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BACKGROUND NUMERIC MODEL SETUP
This research investigates the behavior of thrust sheets using an example from the Buckle fold geometries above a hanging wall flat do not fit the common geomet-
western Northern Calcareous Alps (NCA) fold- and -thrust belt. The structures above  ric models for fold and thrust belts. In a numeric simulation, folding of the NCA is
the major thrust (Karwendel thrust Fig.1) in the Karwendel mountains gave the initial tested under varying boundary conditions to understand field observations.
motive. The Karwendel thrust runs for kilometres along a flat décollement horizon
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— For the NCA it is known that as a consequence of initial stacking at the end of the
Early Cretaceous, the thrust sheets were uplifted and eroded down to the Ladinian
platform carbonates (Krois & Stingl, 1994; Ortner, 2003), removing roughly half of
the sediment column. Syntectonic sediments on top of the thrust sheets trans-
gress in the Late Cretaceous and record folding into the Paleogene, and 20% of
the folding postdates preserved syntectonic deposits, as documented in the Mut-
tekopf Gosau outcrop (Ortner, 2001, 2016; Ortner et al., 2016).
We expected that the erosion after the initial stacking and the sedimentation of
syntectonic sediments is controlling for the structural evolution of buckle folds in
the study area. Erosion, sedimentation and material parameters were tested

Fig. 1: a.) Study area b) Large scale buckle folds in the Laliders section across the Karwendel during the numeric simulation (Figs. 4 and 5).
mountains.The main thrust is parallel to bedding in both hanging wall and footwall. c.) Medium scale
buckle folds in the hanging wall. Image section approx. 246 m, t.s.=thrust sheet.
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MODELLING EROSION MODELLING SEDIMENTATION

Overburden: 800m; Total thickness: 4400m Overburden: 600m; Total thickness: 4200m Gosau overburden: 200 m Gosau overburden: 400 m

Deviatoric stress distribution after 22% of shortening. Deviatoric stress distribution after 22.4% of shortening. Total thickness: 2400m Total thickness: 2600m

N4=4.79 km N4=4 86 km Deviatoric stress distribution after 16.5% of shortening. Deviatoric stress distribution after 16.33% of shortening.
N4=1.84 km NM4=2.12 km
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Gosau overburden: 600 m Gosau overburden: 800 m
Overburden: 400m; Total thickness: 4000m Overburden: 200m; Total thickness: 3800m Total thickness: 2800m Total thickness: 3000m
Deviatoric stress distribution after 23.7% of shortening. Deviatoric stress distribution after 23.7% of shortening. Deviatoric stress distribution after 17.23% of shortening. Deviatoric stress distribution after 16.5% of shortening.
MN4= 4.88 km N4= 4 .86 km N4=1.78 km N4=2.07 km

Gosau overburden: 1000 m Gosau overburden: 1200 m

Total thickness: 3200m Total thickness: 3400m
Stiff layer: 3000m:; Total thickness: 3600m Stiff layer: 2800m: Total thickness: 3400m _um<|_mﬁozo stress distribution after 15% of shortening. Dm,.\._mﬁozo stress distribution after 15.75% of shortening.
Deviatoric stress distribution after 23.7% of shortening. Deviatoric stress distribution after 20.3% of shortening. N4=1.82 km N4=1.78 km
N4= 485 km N4= 2.36km

Gosau overburden: 1400 m Gosau overburden: 1600 m

Total thickness: 3600m Total thickness: 3800m

Deviatoric stress distribution after 16.63% of shortening. Deviatoric stress distribution after 17.4% of shortening.
Stiff layer: 2600m: Total thickness: 3200m Stiff layer: 2400m; Total thickness: 3000m N4=1.78 km N4=1.73 km

Deviatoric stress distribution after 19.6% of shortening. Deviatoric stress distribution after 18% of shortening.
M4= 2.39 km M4= 2.34 km

Gosau overburden: 1800 m high relative deviatoric stress

Total thickness: 4000m

Stiff layer: 2200m: Total thickness: 2800m Stiff layer: 2000m: Total thickness: 2600m Lz gl et chaiih fio) 2ifiel e % sl Gemisi
Deviatoric stress distribution after 15.3% of shortening. Deviatoric stress distribution after 20.7% of shortening. N4=1.73 km
M4= 3.24 km N4= 4,04 km

low relative deviatoric stress

Fig. 5: Results from modelling with changing overburden. The model is linear

Stiff layer: 1800m; Total thickness: 2400m Stiff layer: 1600m; Total thickness: 2200m . . ) : : _ : :
Deviatoric stress distribution after 19,3% of shortening. Deviatoric stress distribution after 16.8% of shortening. elasticity. Coloration represents the relative deviatoric stress distribution. The competent inter-

M4= 3.39 km M4= 1.8 km mediate unit and the basal incompetent unit have constant thickness in the models, while the

s top incompetent unit ("Gosau overburden”) increases in thickness in the model runs to test the

iInfluence of the thickness of syntectonic sediments in the model. Material characteristics: Layer
1 (bottom): E-Module 2 000 000 kN/m2, Poisson ratio 0.25; Layer 2 (middle): E-Module 80 000

Fig. 4. Results of the erosion modelling. The material model is linear elasticity. Coloration repre- 000 kN/m?2, Poisson ratio 0.2; Layer 3 (top) : E-Module 10 000 000 kN/m?2; Poisson ratio 0.25.
sents the relative deviatoric stress distribution. The base layer is constant while the incompetent

layer on top and the middle stiff layer is eroded. Following material characteristics were assumed: The m llina show hat the thickn f th Tidl r and th mpe-
Layer 1 (bottom): E-Module 2 000 000 kN/m?, Poisson ratio 0.25; Layer 2 (middle): E-Module 80 e modelling showed that the thickness of the stiff layer and the compe

000 000 kN/m2, Poisson ratio 0.2 :Layer 3 (top) : E-Module 10 000 000 kN/m?; Poisson ratio 0.25. tence contrast between the layers is a control on the development of buckle
folds. Additionelly, a very weak décollement horizon is nescessary to allow
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