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Abstract

Preference reversals have been widely studied using risky or riskless gambles. However,

little is known about preference reversals under ambiguity. We asked subjects to make a

binary choice between ambiguous P-bets and ambiguous $-bets and elicited their willingness

to accept. Subjects then performed the same two tasks with risky bets, where the probability

of winning for a given risky bet is the center of the probability interval of the corresponding

ambiguous bet. Preference reversals are not only replicated under ambiguity but are even

stronger than those under risk. This is due to higher elicited prices for the $-bet and lower

elicited prices for the P-bet under ambiguity than under risk. We explain this result by the

shape of the probability-weighting function for different levels of uncertainty and for different

elicitation modes.
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1 Introduction.

Preference reversals occur when subjects provide different preference orders over two risky

options under different elicitation mechanisms. A typical preference-reversal experiment involves

two risky lotteries: one lottery (or “bet”) featuring a high probability of winning a small amount

of money, called the probability bet or “P-bet”, and another lottery featuring a low probability

of winning a large amount of money, called the dollar bet or “$-bet”. To illustrate, consider

the following bets: $-bet = ($16, 11/36; -$1.50, 25/36) and P-bet = ($4, 35/36; -$1, 1/36),

taken from Lichtenstein and Slovic (1971), Table 3. Here, the $-bet offers an 11/36 chance of

winning $16 and a 25/36 chance of losing $1.50, while the P-bet offers a 35/36 chance of winning

$4 and a 1/36 chance of losing $1. Both bets have an expected value of approximately $3.85.

Subjects are asked to make a straight choice between these two bets, and then to value them

separately. Subjects of ten prefer the P-bet to the $-bet but assign a greater value to the $-bet

(this is known as Standard Preference Reversal, SPR). They also sometimes choose the $-bet

and assign a greater value to the P-bet (this is known as Non-Standard Preference Reversal,

NSPR).

Preference reversals were first discovered by cognitive psychologists (Lichtenstein and Slovic,

1971, and Lindman, 1971). Later, in an attempt to disprove the phenomenon, Grether and Plott

(1979) showed that preference reversals are resistant to economic considerations, including mon-

etary incentives, and the possibility of expressing indifference in the choice tasks. Preference

reversals were then generally accepted as a notable challenge to almost all theories of prefer-

ences, including expected utility. In ensuing work, preference reversals have been extensively

replicated with small experimental variations, showing that reversals are an empirical regularity

and that preferences are context-dependent (See Seidl, 2002, for an extensive survey).

To date, the numerous pieces of work that have examined preference reversals involve either

risky options, i.e. situations in which the decision maker knows the probabilities associated

with the possible outcomes, or riskless options (Delquié, 1993). This represents a particular

case of uncertainty since in general probabilities are unknown, so that we may wonder about

preference reversals when the lotteries involve only partially-known probabilities, i.e. when there

is ambiguity. This is empirically relevant, as most real-life probabilities situations are unknown:

for example, those associated with the future price of stocks, the outcome of a football match,
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or a candidate’s victory in an election.

The current paper thus asks whether preference reversals hold under ambiguity. It also

compares preference reversals under ambiguity, if any, to those under risk. To do so, we consider

six typical paired-lotteries used in preference reversals experiments under risk and construct

corresponding ambiguous lotteries by introducing ambiguity around the probability of winning

for each bet using two-stage objective lotteries. We use a two-stage lotteries for three reasons.

First, we assume that the implementation of “true” ambiguity in the case of classical preference

reversal paired-lotteries would complicate the understanding of the task (see Section 4.5, for

an extensive discussion). Second, as noted by Hey et al. (2008), it is not straightforward to

implement “true” ambiguity in the laboratory, particularly with modern practice where openness

and transparency are paramount. Third, although two-stage objective lotteries are not the

correct representation of “true ambiguity”, many experiments have indeed found ambiguity-

aversion using this representation (Yates and Zukowski, 1976, Bernasconi and Loomes, 1992,

Chow and Sarin, 2002, and Halevy, 2007).

In our experiment the ambiguous bets are constructed as follows. For a risky-bet (x, p) of-

fering amount x with probability p, the corresponding ambiguous-bet (x, [p; p]) offers the same

amount x with a probability between p and p, where p=(p + p)/2. To illustrate, consider the

risky paired-lottery: {P-betR:(e5, 80%); $-betR:(e20, 20%)} (this is pair I in Table 1). The

corresponding ambiguous paired-lottery is {P-betA:(e5, [60%, 100%]); $-betA:(e20, [0,40%])},

where the ambiguous P-bet offers e5 with a probability between 60% and 100% and the am-

biguous $-bet offers e20 with a probability between 0 and 40%. Subjects were asked to provide

their minimum selling price for the ambiguous P-bet and the ambiguous $-bet, and to choose

between the two. They then performed the same tasks with the corresponding risky bets.

The main result here is that subjects reverse their preferences more often under ambiguity

than under risk. This primarily reflects higher elicited prices for the $-bet and lower elicited

prices for the P-bet under ambiguity than under risk.

As ambiguity is directly related to probabilities, we interpret our results in terms of proba-

bility distortions under risk and ambiguity. Based on prospect theory (Kahneman and Tversky,

1979, and Tversky and Kahneman, 1992), which argues that subjects overweight small proba-

bilities and underweight large ones, we estimate the probability-weighting function under both

risk and ambiguity and show that it is more curved (more concave for small probabilities and
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more convex for large probabilities) under ambiguity than under risk (Tversky and Fox, 1995,

Wu and Gonzalez, 1999, Kilka and Weber, 2001, Abdellaoui et al., 2005, and Abdellaoui et al.,

2010). This feature, called “less sensitivity to ambiguity than to risk” (Tversky and Fox, 1995,

and Wakker, 2004), is more pronounced for valuation than for choice.

The remainder of the paper is organized as follows. Section 2 reviews some existing results on

preference reversals and ambiguity, and Section 3 makes predictions for preference reversals un-

der ambiguity, based on the characteristics of the weighting function under risk and uncertainty

previously found in the literature. Section 4 presents our experimental design, and Sections 5

and 6 the results. Section 7 then explains these results via the shape of the weighting function

under risk and ambiguity. Section 8 contains a general discussion and Section 9 concludes.

2 A Brief Survey of Existing Results and Motivation

Preference reversals under risk pose a significant challenge to preference theories. The phe-

nomenon is a manifest failure of invariance and its robustness has intrigued economists for the

past four decades (Seidl (2002) presents an extensive review of preference reversals). Many

attempts have been proposed to explain preference reversals under risk, but the phenomenon is

generally attributed to the use of different heuristics across elicitation procedures (or response

modes). The attractiveness of the P-bet in the choice task is induced by the prominence effect :

the more prominent attribute looms larger in choice than in matching (Tversky et al., 1988),

while the attractiveness of the $-bet in valuation is a result of scale compatibility : attributes of

decision alternatives that are compatible with the elicitation method are weighted more heavily

than those that are not (Tversky et al., 1990). This results in inconsistent preferences and raises

the question of what true preferences actually are.

The distinction between risk and uncertainty in economics dates back to Knight (1921), who

distinguished situations characterized by risk, where the probabilities associated with outcomes

are assumed to be known, from situations characterized by uncertainty, where these probabilities

are unknown. Most decisions under uncertainty lie between these two extremes, in such a way

that individuals do not know the exact probabilities associated with outcomes, but they have

some ambiguous notion about their occurrence. Currently, choice under ambiguity constitutes

one of the most important domains of decision theory.
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One notable criticism of expected utility theory under ambiguity is the Ellsberg paradox

(1961), which introduced the notion of ambiguity aversion by demonstrating that people prefer

to bet on known rather than unknown probabilities. The example given by Ellsberg (1961)

illustrates that individuals prefer to bet on the outcome of an urn that contains 50 red and 50

black balls rather than the outcome of an urn that contains 100 red and black balls, but in an

unknown proportion. The two bets have the same expected probability of winning, E(p), but

not the same degree of uncertainty: in the first bet, the probability of drawing a black or red

ball is exactly 0.5, while in the second bet this probability is ambiguous. Further work using

variations of Ellsberg’s original problem has found considerable support for ambiguity aversion

(see Camerer and Weber, 1992, for a survey).

As the expected probability of winning in Ellsberg’s original problem is 0.5, some of this

work has examined ambiguity attitudes along the probability interval. Subjects are shown

to exhibit ambiguity aversion for moderate and large probabilities of winning, and ambiguity

seeking for modest probabilities of winning (Einhorn and Hogarth, 1986, Kahn and Sarin, 1988,

Curley and Yates, 1989, and Hogarth and Einhorn, 1990). This finding is essential to the work

presented here: as the $-bets involve small probabilities of gain and the P-bets larger probabil-

ities of gain, we expect that ambiguity will amplify the effect of risk in the case of preference

reversals.

There is substantial empirical evidence of the systematic violation of normative principles

of rationality under risk and ambiguity. To take into account the more realistic case of impre-

cision regarding probabilities, it is important to bring these two blocks of research together to

consider the anomalies observed under risk in the more general case of uncertainty. The present

paper relates ambiguity aversion to classical preference reversals. Two recent contributions

(Trautmann et al., 2009 and Pogrebna, 2010) examine different types of preference reversals

under ambiguity. Trautmann et al. (2009) investigate preference reversals under ambiguity us-

ing Ellsberg’s original two-color problem. In their experiments, subjects make a straight choice

between the two urns and value them jointly. They observe that a substantial proportion of

subjects choose the unknown urn but place a higher value (buying price) on the known urn.

The authors explain these preference reversals by loss aversion under valuation.

In Pogrebna (2010), subjects report their preferences over three ambiguous lotteries that
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differ in the degree of ambiguity but offer the same prize: a relatively less ambiguous lottery

(LA), a relatively more ambiguous lottery (MA), and a partially ambiguous lottery (PA). Sub-

jects report their preferences using three elicitation mechanisms: a certainty-equivalent task, a

risk-equivalent task and a binary-choice task. Subjects reverse their preferences by attributing

a higher certainty or risky equivalent to MA than LA or PA but then choose the alternative

bets in the binary-choice task.

In Trautmann et al. (2009) and Pogrebna (2010), the options offer the same prize with

the same expected probability. Thus, the type of reversals observed by these two papers are

fundamentally different from classical preference reversals because they cannot be explained

by context-dependent weightings of attributes. The present paper focus on classical preference

reversals where the two bets have different outcomes and different probabilities of winning. The

topic of the current paper is of interest because it allows us to uncover the effect of ambiguity

on context-dependent preferences. Assuming that subjects use different modes of information-

processing in valuation and choice under risk, and given previous results on attitudes toward

ambiguity for likely and unlikely events, we look to see how subjects integrate ambiguity into

each response mode.

3 Predictions

It is arguably acknowledged that individuals’ choices between risky prospects systematically

violate expected utility theory because their preferences are not linear in probabilities (Kahne-

man and Tversky, 1979 and Machina, 1982). Many of these violations can be explained by a

non-linear weighting function, w(.), that overweights small probabilities and underweights large

probabilities, yielding risk seeking for low-probability gains and risk aversion for moderate- and

high-probability gains. Much empirical work has considered the probability-weighting function

under risk, most often suggesting an inverse S-shaped function (Tversky and Kahneman, 1992,

Wu and Gonzalez, 1996, Gonzalez and Wu, 1999, Abdellaoui, 2000, and Bleichrodt and Pinto,

2000). The inverse S-shaped function is relatively sensitive to changes in probability near the

end points 0 and 1, but relatively insensitive to changes in probability in the middle region.

This principle, called diminishing sensitivity, gives rise to a weighting function that is concave

near 0 and convex near 1.
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Tversky and Wakker (1995) generalized the risky inverse S-shaped weighting function to the

domain of uncertainty using bounded subadditivity, which comprises lower subadditivity (LSA)

and upper subadditivity (USA). Formally, the weighting function under uncertainty, W (.), is

defined on subsets of a sample space, where W (∅) = 0 and W (S) = 1. W satisfies bounded

subadditivity, if for two disjoint events A and B, there are events E and E′ such that:

(i) W (A) ≥ W (A ∪ B) − W (B), whenever W (A ∪ B) ≤ W (S − E)

and

(ii) 1 − W (S − A) ≥ W (A ∪ B) − W (B), whenever W (B) ≥ W (E′)

where E and E′ are boundary events. Conditions (i) and (ii) refer to LSA and USA. LSA

implies that an event A has a greater impact when it is added to the null event than when it

is added to some non-null event (reflecting the possibility effect). USA implies that an event

A has greater impact when it is subtracted from the certain event than when it is subtracted

from some uncertain event A ∪ B (reflecting the certainty effect). LSA and USA correspond

respectively to the concavity of unlikely events and the convexity of likely events.

Empirical work has provided support for bounded subadditivity (Tversky and Fox, 1995,

Wu and Gonzalez, 1999, Kilka and Weber, 2001, and Abdellaoui et al., 2005), and further sug-

gests that it is more pronounced for uncertainty than for risk: both LSA and USA are amplified

when the outcome probabilities are not specified, giving a weighting function that is more con-

cave for unlikely events, more convex for likely events and flatter in the middle. This property is

called less sensitivity to uncertainty than to risk. Recently, Abdellaoui et al. (2010) show that

subjects are less sensitive to ambiguity than to risk (in the Ellsberg experiment), but find no

evidence for ambiguity seeking at low-probability gains

Less sensitivity to uncertainty than to risk is key in our work, since the $-bets (P-bets) in-

volve small (large) probabilities. Assuming that the difference between the probability-weighting

function under ambiguity and that under risk can be ascribed to ambiguity attitudes, we conjec-

ture that ambiguity will act on the $-bets (P-bets) via its effect on LSA (USA). We put forward

two hypotheses:

Hypothesis 1. Ambiguity increases the attractiveness of the $-bet as a result of greater LSA.
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Hypothesis 2. Ambiguity decreases the attractiveness of the P-bet as a result of greater USA.

These hypotheses show how ambiguity affects choice and valuation. In the valuation task,

ambiguity will increase the gap between the prices of the $-bet and the P-bet due to less

sensitivity to ambiguity than to risk: ambiguity makes the $-bet more attractive in valuation.

In the binary choice task, ambiguity makes the P-bet less attractive. However, the effect of

ambiguity on the prevalence of preference reversals cannot be predicted, as it depends on less

sensitivity in each response mode. There are three possible outcomes:

Proposition 1. Ambiguity increases preference reversals if less sensitivity is more pronounced

in valuation than in choice.

Proposition 2. Ambiguity reduces preference reversals if less sensitivity is more pronounced in

choice than in valuation.

Proposition 3. Ambiguity leaves preference reversals unaffected if it affects the weighting func-

tions in valuation and choice in the same way.

The effect of ambiguity on two normatively equivalent response modes is therefore an em-

pirical question. We test these hypotheses in the following experiment.

4 Experimental Design

4.1 Stimuli.

The gambles used in our experiments (see Table 1) are identical to those in Grether and Plott

(1979), experiment 1, so that we can compare our results. The gambles here do not involve losses,

and probabilities were stated via an urn containing 100 balls. A risky urn contains winning and

losing balls in known proportions; these proportions are, however, only partially known in an

ambiguous urn. All of the gambles were of the same type: if you draw a winning ball, you win

ex, and if you draw a losing ball you win nothing.1 For example, consider pair 1 of Table 1.

Here, the risky $-bet offers e20 if a winning ball is drawn from an urn containing exactly 20

winning balls and 80 losing balls, and the risky P-bet offers e5 if a winning ball is drawn from an

urn containing exactly 80 winning balls and 20 losing balls. The corresponding ambiguous $-bet

1The winning (losing) balls were red- (black-) colored and refer to the positive non-zero (zero) outcome.
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offers e20 if a winning ball is drawn from an urn containing between 0 and 40 winning balls

among 100 balls, and nothing otherwise, and the corresponding ambiguous P-bet offers e5 if a

winning ball is drawn from an urn containing between 60 and 100 winning balls, and nothing

otherwise. Subjects were told that the number of winning and losing balls in an ambiguous

urn is determined using a uniform distribution over the relevant range. More precisely, they

were told that the composition of, say, the ambiguous urn of the $-bet in pair I is determined

as follows: the computer program randomly picks one number between 0 and 40 to determine

the number of winning balls in the urn. For instance, if the computer picks the number n

(0 ≤ n ≤ 40), then the urn contains n winning balls and 100 − n losing balls.

For all ambiguous bets, the known probability p was replaced by a uniform distribution

over the interval [0, 2p] for p ≤ 0.5 and [2p − 1, 1] for p > 0.5. The resulting intervals provide

the maximum ambiguity consistent while leaving the expected value unchanged. The choice of

intervals bounded by 0 or 1 ensures that certainty effects associated with ambiguity aversion are

captured. Using the maximum interval introduces maximum ambiguity, but does mean that the

bets in Table 1 cover different ranges, which may produce different behaviors conditional on the

range. The experiment was computerized using software developed under REGATE (Zeiliger,

2000).

4.2 Participants

We recruited 41 (25 males and 16 females) subjects at the University of Paris 1 (France).

We ran three sessions: there were 15 subjects in sessions 1 and 2 and 11 subjects in session 3.

No subject participated in more than one session.

4.3 Procedure

The experiment was divided into four rounds, and all participants completed all four rounds.

We opted for a within-subject analysis as this is statistically more powerful than between-subject

analysis when there is no range effect (Greenwald, 1976). We argue in the next section that our

experiment is immune to range effects.

In the first round, subjects were asked to specify their minimum willingness to accept (WTA)

for the twelve ambiguous bets of Table 1 (six ambiguous P-bets and six ambiguous $-bets) using
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Table 1: Paired lotteries under risk and ambiguity

Pairs Type Probability of Probability of Amount of EV
Winning under Winning under win (e)

Risk Ambiguity (/100)

I $ 20/100 [0, 40] 20 4
P 80/100 [60, 100] 5 4

II $ 30/100 [0, 60] 16 4.8
P 90/100 [80, 100] 5 4.5

III $ 20/100 [0, 40] 10 2
P 90/100 [80, 100] 4 3.6

IV $ 40/100 [0, 80] 6 2.4
P 90/100 [80, 100] 3 2.7

V $ 50/100 [0, 100] 12 6
P 90/100 [80, 100] 6 5.4

VI $ 25/100 [0, 50] 27 6.75
P 70/100 [40, 100] 8 5.6

the Becker-DeGroot-Marschak (1963) (BDM) mechanism. This mechanism is widely used in

the preference reversal literature. Subjects also value two variations of the ambiguous $-bet of

pair II and two variations of the ambiguous $-bet of pair IV (in which we vary the range of

the probability interval). The results of these four additional valuations are given in Section 8,

Table 8. In the second round, subjects were asked to choose between the ambiguous $-bet and

its corresponding ambiguous P-bet for the six ambiguous paired-lotteries.

In the third round, subjects were asked to specify their minimum WTA for the twelve risky

bets (6 risky P-bets and six risky $-bets) using the BDM mechanism, as in the first round. Last,

in the fourth round subjects were asked to choose between the risky $-bet and its corresponding

risky P-bet for the six risky paired-lotteries. Examples of the experimental design are given in

the Appendix.

To control for order effects, the $-bets and the P-bets were presented to subjects randomly

in rounds 1 and 3. Similarly, the paired-lotteries were presented randomly in rounds 2 and 4.
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Moreover, the order in which the two bets were presented in the choice tasks was counterbal-

anced. However, the order of the rounds was not arbitrary: we choose to (1) run ambiguous

tasks before risky tasks, and (2) run valuation before choice.

First, subjects carried out preference-reversal tasks under ambiguity before risk to prevent

them from establishing a probability reference point. Had we begun with the risky task, subjects

may have reduced ambiguity to risk by considering the expected probability of winning and ig-

noring ambiguity. In addition, we assume that the running of ambiguous tasks before risky tasks

is unlikely to affect behavior. Pommerehne et al. (1982) show that the repetition of preference-

reversal tasks, even in the presence of feedback, does not significantly change preference-reversal

rates.

Second, we did not change the order of choice and valuation, as it has been shown that

the elicitation of prices before or after binary choice does not influence the pattern of reversals

under risk. Grether and Plott (1979) note that choice patterns and reversal rates appear to be

the same for choices made before and after the obtention of selling prices (p. 632).2

4.4 Incentives

At the end of the experiment, one of the questions was played for real. The computer first

randomly chose one round (1, 2, 3 or 4) and then one question from the selected round. For

example, if round 1 were chosen in the first step, then the subject plays the BDM mechanism.

The computer then randomly chose one question, say the ambiguous $-bet of pair I. Afterwards,

an offer between e0.1 and e20 is chosen randomly. If the random offer exceeded the expressed

WTA, the participant received the random offer. If the random offer was below the expressed

WTA, the subject played the ticket. In the latter case, the computer program determines the

number of winning balls by choosing a number between 0 and 40 (with all of the numbers

being equiprobable). It then drew a ball from the urn, which is now known. The subject won

e20 if the drawn ball was a winning ball and nothing otherwise. In the BDM mechanism, the

maximum offer for a given bet, (ex, E(p)), was ex. Subjects earned on average e6.7, with a

minimum of e0 and a maximum of e27. Subjects also received e5 for their participation.

2Although we have presumed that eliciting prices before or after choice will not significantly affect reversal rates
under ambiguity, it may be that the result observed by Grether and Plott (1979) does not extend to ambiguity.
This remains an open question for future research. I thank an anonymous referee for emphasizing this point.
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4.5 Ambiguity Implementation

Unlike a large body of experimental literature considering “true” ambiguity (Ellsberg’s un-

known urn), this paper uses two-stage objective lotteries. There are three reasons for doing so.

The first is to reduce the complexity of the ambiguous task to a minimum by using probability

intervals (in the spirit of Curley and Yates, 1985, and 1989). Implementing “true” ambiguity

in the case of classical preference reversal may be confusing for subjects, as one bet features a

small probability of winning and the other a large probability. To illustrate, consider the risky

paired-lottery: {P-betR:(e5,80%); $-betR:(e20, 20%)}. Framing this question in an Ellsberg

way yields two urns (one risky and one ambiguous) and four bets (two risky and two ambigu-

ous). For example, consider two ten-color urns each containing 100 balls. The number of balls

of each color is known (exactly 10) in the risky urn (Urn 1). However, the number of balls of

each color is unknown (it could be anywhere between 0 and 100) in the ambiguous urn (Urn 2).

In a binary-choice task under risk (ambiguity), subjects would be asked to choose between:

- Risky (ambiguous) P-bet: bet on two colors from Urn 1 (Urn 2). If one of these

corresponds to the color of the ball that is drawn, the prize is e5.

- Risky (ambiguous) $-bet: bet on eight colors from Urn 1 (Urn 2). If one of these

corresponds to the color of the ball that is drawn, the prize is e20.

We believe that this formulation complicates the understanding of the task, as in the same

choice subjects have to bet on different numbers of colors that result in different prizes. In

addition, the different pairs used in the experiments involve different probabilities (sometimes

not divisible by ten, e.g. 25%), which also complicates the task. Due to the asymmetry between

the P-bet and the $-bet, framing ambiguity via probability intervals likely simplifies the task.

The second reason relates to the“suspicion”caused by the unknown urn. Hey et al. (2008) point

out the shortcomings of“true”ambiguity implementation. They argue that subjects may suspect

the experimenter of manipulating the unknown urn in order to save money. Thus, the unknown

urn becomes “suspicious”, which may lead participants to report higher levels of ambiguity

aversion. Some experimental evidence has indeed shown that ambiguity aversion is lower with

two-stage objective lotteries than with “true” ambiguity (Halevy, 2007, Chow and Sarin, 2002,

Yates and Zukowski, 1976, and Bernasconi and Loomes, 1992). Last, this experimental evidence

has also shown that even when probabilities are knowable (although it is unlikely that individuals
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can calculate them) subjects do exhibit ambiguity aversion.

5 Results

Unless stated otherwise, all the results reported in this section are two-tailed paired t-tests.

5.1 Preference Reversals under Ambiguity

Table 2 summarizes the results of choice and valuation under ambiguity for the six paired

lotteries. We focus our analysis on aggregate choices. We dropped the choices and valuations

of one subject in pair IV due to a missing value in the valuation task. Thus, the number of

observations in each choice task is 245 instead of 246, and the number of observations in each

valuation task is 490 instead of 492.

Table 2 shows that preference reversals do occur under ambiguity: 129 choices out of 245 (53

percent) were inconsistent with the announced selling prices.3 Specifically, 123 (78 percent) of

the 158 choices of ambiguous P-bets were inconsistent with the announced selling prices, with

an analogous figure of only 6 (7 percent) of the 87 choices for ambiguous $-bets. When the

probability of winning is ambiguous, preference reversals continue to be systematic: the rate

of standard preference reversals (78 percent) greatly exceeds that of non-standard preference

reversals (7 percent).

Subjects value the ambiguous $-bets higher than the corresponding ambiguous P-bets. For

each of the six pairs, the hypothesis of equal selling prices was rejected at the one percent level

using a t-test (see Table 10). Subjects state a higher price for the ambiguous $-bet as compared

to the ambiguous P-bet, irrespective of whether the expected value of the ambiguous $-bet is

higher than, lower than or equal to the expected value of the ambiguous P-bet. Furthermore,

subjects value the ambiguous $-bet higher than the corresponding ambiguous P-bet in 82 percent

of cases, and lower in only 12 percent of cases (see Table 9).

Consistent with previous findings under risk, preference reversals under ambiguity come

from (1) the attractiveness of the P-bet in the choice task, as subjects massively chose the bet

with the high ambiguous probability of winning (the proportion choosing the ambiguous P-bet

3The rate of preference reversals observed here is higher than that in Trautmann et al. (2009), who identified
them in only a minority of cases.

13



is 64 percent), and (2) the attractiveness of the $-bet in the valuation task, as subjects report

a higher price for the bet with the more favorable, as compared to the less-favorable, outcome.

Table 2: Frequencies of Reversals under Risk and Ambiguity

Selling Prices
Bet Choices Consistent Inconsistent Equal

Ambiguity P 158 25 123 10
$ 87 78 6 3

Risk P 153 48 94 11
$ 92 75 13 4

N=41

5.2 Comparing Preference Reversals under Ambiguity and Risk

The third and fourth rounds of the experiment provide a benchmark for preference reversals

under risk. As specified above, the probability of winning of a given risky bet is the center of the

probability interval, E(p), of its corresponding ambiguous bet. Consequently, we can compare

the rate of preference reversals under ambiguity and risk.

Table 2 shows the results of choice and valuation under risk for the six risky paired-lotteries.

We see that 107 (44 percent) choices out of 245 were inconsistent with the announced selling

prices. The overall rate of preference reversals under risk in our experiment is consistent with

that in previous work (Seidl, 2002). The rate of standard preference reversals under risk is 61

percent (of the 153 choices of P-bets, 94 were inconsistent with the announced selling price) and

the rate of non-standard preference reversals is 14 percent (13 of the 92 choices of $-bets). The

general pattern of reversals under risk here is similar to that in Grether and Plott’s experiment

1 (with incentives): subjects reversed their preferences 33 percent of the time (91 choices out of

273), the rate of standard preference reversals was 69 percent (69 out of the 99 choices of the

P-bet), and that of non-standard preference reversals was 13 percent (22 out of the 174 choices

of the $-bet).

We found that subjects valued the risky $-bets higher than the corresponding risky P-bets.

The hypothesis of equal selling prices was rejected at the one percent level by a t-test for four

of the six bets (see Table 11 in the Appendix). Subjects thus state a higher price for the risky
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$-bet as compared to the risky P-bet when the expected value of the risky $-bet was greater or

equal to that of the risky P-bet, but not when it was lower. Preference reversals under risk also

result from a tendency to choose the bet with the greater probability of winning, and to state

a higher price for the bet yielding the higher amount to be won. As such, preference reversals

under risk result from the attractiveness of the P-bet in the choice task and the attractiveness

of the $-bet in the valuation task.

Table 2 shows that the rates of overall preference reversals and standard preference reversals

are higher under ambiguity than under risk. We compute for each individual the proportion of

overall preference reversals, standard preference reversals and non-standard preference reversals

under risk and ambiguity. The t-test rejects the hypothesis that the individual proportions of

preference reversal under ambiguity and risk are equal at the 5% level (PRA = 53%, PRR =

44%, N = 41, t = 2.154, p = 0.037). The individual proportions of standard preference

reversals are significantly higher under ambiguity than under risk (SPRA = 79%, SPRR =

57%, N = 38, t = 3.942, p = 0.000), while the individual proportions of non-standard preference

reversals under ambiguity and risk are not significantly different from each other (NSPRA =

9%, NSPRR = 12%, N = 32 , t = −0.435 , p = 0.667). Note that, by construction, the averages

of the individual proportions of conditional preference reversals are different from the aggregate

proportions of conditional preference reversals. Also, the number of observations (N) in the

tests of standard and non-standard preference reversals is less than 41 as paired tests ignore the

missing values which can occur in the standard preference reversals test when a given subject

never chooses the P-bet and in the non-standard preference reversals test when a given subject

never chooses the $-bet.4

In conclusion, we find that preference reversals are not only replicated under ambiguity, but

4We also computed these tests at an aggregate level and found that the overall level of PR is significantly higher
under ambiguity than under risk (PRA = 53%, PRA = 44%, N = 245, t = 2.195, p = 0.029). The proportion
of standard preference reversals is significantly higher under ambiguity than under risk (SPRA = 73%, SPRR =
61%, N = 111, t = 2.721 , p = 0.008), while the proportions of non-standard preference reversals under ambiguity
and risk are not significantly different from each other (NSPRA = 8%, NSPRA = 15%, N = 45, t = −1.138 ,
p = 0.261). The paired-tests of conditional preference reversals involve only observations where subjects made
the same choice under risk and ambiguity. To illustrate, consider the preferences of subject i for pair j and
assume that he chose the P-bet under risk and was inconsistent, and chose the $-bet under ambiguity and was
inconsistent. As the computation of SPR (NSPR) is conditional on choosing the P-bet ($-bet), the value of SPRR

ij

is 1, whereas that of SPRA
ij is missing. Further, the the value NSPRA

ij of subject i is 1, whereas that of NSPRR
ij

is missing. Thus, the paired-test ignores the observations of subject i for pair j in both tests. For this reason, and
because the test on aggregate data assumes that the observations of the same subject are independent, we tested
the difference between preference reversals under risk and ambiguity using individual proportions of reversals.
Note however that both tests lead to the same conclusions.
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are even more prevalent than under risk.

6 The Causes of the Higher rate of PR under Ambiguity

The greater rate of preference reversals under ambiguity as compared to risk can reflect either

the greater attractiveness of the P-bet in choice under ambiguity, or the greater attractiveness

of the $-bet in valuation under ambiguity, or both. In the following, we consider the impact of

ambiguity on choices and valuations.

6.1 Choice

At a first glance, the pattern of choice appears to be the same under risk and ambiguity.

Individuals choose the ambiguous P-bet rather than the ambiguous $-bet in 64 percent of cases

(158 choices out of 245), and choose the risky P-bet rather than the risky $-bet in 62 percent

of cases (153 choices out of 245). The t-test fails to reject the hypothesis of equality here

(N = 245, t = 0.529, p = 0.597). However, these proportions are not over-informative, as

subjects may switch from one bet to another. For a given pair, there are four possible choice

patterns: (1) choosing the P-bet under both ambiguity and risk, PAPR; (2) choosing the $-bet

under both ambiguity and risk, $A$R; (3) choosing the P-bet under ambiguity and the $-bet

under risk, PA$R; and (4) choosing the $-bet under ambiguity and the P-bet under risk, $APR.

In cases (1) and (2), ambiguity does not significantly change preferences. Ambiguity increases

the attractiveness of the P-bet in case (3) and that of the $-bet in case (4). Consequently,

if the greater extent of preference reversals under ambiguity is caused by an increase in the

attractiveness of the P-bet under ambiguity, ceteris paribus, pattern (3) should clearly dominate

pattern (4).

Table 3: Choice under risk and ambiguity

Ambiguous $-bet Ambiguous P-bet Total

Risky $-bet 45 47 92
Risky P-bet 42 111 153

Total 87 158 245

Table 3 shows that ambiguity did not affect choices in 64 percent of cases (patterns (1) and
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(2): 156 choices out of 245). Ambiguity does increase the attractiveness of the P-bet in 19

percent of cases (pattern (3): 47 choices out of 245) but also increases the attractiveness of the

$-bet in 17 percent of cases (pattern (4): 42 choices out of 245). The Wilcoxon signed-rank test

fails to reject the hypothesis that choice patterns (3) and (4) are equal (N = 245, z = 0.530,

p = 0.596). The comparison of risky and ambiguous choices does not yield a particularly clear

explanation of the increase in the attractiveness of the P-bet under ambiguity. Consequently, we

can assume that the greater rate of reversals under ambiguity is not induced by an increase in the

attractiveness of the P-bet under ambiguity, as subjects generally seemed to reduce ambiguity

to risk.

6.2 Valuation

As noted in Section 4, subjects value the $-bet higher than the P-bet under both risk and

ambiguity. To understand the effect of ambiguity on prices, we compare the selling price for

the twelve ambiguous bets and their corresponding risky bets. Table 4 shows that the selling

price for the ambiguous $-bet is significantly higher than that of the corresponding risky bet

for all of the pairs except IV and V, where the probability of winning is respectively 0.4 and

0.5. Thus, subjects exhibit ambiguity-seeking for low probabilities of winning, which increases

the selling prices the $-bets. This result is consistent with our hypothesis 1; it is also consistent

with the shape of the weighting function previously observed under uncertainty. In particular,

ambiguity-seeking for low probabilities (p ≤ 0.3) is related to more lower subadditivity under

ambiguity. Ambiguity-neutrality in pair IV can be explained by the location of the weighting

function’s inflection point, which has been found to lie between 0.34 and 0.4 (see Prelec, 1998

for a discussion). Concerning pair V, which corresponds to the original Ellsberg problem, we

impute the absence of ambiguity-aversion here to the use of two-stage lotteries which is known

to result in lower levels of ambiguity aversion than “true” ambiguity.

Table 5 shows that the selling price of the ambiguous P-bet is significantly lower than that

of the corresponding risky bet for four pairs out of six. Subjects exhibit ambiguity-aversion for

high winning probabilities, which reduces the selling prices of the P-bet. The lower prices of

the P-bet under ambiguity than under risk reflect more upper subadditivity under ambiguity, as

predicted by our hypothesis 2, and reinforce the previous findings on the shape of the weighting
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Table 4: Prices of the $-bet under ambiguity and risk

Pairs N E(p) EV WTAAmbiguity WTARisk t-test

I 41 20% 4 7.59 6.29 t = 2.629, p < 0.05
II 41 30% 4.8 6.56 5.77 t = 2.245, p < 0.05
III 41 20% 2 3.79 2.91 t = 2.613, p < 0.05
IV 40 40% 2.4 2.86 2.39 t = 1.992, p < 0.1
V 41 50% 6 5.64 6.04 t = −1.579, ns
VI 41 25% 6.75 11.68 9.59 t = 2.944, p < 0.01
All 245 6.37 5.51 t = 4.752, p < 0.01

Notes: E(p)= the expected probability of winning; EV=Expected Value; ns= non significant

function under uncertainty.

Table 5: Prices of the P-bet under ambiguity and risk

Pairs N E(p) EV WTAAmbiguity WTARisk t-test

I 41 80% 4 2.68 3.35 t = −3.465, p < 0.01
II 41 90% 4.5 3.06 3.76 t = −2.912, p < 0.01
III 41 90% 3.6 1.91 3.02 t = −8.893, p < 0.01
IV 40 90% 2.7 1.97 2.15 t = −1.465, ns
V 41 90% 5.4 4.16 4.50 t = −1.372, ns
VI 41 70% 5.6 3.97 5.17 t = −4.634, p < 0.01
All 245 2.963 3.66 t = −8.092, p < 0.01

Notes: E(p)= the expected probability of winning; EV=Expected Value; ns= non significant

The higher prices of the $-bets and the lower prices of the P-bets represent clear evidence

of ambiguity-seeking for low-probability gains and ambiguity-aversion for intermediate- and

high-probability gains, as found in previous work (see Camerer and Weber, 1992, p. 334).

Figure 1 further shows that the average gap between the prices of ambiguous bets and their

corresponding risky bets increases as the expected probability of winning, E(p), falls. The

correlation between the price gap between ambiguity and risk and the probability of winning for

all bets is negative for $-bets (the Pearson correlation is -0.2146 with N = 245 and p= 0.0007,

and Spearman’s ρ is -0.2386 with N = 245 and p= 0.0002), but weakly positive for P-bets

(the Pearson correlation is 0.1524 with N = 245 and p= 0.0170, and Spearman’s ρ is 0.1204
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with N = 245 and p= 0.0599). We thus claim that ambiguity, by increasing the attractiveness

of the $-bet and reducing the attractiveness of the P-bet in the valuation task, increases the

gap between the prices of the $-bets and their corresponding P-bets, yielding a higher rate of

preference reversals.
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Figure 1: The average price gap between ambiguity and risk

One notable result here, although beyond the scope of this paper, is the prevalence of

ambiguity-aversion, and also of ambiguity-seeking, in a “weaker” form of non-comparative con-

text. The Ellsberg Paradox was first revealed when the two bets were evaluated jointly.

Fox and Tversky (1995) showed that ambiguity-aversion disappears when subjects value the

two original Ellsberg urns separately. They also found moderate ambiguity-aversion at high

winning probabilities (p=2/3) in a non-comparative as compared to a comparative context, but

no evidence of ambiguity-seeking at low winning probabilities in both comparative and non-

comparative contexts. These conclusions were however partially invalidated by Chow and Sarin

(2001), who tested the comparative hypothesis using variations of the Ellsberg problem, and

found that subjects did exhibit ambiguity aversion in a non-comparative context but less so

than in a comparative context for low, moderate and large probabilities of winning (p ∈

{1/3, 1/2, 2/3}).

The research discussed in Fox and Tversky (1995) and Chow and Sarin (2001) relies on

between-subject analysis. In both papers, three groups valued the known and unknown urns.
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In the comparative context, the same group valued both urns; in the non-comparative context,

the known and the unknown urns were valued separately by two different groups. In the present

paper, the same group of subjects valued the known and the unknown urns, but not at the same

time. The unknown urns are valued in the first round and the known urns are valued in the

third round5, so that valuation takes place in a “weak” non-comparative context. We mean by

“weak” that exposure to an unknown urn in round 1 may lead subjects to implicitly compare it

to the corresponding risky urn in round 3, although it may seem unlikely that subjects, when

pricing the risky bets in the third round, would engage in a mental process to remember each

of the corresponding ambiguous bets in order to make an explicit comparison.6.

We find that subjects exhibit ambiguity-seeking for low winning probabilities (the $-bets of

pairs I, II, III and IV where p < 0.4) and ambiguity-aversion for high winning probabilities (the

P-bets of pairs I, II, III and IV where p > 0.5).

This non-neutral attitude towards ambiguity shows that ambiguity has a significant effect

for both less-favorable and more-favorable bets in a “weak”non-comparative context, suggesting

that the ambiguity attitude is not entirely captured by an explicit comparison between bets.

Our results are however inconclusive with respect to the original Ellsberg problem (the $-bet

of pair V where p = 0.5). On average, the price of the risky bet (WTARisk = 6.04) is not

significantly higher than that of the ambiguous bet (WTAAmbiguity = 5.64). Although this

result is consistent with Fox and Tversky (1995), it should be treated with caution as we use

two-stage lotteries, which are known to yield less ambiguity aversion than“true”ambiguity. It is

thus not obvious that the absence of ambiguity-aversion in the original Ellsberg problem results

from the “weak” non-comparative context. Overall, we show that existing evidence regarding

the comparative hypothesis is not conclusive and call on future research to further address this

question.

Our results also question the “true” attitude toward ambiguity for low winning probabili-

ties: Fox and Tversky (1995) found ambiguity-neutrality and Chow and Sarin (2001) ambiguity-

aversion, whereas the most common conclusion is ambiguity-seeking (Einhorn and Hogarth,

5In our experiment, subjects never directly compare the known and the corresponding unknown urns, as
valuation under ambiguity (round 1) and valuation under risk (round 3) are separated by binary choice under
ambiguity (round 2).

6I would like to thank an anonymous referee who correctly pointed that our design does not provide a non-
comparative context as in Fox and Tversky (1995) and Chow and Sarin (2001), and may induce implicit compar-
ison.
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1986, Kahn and Sarin, 1988, Curley and Yates, 1989, and Hogarth and Einhorn, 1990).

7 Prospect theory under risk and under ambiguity?

As ambiguity relates to probabilities, the inherent way of disentangling its effects is to exam-

ine the probability weighting for different uncertainty levels and response modes. To do so, we

appeal to prospect theory (Kahneman and Tversky, 1979, and Tversky and Kahneman, 1992)

as an alternative to expected utility theory to estimate risk-preference parameters, and extend

this to capture the effect of ambiguity on preferences and therefore on preference reversals.

Contrary to expected utility theory, which assumes that outcomes are framed in terms of final

wealth, prospect theory suggests that decision makers frame outcomes in terms of gains and

losses. The expected utility theory utility function is replaced by a value function v(.) which

is concave in the domain of gains (subjects are generally risk-averse over gains), and convex in

the domain of losses (subjects are generally risk-seeking over losses). Further, probabilities are

weighted by an inverse S-shaped function. Under uncertainty, the weighting function satisfies

bounded subadditivity (the characteristics of the weighting function are discussed in Section 3).

We estimate the parameters of prospect theory under risk and ambiguity for both choice and

valuation. Note that when lotteries involve one non-zero outcome, which is the case here, the

two generations of prospect theory (1979 and 1992) are equivalent. For a risky-bet LR = (x, p)

that offers an amount x with probability p, we use a CRRA utility function, v(x) = xσ, as

is common in this literature. Probabilities are distorted according to Prelec’s (1998) one-

parameter weighting function:7

w(p) = exp[−(−lnp)α]

The probability-weighting function is linear if α = 1, as under expected utility. The weighting

function is inverse S-shaped if α < 1. It is, however, S-shaped if α > 1: individuals underweight

small probabilities and overweight large probabilities. In the last two cases, the weighting

function has an invariant inflection point at 1/e = 0.37.

Using these parametric forms, the value of this risky-bet is:

7The bets used in this paper have only one non-zero outcome, which in general leaves the power of probability
weighting and utility unspecified. In our analysis the power is specified by our choice of Prelec’s (1998) one-
parameter family, where the power is determined primarily by the diagonal concavity axiom.

21



V (LR) = w(p)v(x) , with w(p) = exp[−(−lnp)αR ]

For an ambiguous bet LA = (x, [p; p]) that offers x with a probability between p and p, we

consider W (.) as the probability-weighting function under ambiguity such that:

W (E(p)) = exp[−(−lnE(p))αA ]

where E(p) = (p + p)/2 = p. The value of this ambiguous bet is:

V (LA) = W (E(p))v(x)

We treat E(p) as a proxy to estimate the weighting-function parameters under ambiguity

for two reasons. First, the comparison between risk and ambiguity in the Ellsberg problem is

carried out, under some assumptions, at the center of the interval. Second, as the present paper

uses a two-stage lotteries, subjects should theoretically consider the center of the interval. It is

however conceivable that subjects use any other probability in the interval, or a combination

between the boundaries and the center of the interval. Absent such information, it is almost

“natural” to consider the center of the interval as a plausible approximation.

We impute the gap between the price of a risky bet (x, p) and that of the corresponding

ambiguous bet (x, [p; p]) to probability distortion under ambiguity. In fact, the only difference

between these two bets is the degree of uncertainty over the probability of winning. We hence

have no reason to think that the curvature of the value function is affected by ambiguity.

However, the shapes of the weighting and value functions under risk and ambiguity in the

choice task are not very clear, as subjects often reduce ambiguity to risk, but sometimes switch

to the $-bet or to the P-bet under ambiguity.

Valuation. For the two valuation tasks, we assume that:

WTA(L) = V (L),

and estimate the parameters of prospect theory under risk and ambiguity via non-linear tech-

niques.

Table 6 reports the estimation results. Under both risk and ambiguity, the value function

estimate is slightly larger than one. This does not necessarily imply risk-seeking. The convexity
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of the value functions can be explained by two factors. The first is the formulation of the elicited

prices. As these were elicited via selling prices, it could be that the endowment effect is behind

the high reported prices. Halevy (2007) found that reservation prices were no longer above

the expected value when the former were not framed in terms of selling prices. The second

explanation of convexity comes from the nature of bets in questions. Tversky et al. (1990)

showed that preference reversals are primarily due to the “overpricing” of $-bets. It is thus not

absurd to find a convex value function if the overpricing of the $-bet is large enough.

The fourth column of Table 6 also shows that the value-function estimates under risk and

ambiguity are roughly equal: σRisk ≈ σAmbiguity. Ambiguity therefore does not affect the

curvature of the value function (similar results were obtained by Abdellaoui et al., 2010). As

the effect of ambiguity is totally captured by the weighting, the following analysis focuses on

decision weights under risk and ambiguity.

From the third column of Table 6, we see that 0 < αR < 1, which implies that the weight-

ing function under risk satisfies the principle of diminishing sensitivity (Tversky and Kahneman,

1992, Wu and Gonzalez, 1996, Gonzalez and Wu, 1999, Abdellaoui, 2000, and Bleichrodt and Pinto,

2000). Similarly, 0 < αA < 1, so that the weighting function under ambiguity satisfies bounded

subadditivity.

Table 6: Valuation preferences under risk and ambiguity

No. of obs α σ R-squared

Risk 490 0.461 1.128 0.8160
(0.040) (0.013)

Ambiguity 490 0.213 1.165 0.7999
(0.038) (0.013)

Note: Standard errors in parentheses.

We also find that αA < αR. This implies that the probability-weighting function is more

curved under ambiguity than under risk, i.e. it is relatively more sensitive to changes in prob-

ability near the end points 0 and 1, and is relatively more insensitive to changes in probability

in the middle region under ambiguity as compared to risk. Formally:
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Figure 2: Probability-weighting functions under ambiguity and risk for valuation







w(p) < W (p) if p < 1/e

w(p) > W (p) if p > 1/e

This result is consistent with previous literature on the decision weights under uncertainty

(Tversky and Fox, 1995, Wu and Gonzalez, 1999, Kilka and Weber, 2001, and Abdellaoui et al.,

2005), and had previously been suggested by Kahneman and Tversky (1979), who noted that the

probability distortion may be more pronounced for uncertainty than for risk (p. 281). Machina

(1982) also subscribes to this idea (p. 292), and Wakker (2004) notes that“For uncertain events,

the decision maker is less sensitive to changes in the middle of the region than she is for known

probabilities”.

When probabilities are unknown, decision weights can not be described as simple transfor-

mations of the probability scale (Tversky and Fox, 1995). Building on empirical evidence sug-

gesting less sensitivity to uncertainty than to risk, Tversky and Fox (1995), Fox and Tversky

(1998) and Wakker (2004) decomposed decision weights under uncertainty into two components:

a belief component that satisfies bounded subadditivity and a component reflecting decision atti-
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tudes. For an uncertain prospect, (x, A), that offers x when event A occurs, the decision weight

is decomposed as:

W (A) = w(F (A))

where F (A) is the belief component and w(.) the probability-weighting function under risk.

Two different approaches to decomposing decision weights under uncertainty were followed

by Tversky and Fox (1995) and Fox and Tversky (1998) on the one hand, and by Wakker (2004)

on the other. In Tversky and Fox’s model, the belief component is a judged probability, i.e. it

is directly captured by judgment of degrees of belief, while in Wakker’s model, it is a choice-

based probability, i.e. subjects are indifferent between an uncertain prospect, (x, A), that offers

x when event A occurs, and a risky prospect, (x, p), that offers the same prize with a known

probability p, such that F (A) = p.

Following this decomposition, our results demonstrate that the belief component under am-

biguity in the valuation task satisfies bounded subadditivity. If we assume that the weighting

function under ambiguity is W (A) = w(F (A)), where A is the event “draw a winning ball from

the unknown (or partially known) urn”, the belief component is subadditive (i.e. it satisfies

both lower subadditivity and upper subadditivity) as W (.) is more curved than w(.).8

Consistent with our hypotheses 1 and 2, less sensitivity to ambiguity as compared to risk

results in higher elicited prices for the $-bets under ambiguity as compared to risk, and lower

elicited prices for the P-bets under ambiguity as compared to risk.

Choice. For the choice tasks, we use the same parametric forms, w(.), W (.) and v(.),

and determine, as above, the values of the $-bets, V ($), and the P-bets, V (P ), under risk and

ambiguity. The probability that the subject choose the P-bet rather than the $-bet is given by

the logit formula:

Prob(Subject chooses P-bet) = Prob(V (P )>V ($))

= 1/(1 + exp{−ξ(V (P ) − V ($))})

where ξ is the sensitivity of the choice probability to the value difference (V (P )− V ($)), or the

amount of “randomness” in the subject’s choices (ξ= 0 implies that choices are random). We

8Further applications of the decomposition of decision weights under uncertainty can be found in
Wu and Gonzalez (1999), Kilka and Weber (2001), and Abdellaoui et al. (2005).
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denote the choice of the subject in paired choice i by yi, where yi = 1 if the subject chooses

the P-bet, and 0 if the $-bet is chosen. We fit the data using maximum likelihood, with the

following log-likelihood function:

n
∑

i

yi log{Prob(V (P ) > V ($))} + (1 − yi) log{1 − Prob(V (P ) > V ($))}

where n is the number of observations. As this is a non-linear optimization problem, we use the

Newton-Raphson routine in SAS.

Table 7 shows the results of choice estimations under risk and ambiguity for the first five

pairs of Table 1.9 The estimated value function is concave under risk and ambiguity, contrary

to the valuation task where σ > 1. This confirms that the convexity of the value function in

valuation is due to other factors that do not reflect risk attitudes, such as the use of the selling

price and the overpricing of $-bets. We note that σR is slightly higher than σA. This result is

surprising, first because the proportions choosing the P-bet under risk and ambiguity are not

significantly different from each other, and also because previous results (e.g. Abdellaoui et al.,

2010) confirm our hypothesis that ambiguity does not affect the curvature of the utility function.

This can however result from the use of non-parametric estimation, which is sensitive to the

number of observations.

Table 7: Estimation of prospect theory parameters for choices

No. of obs α σ ξ Log likelihood

Risk 205 0.918 0.866 2.393 -123.647
(0.065) (0.036) (0.545)

Ambiguity 205 0.822 0.674 1.636 -’125.605
(0.214) (0.286) (0.881)

Note: Standard errors in parentheses.

The third column of Table 7 shows that the weighting function satisfies bounded subadditivity

9We restrict the analysis here to the first five pairs in Table 1 as the programs fail to converge for the full set
of data. This restriction does not affect the comparison of prospect theory parameters for choice and valuation,
as the estimations of the prospect theory parameters in valuation for pairs I to V yield almost exactly the same
results as for the six pairs. In valuation, the estimates of prospect theory for pairs I to V are αR = 0.528,
αA = 0.284, σR = 1.061 and σA = 1.093. Consistent with the estimation results with the six pairs, we found
σR ≈ σA and αA − αR = 0.24.
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for both risk and ambiguity (0 < αR < 1 and 0 < αA < 1), as was the case for valuation. We also

see that the weighting function is more curved for ambiguity than for risk, (αA = 0.822 < αR =

0.918). Again, as in valuation, subjects seem to be less sensitive to ambiguity than to risk. This

result implies that, in choice, ambiguity increases to some extent the attractiveness of the $-bet

(due to more lower subadditivity), and reduces the attractiveness of the P-bet (due to more upper

subadditivity), but not enough to make subjects prefer the ambiguous $-bets to the ambiguous

P-bets. Figure 3 shows clearly that ambiguity results in a more-curved weighting function for

both choice and valuation, but does not affect the choice weighting function enough to produce a

choice pattern that is different from that under risk. Consistent with our proposition 1, Figure 3

shows that subjects are less sensitive to ambiguity than to risk for both tasks, but that this lower

sensitivity is more pronounced for valuation than for choice, which results in more preference

reversals under ambiguity than under risk.
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Figure 3: Probability-weighting functions under ambiguity and risk for choice and valuation

The comparison of the weighting functions shows that the weighting function is more curved

for valuation than for choice under both risk (αvaluation
R < αchoice

R ) and ambiguity (αvaluation
A <

αchoice
A ). This confirms that choice and valuation are not empirically equivalent: more empirical

27



research is needed to determine which method better elicits true preferences.

Based on the literature on decision weights under uncertainty, the extension of prospect

theory to ambiguity disentangles the greater extent of preference reversals under ambiguity.

This shows that the larger gap between prices for the $-bets and their corresponding P-bets

under ambiguity as compared to risk results from a more curved probability-weighting function

under ambiguity than under risk in the valuation task. In the choice task, the weighting function

under ambiguity is also more curved than under risk, but not enough as to change the preference

of subjects for the P-bet.

8 General discussion

Ambiguity implementation. It is common in experiments testing the distinction be-

tween risk and uncertainty to consider situations where uncertainty is known or unknown

(Camerer and Weber, 1992). Known uncertainty refers to the case where the probability is

precisely known (Ellsberg’s risky urn). Unknown uncertainty refers to the case where subjects

do not know the probability that others might know (Ellsberg’s ambiguous urn). The inter-

mediate case refers to situations where uncertainty is knowable:10 when the distribution of the

probability is known in advance (two-stage objective lotteries). Although knowable uncertainty

is theoretically equivalent to risk because subjects can calculate the probabilities of compound

lotteries, a great deal of empirical evidence suggests that subjects exhibit ambiguity aversion in

the case of two-stage lotteries (Halevy, 2007, Chow and Sarin, 2002, Yates and Zukowski, 1976,

and Bernasconi and Loomes, 1992). The results here are consistent with these findings. It is

known that knowable uncertainty (i.e. two-stage lotteries) entails lower levels of ambiguity aver-

sion than unknown uncertainty. We thus presume that the rate of classical preference reversals

under unknown uncertainty will be different from that under knowable uncertainty. Pogrebna

(2010) used three different methods of ambiguity implementation to examine preference rever-

sals among bets involving different degrees of ambiguity. She distinguished between one-stage

non-transparent ambiguity (unknown uncertainty), two-stage transparent ambiguity (knowable

uncertainty using two-stage objective lotteries) and one-stage transparent ambiguity (knowable

uncertainty using a variation of Hey et al.’s (2008) Bingo Blower procedure). Preference rever-

10Chow and Sarin, 2002 call this uncertainty unknowable
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sals were observed for the three implementation methods, but unknown uncertainty produced

more severe reversals than did the two knowable uncertainties.

In the case of classical preference reversals, we have shown that knowable uncertainty affects

valuation and choice differently. The comparison of weighting functions under risk and knowable

uncertainty shows less sensitivity to ambiguity than to risk for both response modes. However,

less sensitivity in choice is not strong enough to produce different choice patterns to those under

risk, which results in more preference reversals under ambiguity. If unknown uncertainty ampli-

fies this effect, we presume that it would increase the rate of reversals even further. Unknown

uncertainty may nonetheless result in fewer reversals than under knowable ambiguity and pos-

sibly even than under risk. For instance, it could be the case that, in the binary choice task,

unknown uncertainty results in sufficiently more lower subadditivity and upper subadditivity to

increase the proportion of choosing the $-bet as compared to knowable uncertainly or risk. In

this case, given more bounded subadditivity in valuation, we may observe fewer reversals under

unknown uncertainty than under knowable uncertainty or risk. The effect of “true” ambiguity

on the choice pattern, and thus on the rate of reversals remains an empirical question.

WTA/WTP. As in the majority of preference-reversal experiments, the current paper

elicited reservation prices using WTA techniques. Preference reversals have also been observed

when prices are elicited using willingness-to-pay (WTP) techniques (e.g. Lichtenstein and Slovic,

1971, and Schmidt and Hey, 2004). The overall rate of reversals is however lower with WTP

than with WTA. Lichtenstein and Slovic (1971) showed that WTP results in fewer standard pref-

erence reversals and more non-standard preference reversals than WTA. In Schmidt and Hey

(2004), WTP reduces the proportion of standard preference reversals but has no effect on the

proportion of non-standard preference reversals. The lower proportion of reversals in the case of

WTP results from lower elicited prices, especially for the $-bet (Lichtenstein and Slovic, 1971,

page 50). This suggests that, under risk, the weighting function for buying prices is less curved

than that of the selling prices. Based on the shapes of the above weighting functions, we conjec-

ture that, using WTP, preference reversals under ambiguity would also be more frequent than

under risk. The size of the increase in reversals under ambiguity as compared to risk will depend

on the effect of ambiguity on both lower subadditivity and upper subadditivity in valuation, i.e.

how much ambiguity increases the buying prices of the $-bets, and reduces the buying prices of
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the P-bets.

Design. Our experimental design is based on a within-subject analysis. Though we believe

that preference reversals are immune from order effects (ambiguity/risk and valuation/choice),

the results reported in this paper may be questioned. We should note that almost all of the

results reported here are consistent with previous finding. First, remember that our lotteries

were constructed as in Grether and Plott, 1979 to enable comparisons. Under risk, our reversal

rates are similar to those theirs, although the risky tasks were performed after ambiguous tasks.

This rules out criticisms regarding potential learning. Second, we have assumed that the order

of the valuation and choice tasks under ambiguity has no effect on preference reversals. We

indeed believe that ambiguity acts to amplify the effect of risk, and as there are no order effects

for risk our assumption of no order effects under ambiguity seems plausible. Nevertheless, task

order (ambiguity/risk, on the one hand, and valuation/choice on the other) should be addressed

in future research to confirm our hypotheses using a between-subject design.

Further, we implemented ambiguity using probability intervals. Although this procedure is

not new (Curley and Yates, 1985 and Curley and Yates, 1989), it is not frequently used in the

literature. It may be thought that our design is complicated for participants, because they have

to reason in terms of intervals. This is unlikely for two reasons. First, no participants were

uncomfortable with the design during the instruction phase or during the experiment. Second,

the ambiguity attitudes in the valuation task are consistent with the large body of empirical

finding showing ambiguity-seeking for unlikely events and ambiguity-aversion for likely events.

Table 8: The effect of the range of the probability interval of winning on the $-bet’s selling price

Pair E(p) EV N Probability Interval WTAA WTAR T-test

41 [0,60] 6.56 5.77 t = 2.245, p < 0.05
II 30% 4.8 41 [10,50] 6.06 5.77 t = 0.702, ns

41 [20,40] 5.89 5.77 t = 0.313, ns

40 [0,80] 2.86 2.39 t = 1.992, p < 0.1
IV 40% 2.4 40 [20,60] 2.43 2.39 t = 0.227, ns

40 [35,45] 2.36 2.39 t = −0.164, ns

In addition, we varied the range of two bets and noted that reservation prices decrease with
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the range of the interval (see Table 8). This result is consistent with previous findings (e.g.

Becker and Brownson, 1964, and Curley and Yates, 1985) and shows that subjects did not have

problems in understanding the experimental procedure.

Table 8 also confirms our hypothesis that small ranges do not do a good job in capturing

attitudes toward ambiguity. This strengthens our case for using maximum range to examine

the effect of ambiguity on preference reversals.

Possible explanations of the higher rate of reversals under ambiguity. Classical

preference reversals under risk are commonly explained by different weightings of attributes in

different response modes. For instance, the “anchoring and adjustment” model proposed by

Slovic and Lichtenstein (1983) is based on this assumption. In this model, a subject who is

asked to choose between two lotteries first “anchors” on the relative probabilities of winning but

then makes insufficient“adjustments” for differences in the amounts to be won. On the contrary,

subjects who are asked to place values on bets first “anchor” on the relative amounts to be won

and then make insufficient “adjustments” for differences in the probabilities of winning. This

model can be extended to ambiguity by examining the possible heuristics that are used in dealing

with ambiguity in each response mode. Such a model would have the advantage of capturing

the psychological components that underlie behavior under ambiguity. Nevertheless, this model

is particular to one type of preference reversals and cannot account for the preference reversals

observed by Trautmann et al. (2009) and Pogrebna (2010), where the options have the same

prize and the same expected probabilities.

Butler and Loomes (2007) provided a model of imprecision to explain classical preference

reversals. Here, subjects are imprecise in reporting their reservation prices. This model is based

on MacCrimmon and Maxwell’s (1986) proposition that the imprecision interval is likely to rise

as a bet becomes more dissimilar to a certainty. Thus, the imprecision interval is greater for

the $-bet than for the P-bet which explains the higher reported prices for the $-bets as com-

pared to the P-bets. Since it has been shown that subjects report their preferences noisily (e.g.

Camerer, 1989, Starmer and Sugden, 1989, Hey and Orme, 1994, Ballinger and Wilcox, 1997,

and Loomes and Sugden, 1998), this model is appealing because it accommodates this stochas-

tic component. It is intuitively plausible to conjecture that ambiguity increases imprecision,

which results in more preference reversals as compared to risk. The generalization of Butler
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and Loomes’s model to ambiguity is however not straightforward. First, our design cannot pro-

vide a measure of the strength of preferences and thus cannot capture the imprecision towards

the $-bets and P-bets under risk and ambiguity. Consequently, we cannot determine whether

Butler and Loomes’s model accounts for the higher rate of reversals under ambiguity. Second,

plotting the ambiguous $-bet and P-bet in the “rectangle” in order to make predictions (see

Butler and Loomes (2007), page 280) is far from obvious. Third, if we assume that ambiguity

increases the imprecision interval, then how can we explain the higher prices of the $-bet and

the lower prices of the P-bet under ambiguity as compared to risk? For all of these reasons, the

superiority of the imprecision model is not obvious, unless demonstrated with appropriate tools

(see Butler and Loomes, 2007) which is not the case for prospect theory.

Therefore, prospect theory under ambiguity is the most plausible explanation for the higher

rates of preference reversals under ambiguity. The advantage of our approach is that it can

account for preference reversals when we allow for a random reference point in the formulation of

prospect theory (Schmidt et al., 2008). We thus corroborate that prospect theory is a tractable

and psychologically realistic model that has the advantage of explaining many anomalies under

risk and ambiguity (Wakker, 2010).

9 Conclusion

This paper provides evidence for classical preference reversals in one of the most important

domains of decision theory: ambiguity. When $-bets and P-bets are both ambiguous, subjects

do indeed reverse their preferences, and these reversals are both substantial and systematic.

Preference reversals are notably stronger under ambiguity than under risk. The greater extent

of preference reversals under ambiguity as compared to risk is not due to an increase the at-

tractiveness of the P-bet in choice under ambiguity, but rather to a greater gap between the

prices of the ambiguous $-bets and their corresponding ambiguous P-bets. Our results are con-

sistent with findings of less sensitivity to uncertainty than to risk (e.g. Tversky and Fox, 1995,

Wu and Gonzalez, 1999, Kilka and Weber, 2001, Wakker, 2004, and Abdellaoui et al., 2005)

and show that less sensitivity to ambiguity is more pronounced in the valuation task than in

the choice task.

In situations involving options similar to those in classical preference reversals, preferences
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under ambiguity are more problematic than those under risk. In particular, preferences elicited

from choices are more inconsistent with preferences elicited from pricing (WTA) under ambiguity

than under risk.
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Experimental design:

Figure 4: Illustration of round 1: valuation of the ambiguous $-bet of pair I

Figure 5: Illustration of round 1: valuation of the ambiguous P-bet of pair I

Figure 6: Illustration of round 2: Choice under ambiguity (pair I)
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Figure 7: Illustration of round 3: valuation of the risky $-bet of pair I

Figure 8: Illustration of the screen in round 3: valuation of the risky P-bet of pair I

Figure 9: Illustration of round 4: Choice under ambiguity (pair I)

Tables:
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Table 9: Percentage of higher selling price under risk and under ambiguity

Higher WTA Ambiguity Risk

P 12.65 24.90
$ 82.04 68.98
Equal 5.31 6.12

Table 10: Prices for $-bets and P-bet under ambiguity

Pair N WTA($) WTA(P ) T-test

I 41 7.59 2.68 t = 8.861,
(0.54) (0.17) p<0.01

II 41 6.56 3.07 t = 7.374,
(0.45) ( 0.2) p < 0.01

III 41 3.79 1.91 t = 6.494,
(0.28) (0.12) p < 0.01

IV 40 2.86 1.96 t = 4.300,
(0.21) (0.11) p < 0.01

V 41 5.64 4.16 t = 4.433,
(0.29) (0.22) p < 0.01

VI 41 11.68 3.97 t = 10.024,
(0 .83) (0.23) p < 0.01

All 245 6.37 2.96 t = 13.915,
(0.27) (0 .09) p < 0.01

(i) Standard errors in parentheses, (ii) N= number of observations.

Table 11: Prices for $-bets and P-bet under risk

Pair N WTA($) WTA(P ) T-test

I 41 6.29 3.35 t = 5.367,
(0.51) (0.17) p < 0.01

II 41 5.77 3.76 t = 4.494
(0.35) (0.20) p < 0.01

III 41 2.90 3.02 t = −0.334
(0.28) (0.14) ns

IV 40 2.39 2.15 t = 1.476
(0.16) (0 .13) ns

V 41 6.04 4.50 t = 5.000
(0.29) (0 .23) p < 0.01

VI 41 9.59 5.17 t = 5.509
(0.77) (0.22) p < 0.01

All 245 5.51 3.66 t = 8.441
(0.23) (0.1) p < 0.01

(i) Standard errors in parentheses, (ii) N= number of observations.
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