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New paradigms for avalanche risk mitigation

Snow dgpth distribution Tabulated friction Topography Too ma.ny.sht?rtcuts and
and design value for the limitations:

: parameters
return period T Friction  coefficients — without

.’ .’ ‘ proper calibration;

Physically-based propagation model Improper use of the return
‘ period concept;
No consideration of potential

Design values (extension, pressure, etc.) for the return period T non-stationarity;
No consideration of elements at

Standard approach to asses risk in land use planning (Salm et al., 1990). risk and behavior towards risk.

Required paradigm shifts:

Quasi-deterministic physically-based Probabilistic-physical approaches handling
approaches uncertainty sources consistently

Risk-based approaches that consider elements at

Hazard-based approaches
risk, their vulnerability and behavior towards risk

Stationary assumption Risk assessment accounting for
environmental changes

How?

o Hierarchical Bayesian modelling including as much physics as possible;
o Merging knowledges and disciplines within a common framework based on Risk and decision theory.




Bayesian numerical-probabilistic hazard modelling

Local data: model inference Remaining chaIIenges:

o Integrate the rich and

Propagation diverse data now available

Random input vector model G Random output vector within the calibration:
x = (x.x,) (topography) v, =G(x,)

LIDAR, remote sensing, etc.;
X : unobservable variable Find the best compromise
=& snow frction) between precision
(numerical model) and
computation times.

x": observable variable

(8. snow depth) Simulations: joint distribution of the hazard on the studied site

Numerical-probabilistic approach associated with Bayesian inference (Eckert et al., 2007).
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Quantifying uncertainty : Predictive uncertainty on avalanche
: oo runout distances corresponding to return periods of 10 and 100
0005 years ( (Eckert et al., 2008).
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Quantifying variability: Relation between runout distance and return period, and,
for each runout distance, distribution of other variables (Eckert et al., 2010)




From vulnerability to individual risk

Remaining challenge:
Risk measures and mitigation strategies
£ alternatives to the “rough” mean expected loss
that consider stakes and behavior towards risk
e explicitly.
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Evaluation of fragility curves for various types of reinforced space in the runout zone (Favier et al., 2014b).
concrete (RC) buildings (Favier et al., 2014a).




Optimal design of mitigation measures

Remaining challenges:

o Decisional models corresponding to various operational contexts;
o Risk zoning including defense structures as a multivariate optimal design problem.

Avalanche model p(y) :
R.(hy) =C,(h,)+Cy [ p(ylhs )V (y)dy

Buildi
(VuIn(laJ:atl)ri]I%y V) RB (hd ) - .[ RC (hd )p(9|data)d6?

Classical (5m) and Bayesian (6m)

optimal dam heights Benefit expected from
the construction of the
optimal dam under the
classical paradigm

Optimal design of an avalanche
dam by total costs minimization

(Eckert et al., 2012) Difference in expected benefit under

== :Classical risk R both paradigms: value of information

| | == Bayesian risk RB




Accounting for non-stationarity in design values

Remaining challenges:
North/low alt. informative prior, M1

—  vague prior, M2

o Better quantifying evolutions with changing nformatrve pror with attude. M1A
climate/environmental conditions; ki o

o Methodological developments to adapt the risk
framework to non-stationarity.
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Avalanche occurrence number per path in the French Alps as
function of altitude (Lavigne et al. 2015).
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Runout altitude corresponding to a return period of 10 years in
the French Alps (Eckert et al. 2013).




