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1 INTRODUCTION

» Carbon storage in Alpine and Pre-Alpine grassland soils is regulated by combination of

biotic and abiotic processes. An improved knowledge of the relationship between these
stabilization mechanisms is decisive to recommend best management practices for

climate change mitigation.

» Understanding organic carbon dynamics in alpine and pre-alpine grassland soils as

regulated by aggregation.

2 MATERIAL AND METHODS

» Grassland soils of the northern limestone Alps in Bavaria along an elevation gradient (595 to

1267 m a.s.l., Fig 1) Ah horizons, 0-15 cm, sampling 2016.

» Comparative analysis OC, and total N of Bulk soil (Table 1), distribution of aggregates and
associated organic carbon (OC) in aggregate size classes (Fig 2 and 3): large
macroaggregates (> 2000 pm, LM) - small macroaggregates (250-2000 pm, SM) -
microaggregates (63-250 um, m) - silt plus clay (<63 um, s+c).

» Analysis of the different ecological niche groups of earthworms and determined their

biomass (Fig 4).

3 RESULTS

» Higher OC and total N of Bulk soil in the higher elevation (Table 1).

» Higher % of LM and associated OC in the higher elevation sites (Fig. 2 and 3).

» Fendt displayed the high abundance and biomass of earthworms follow to Graswang and
Esterberg (high standard deviations, not allowed us to stablish significant differences between

treatments) (Figure 4).

» The largest predominant ecological niche group according to the total biomass of earthworms was
Juvenil Lumbriscus spec.+ endogenous spec. for all elevation sites (Figure 5). Adult endogeic
group represent similar percent in all elevation sites (34-35%), however, in Esterberg we observed

that the percent of Adult anecic (3.4%) was lower than Graswang (19.7%) and Fendt (17.3%).

» PCA showed that variables which regulated the aggregate formation in Alpine and pre-alpine sites

were associated in two main groups: (i) Biotic factors: promoved LM formation and (ii) Abiotic

factors: promoved SM, m, ans s+c formation.
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Esterberg (1267 m) Graswangq (864 m) Fendt (595 m)

Cambisol Fluvisol

Phaeozem

MAP (mm) = 1797,
MAT(°C) = 3.0
pH=6.1,

BD (gcm3)=0.4

MAP (mm) = 1036,
MAT(°C) = 6.7,
pH = 6.8,

BD(g cm=3)=0.5

Parent material: Ca-content silt

MAP (mm) = 975,
MAT(°C) = 8.3
pH =15.2,

BD (g cm=3)=0.8

Parent material: main Parent material: Loamy,

dolomite

and gravel

clayey sediment

OC ( 1) el ‘ CIEEHIEE ‘ Esterberg Table 1. OC, total N and C:N
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0-5cm 6.6058B 124+18B 189x2.7A Graswang (864 m a.s.l), and
5-15 cm 42 +04B 10,0 +1.3AB 13.8+29A Esterberg (1267 m a.s.l).
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