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Context

During winters, trees have to cope with harsh conditions. Water 1n planta can change between physical states, generating
mechanical and hydraulic strains. Alpine plants are an impressive example of plants exposed to these phase shifts on a frequent
basis, especially 1n late winter to early spring, when freeze-thaw cycles can occur daily.

We aimed at 1dentifying the disturbances generated 1n the hydraulic system by monitoring ice formation and propagation as well
as xylem sap cavitation, water shifts and cellular damages.
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Figure 1. Picea abies trees growing in the \ R .
Tyrolian timberline (1600m a.s.l.) Figure 2. Sensor positions Figure 3. Infra-red thermography >

Re Sult S |gur5
Three distinct freezing patterns were observed: (I) from the top of the tree toward the base, (II) from thin branches toward
the main stem's top and base, and (III) from the base toward the top. Infrared imaging showed freezing within branches from
their base toward distal parts (Fig. 6). Such complex freezing causes dynamic and heterogenous patterns in water potential
and probably 1n cavitation (Fig. 7).
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Figure 6. Spatial temperature patterns at the time of freezing Figure 7. Diurnal sequences of environmental conditions (air and xylem temperature, vapor pressure deficit;
(after sunset; 17:55 to 18:05) monitored via infrared imaging. A), stem diameter changes, and ultrasonic activity (B) during six days with five freeze-thaw cycles. Stem
Letters (B, T1-T4) indicate sensor positions, arrows indicate diameter is given as differential with respect to initial diameter (i.e. Day 1, 12:00) to highlight dynamic
additional positions with very pronounced changes (i.e. xylem changes. Vertical dashed lines indicate the onset of the freezing exotherms as observed by thermocouples.
exotherms).
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Conclusion & Perspectlves N 3 e
The combined use of several. sensing technologies ena‘bl Cto
demonstrate not only contrastlng ice: propagatlon patterns bubf als
the link between ice formation, diameter changes due to watet shifts
and. ultrasonic act1V1ty due to cavitation (Flg 8). These processes are
highly relevant for plant hydraulics and freezing stress, and thelr_"

understanding is a prerequisite. for studres on ‘winter stress not cnly 1n-
f trmberhne species but alsc for ternperate trees in general. 3
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