 or to lose $100. An individual declines this 
bet but she is willing to play 100 such bets.

Samuelson's example shows that individual attitude towards risk cannot 
be captured by the curvature of her Bernoulli utility function. Under expected 
utility theory, if an individual turns down lottery L for all wealth levels, she 
should also turn down a combination of several lotteries L.

Clearly this is not the way how most people feel about risk. Intuitively, 
playing lottery L several times is relatively less risky than playing it only once. 
The model presented in this paper captures this intuition.

Consider the simplest example when an individual has a linear utility 
function over money. In this case, the expected utility of lottery L is 50 and the 
risk of L is 75. Thus, a risk averse individual with ρ>2/3 always rejects lottery L.

When lottery L is played two times in a row, the expected utility is 100 
but the risk still remains 75. Now even the most risk averse individual with ρ=1 
is willing to play the bet. Thus, our model can rationalize Samuelson's example 
(without evoking any additional assumptions such as loss aversion).
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3. Conclusion
This paper unifies two different approaches to modeling decision 

making under risk. In an economic literature, decision making is modeled as 
expected utility maximization. In a financial literature, decision making is 
modeled as a tradeoff between expected value and volatility. A thoughtful 
combination of these two classical approaches produces a significant synergy 
effect, which may end a great schism between economics and finance.

Many non-expected utility theories postulate that the utility of a binary 
lottery xαy  is given by the following formula: 
(23) u(xαy) = w (α)·u(x)+[1-w (α)]·u(y)  for any α∈[0,1] and any x,y ∈X, x≿y, 
where w :[0,1]→[0,1] is a function that differs across various decision theories. 
For example, in expected utility theory w (α)=α ; in disappointment aversion 
theory w (α)=α/[1+(1-α)·β], where β>-1 is constant (e.g., Gul, 1991); in rank-
dependent utility theory w (.) is an arbitrary subadditive function, and etc. 

The model presented in this paper also fits into formula (23) with a 
function w (α)=α -ρ·α·(1-α ). Interestingly, this function is subadditive for a 
risk seeking individual (i.e., when ρ<0) and superadditive for a risk averse 
individual (i.e., when ρ>0). Since people are usually believed to be risk averse, 
this offers an opportunity for testing rank-dependent utility theory versus our 
model. In such a test, we need to elicit function w (.) from choices among binary 
lotteries. Rank-dependent utility theory predicts that the elicited function is 
subadditive, while our model predicts that this function is superadditive for risk 
averse individuals.

"One-fit-all" formula (23) shows that the model presented in this paper 
is not radically different from the existing decision theories, at least, when it 
comes to binary lotteries. However, crucial differences are already apparent 
when we consider lotteries with three outcomes. The latter case is typically 
visualized in a Marschak-Machina triangle (e.g., Machina, 1982). The set of all 
lotteries with up to three outcomes is depicted as an isosceles right triangle 
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with side length one. The vertical side of the triangle shows the probability of 
the best outcome and the horizontal side shows the probability of the worst 
outcome. 

[INSERT FIGURE 1 HERE]
Dashed lines on Figure 1 illustrate indifference curves of an expected 

utility maximizer (for whom ρ =0). These curves are parallel straight lines. Solid 
lines on Figure 1 show indifference curves of a risk averse individual (for whom 
ρ >0). These curves are convex in the south-east part of the triangle (below line 
OA) and concave in the north-west part of the triangle (above line OA). 

Notably, an indifference curve BC is S-shaped. It is convex in the vicinity 
of point B and concave—in the vicinity of point C. Such S-shaped indifference 
curves were discovered in experimental studies (e.g., Bernasconi, 1994). 
However, few decision theories can generate such curves. In fact, beside the 
model presented in this paper, there are only two theories able to do this job—
rank-dependent utility theory and PRAM. We already discussed how to test our 
model versus the former. A discriminating test versus the latter is also possible. 
Our model assumes that individual preferences over lotteries are transitive, 
while PRAM allows for the possibility of intransitive cycles.

Despite its simplicity, the model presented in this paper can account for 
a variety of behavioral regularities such as the Allais paradox or the switching 
behavior in the Samuelson's example. The model has a normative appeal as 
well. It is rather natural to assume that a decision maker weighs expected utility 
and utility dispersion in a linear manner. However, the key to success is an 
appropriate risk measure. Popular ad hoc  risk measures, such as the standard 
deviation or variance, may lead to violations of stochastic dominance (e.g., 
Borch, 1969). That is why the model presented in this paper is derived from 
four axioms imposed on a preference relation over lotteries: completeness, 
transitivity, continuity and the transformed independence axiom. Our derived 
representation is always compatible with stochastic dominance. 
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Appendix
Proof of Theorem 2.
Consider two arbitrary lotteries L, L´∈ ℒ such that L  stochastically 

dominates L´. If lottery L  stochastically dominates lottery L´ then
(A1) ∑x∈X  L(x)·g (L) ≥ ∑x∈X  L´(x)·g (L), 
for any function g :X→ℝ such that g(x)≥g(y) if x ≿ y.

Set g (.)=u (.) into (A1) to obtain a standard result: if L  stochastically 
dominates L´ then L yields a higher expected utility, i.e. u (L)≥u (L´). Next, set 
g (x)=u (x) for all x ∈X  such that u (x)<u (L), and set g (x)=u (L) for all x ∈X  
such that u (x)≥u (L). Inequality (A1) then becomes
(A2) ∑x∈X, u(x)<u(L) L(x)·u(x) + u (L)·[1-∑x∈X, u(x)<u(L) L(x)] ≥ 

≥ ∑x∈X, u(x)<u(L) L´(x)·u(x) + u (L)·[1-∑x∈X, u(x)<u(L) L´(x)]. 
Since u (L)≥u (L´), it is possible to rewrite inequality (A2) as follows

(A3) u (L)-∑x∈X, u(x)<u(L)L(x)·[u (L)-u(x)]≥u (L´)-∑x∈X, u(x)<u(L´)L´(x)·[u (L´)-u(x)]. 
If ρ≥0, we can multiply both sides of inequality (A3) by ρ, add u(L)-u(L) 

to the left hand side and u (L´)-u (L´) to the right hand side of (A3) and obtain
(A4) (ρ -1)·u(L) + u(L) - ρ·r (L) ≥ (ρ -1)·u(L´) + u(L´) - ρ·r (L´).
If ρ ≤1 then (ρ -1)·u(L) ≤ (ρ -1)·u(L´) and inequality (A4) may hold only if
(A5) u(L) - ρ·r (L) ≥ u(L´) - ρ·r (L´).

Hence, L ≿ L´ due to (1). In the other remaining case, if ρ <0, the proof 
is similar. First, set g (x)=u (L) for all x ∈X  such that u (x)<u (L), and set g (x)
=u (x) for all x ∈X  such that u (x)≥u (L). Inequality (A1) then becomes
(A6) ∑x∈X, u(x)<u(L) L(x)·u(L) + ∑x∈X, u(x)≥u(L) L(x)·u(x) ≥ 

≥ ∑x∈X, u(x)<u(L) L´(x)·u(L) + ∑x∈X, u(x)≥u(L) L´(x)·u(x). 
Since u (L)≥u (L´), it is possible to rewrite inequality (A6) as follows

(A7) u (L)+∑x∈X, u(x)<u(L)L(x)·[u (L)-u(x)]≥u (L´)+∑x∈X, u(x)<u(L´)L´(x)·[u (L´)-u(x)]. 
If ρ <0, it is possible to multiply both sides of inequality (A7) by -ρ  

without changing the sign of (A7). Repeating the same manipulation as above 
(add u (L) - u (L) to the left hand side and u (L´)-u (L´) to the right hand side) 
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yields the following result:   
(A8) -(1+ρ)·u(L) + u(L) - ρ·r (L) ≥ -(1+ρ)·u(L´) + u(L´) - ρ·r (L´).
If ρ ≥-1 then -(1+ρ)·u(L) ≤ -(1+ρ)·u(L´) and inequality (A8) may hold only if
(A9) u(L) - ρ·r (L) ≥ u(L´) - ρ·r (L´). 

Hence, L ≿ L´ due to (1). Q.E.D.
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