EViews Quick Reference

Inspired by the R Reference Card

This ‘Quick Reference’ shows only a small selection of EViews commands and functions, for a more extensive summary see “Quick Help Reference” in the EViews Help menu. The complete manual is available as pdf in the EViews Help menu.

Workfile, Pages, Input & Output

- `cd` change default directory, e.g. `cd "c:\mydata"`
- `wfcreate` Create a new workfile; Cross section: `wfcreate w num_observations` e.g.: `wfcreate(wf=mywf) u 60`
- `time` Time series and panel data: `wfcreate frequency start end [num_cross_sect]` frequencies: a annual, q quarterly, m monthly, ...;
- `wfopen` opens EViews workfile; can also open foreign file formats, use options type = [stata, spss, excel, ...]
- `wfsave` save workfile
- `pageappend` creates new page within existing workfile, e.g.
- `pagecreate` creates page within existing workfile, e.g.
- `pagedelete` deletes page
- `pagesize` changes size of page
- `pageset` sets the page view
- `pagecopy` copies page
- `pagecsv` copies page to CSV
- `pageappend` appends page to document
- `pagecreate` creates new page
- `pagesave` saves workfile

Auxiliary Commands

- `rename` guess what
- `delete` guess what
- `copy` also for frequency conversions or merging data
- `expand` may be added in estimation to indicate the use of one or more automatically created dummy variables

Objects

For extensive help on objects see EViews Help → Quick Help Reference → Object Reference

- `series` Series of numeric observations; Accessing individual values: ser(i) i-th element of the series ser from the beginning of the workfile.
- `@elem` function to access the j-th observation of the series ser, where j identifies the date or observation.
- `Example: series x2 = x1 - @mean(x1)`
- Creating dummy variables:
 - `series DI = condition` produces dummy variable which is 1 if condition is fulfilled and else 0, e.g.
 - `series DI = @all if x1 > @mean(y)`
- `@frml` creates numeric series object with a formula for auto-updating.
- `group` create a group object.
- `Example: group mygroup1 ser1 ser2 ...`
- Groups can also be used as regressor list, e.g.
- `ls y c mygroup1`

Equation

Equations are used for single equation estimation, testing, and forecasting.

- `Example: ls, tls (2-stage ls), binary (logit, probit), ordered, arch, censored, gmm ...`

Data Members: Scalar Values

- `@aic` Akaike information criterion;
- `@coefcov(i,j)` covariance of coefficient estimates i and j;
- `@coefs(i,j)` i-th coefficient value;
- `@durbin` Durbin-Watson statistic;
- `@coefdep` mean of the dependent variable;
- `@ncoef` number of estimated coefficients;
- `@r2` R-squared statistic;
- `@regobs` number of observations in regression;
- `@schwarz` Schwarz information criterion;
- `@stderrs` standard deviation of the dependent variable;
- `@rbar2` adjusted R-squared statistic;
- `@regobs` number of observations in regression;
- `@schwarz` Schwarz information criterion;
- `@stderrs` standard deviation of the dependent variable;
- `@rbar2` adjusted R-squared statistic;
- `@ssr` sum of squared residuals;
- `@tstats(i)` i-th standard error for coefficient i;
- `@tstats(i)` t-statistic value for coefficient i;
- `@fstatistic(i)` i-th element of default coefficient vector for equation (if applicable).

Vectors and Matrices

- `@coefcov` covariance matrix for coefficient estimates;
- `@coefs` coefficient vector;
- `@stderrs` vector of standard errors for coefficients;
- `@tstats` vector of t-statistic values for coefficients.

Graphs

- `graph` Specialized object used to hold graphical output.
- Declaration either with `graph` or `freeze`
- `Examples: graph myline.line ser1, or freeze(myline) ser1.line; graph myscatter.line ser1.ser2, or group grp2.scatter.ser1.ser2, freeze(myscatter) grp2.scatter`

Table

- `table` Formatted two-dimensional table for output display. Declaration either with `table` or `freeze`
- `Example: table(2,2) mytable ’ creates 2 x 2 table mytable(1,1) = "First row, first column" mytable(2,1) = "R2 = " mytable(2,2) = eqdri.@r2`

Sample

- `sample` description of a set of observations to be used in operations.

Text

- `text` Object for holding arbitrary text information.

Scalar

- `scalar` a scalar holds a single numeric value. Scalar values may be used in standard EViews expressions in place of numeric values.

Vector

- `vector` declare vector object (one dimensional array of numbers). Example: vector(10) myvector1 ’ creates myvector1 with 10 rows.

Rowvector

- `rowvector` declare rowvector object. Example: `rowvector(10) myvector2 ’ creates myvector2 with 10 columns.`

Coef

- `coef` coefficient vector. Coefficients are used to represent the parameters of equations and systems.
matrix declare matrix object (two-dimensional array). Accessing elements: Simply append “(i, j)” to the matrix name (without a ‘.’)

Examples: matrix(10,3) results;
matrix covmat1=eqf.~coefficient

sym symmetric matrix (symmetric two-dimensional array).

alpha Alpha (alphanumeric) series. An EViews alpha series contains a set of observations on a variable containing string values.

system System of equations for estimation. System Methods: 3sls, 3sbs, arch, fiml, gmm, ls, sur, tsls, wls, wtsls.

var Vector autoregression and error correction object.

model declare model object, a set of simultaneous equations used for forecasting and simulation

logl Likelihood object. Used for performing maximum likelihood estimation of user-specified likelihood functions.

Matrix Commands and Functions

stom series to matrix; converts a group to a matrix: stom(groupname, matrixname)

mtos matrix to series; converts a vector or matrix to a series or group; mtos(matrixname, groupname)

@det Calculates the determinant of a square matrix or sym.

@transpose Transposes matrix object.

@inverse Returns the inverse of a square matrix object or sym.; e.g.: let X be a N × K matrix and y a N × 1 vector, then the coefficient vector b of the OLS regression (for K = 3) can be calculated by: coef(3) b = @inverse(@transpose(X)*X)*@transpose(X)*y

@inner Computes the inner product of two vectors or series, or the inner product of a matrix object; e.g. OLS estimator: coef(3) b = @inner(X)*@transpose(X)*y

Tests

hetest [eq] test for heteroskedasticity, can be a Breusch-Pagan-Godfrey (the default option), Harvey, Glejser, ARCH or White style test;

white [eq] White’s test for heteroskedasticity of residuals;

chow [eq] Chow breakpoint or Chow forecast tests for parameter constancy;

facbreak [eq] factor breakpoint test for stability, using Dummy;

reset [eq] Ramsey’s regression specification error test;

stats [series, group] descriptive statistics table, e.g.: wage.statby(max, min, sex race);

freq [series, alpha] performs a one-way frequency tabulation. The options allow you to control binning (grouping) of observations.

hist computes descriptive statistics and displays a histogram for the series.

boxplot [series, group, vector, . . .] display boxplots for each series or column.

Some Functions

@abs(x) absolute value of x.

@obs(x) the number of non-missing observations for x in the current sample.

@mean(x) average of the values in x.

@median(x) median of the values in x.

@quantile(x, q) the q-th quantile of the series x.

@min(x) minimum of the values in x.

@max(x) maximum of the values in x.

@d(x) First difference, equals x − x(-1)

@dlog(x) First difference of the logarithm

@exp(x) exponential, e^x

@log(x) Natural logarithm

@cor(x, y) the correlation between x and y

@cov(x, y) the covariance between x and y (division by N).

@stdevp(x) square root of the population variance

@stdevs(x) square root of the unbiased sample variance.

Note this is the same calculation as @stdev

@sum(x) the sum of x.

@trend trend variable.

@iff(s, x, y) returns x if condition s is true; otherwise returns y. Note this is the same as @recode.

Statistical Distribution Functions: There are four functions associated with each distribution. The first character of each function name identifies the type of function:

Function Type: Beginning of Name:
Cumulative distribution (CDF) @c
Density or probability @d
Quantile (inverse CDF) @q
Random number generator @r

Descriptive Statistics

stats [series, group, vector, . . .] Computes and displays a table of means, medians, maximum and minimum values, standard deviations, and other descriptive statistics of one or more series or a group of series.
The remainder of the function name identifies the distribution, e.g. chisq, fdist, tdist, norm, unif, ...

Examples:
@runif(1,10) ... random number from uniform distribution between 1 and 10; @cfdist(x,v1,v1) ... cumulated F-distribution for x with v1 nominator degrees of freedom and v2 denominator df; @dchisq(x,v) ... density for \(\chi^2 \) distribution for x with v df.

Programming: Commands & Control Structures

' (single apostrophe) comment character, instructs EViews to ignore all text following the apostrophe until the end of the line;

_ (underscore), continuation character, allows – used as last (!) character of a line – to continue a command on the next line;

! starting character of control variable (numeric!), e.g. !pi = 3.14
% starting character of string variable (enclosed in double quotes), e.g. %name = "Herbert Stocker"
%0 – %9 program arguments, special string variables that are passed to a program when the program is run.
{} for replacement variables; e.g. from %x = "GDP" and equation eq1.ls {%x} c [%x](-1) EViews produces equation eq1.ls GDP.ls c GDP(-1).

if statement in a program The if statement marks the beginning of a condition and commands to be executed if the statement is true. The statement must be terminated with the beginning of an ELSE clause, or an ENDF.

if [condition] then
[commands to be executed if condition is true]
else
[commands to be executed if condition is false]
endif

for loop in a program The FOR loop allows you to repeat a set of commands for different values of a control or string variable.

for counter=start to end [step stepsize]
[commands]
next

e.g. for numerical variables:
for !i = 1 to 15
series scalex[!i] = x[!i] / !i
next

For string variables:
for %y gdp gnp ndp nnp
equation {%y}trend.ls %y c {%y}(-1) @trend
next

open opens a program file, or text (ASCII) file.
run executes a program.
exit exit the EViews program.