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1 Introduction 

Selten’s subgame perfection (Selten 1965, 1975) has been a strikingly powerful refinement of 

the Nash equilibrium concept in the theory of extensive form games. However, to illustrate 

that not every intuitively unreasonable equilibrium point is excluded by the definition of 

subgame perfection, Selten (1975) proposed a numerical example which was later on referred 

to as Selten’s Horse (Binmore 1987). Selten’s Horse is a three-player game with no proper 

subgames. Every player has exactly one information set. Selten suggested the (trembling-hand) 

perfect equilibrium refinement (Selten 1973) along with a perturbation of the game to select a 

unique equilibrium point. The perturbation of the game builds on the idea that each player 

makes mistakes with a small probability. The limiting equilibrium point on the perturbed 

game is a perfect equilibrium point. The perfect equilibrium concept, in general, and the 

perfect equilibrium point of the perturbed game, in particular, serve as a selection mechanisms 

for situations with a multiplicity of equilibrium points. However, their empirical relevance has 

yet to be shown.   

In our study, we have conducted experiments of the Game of Selten’s Horse to check 

in how far empirical evidence can support the trembling-hand perfect equilibrium. To our 

great surprise we observe very little support for the play of the trembling-hand perfect 

equilibrium strategies. Application of learning direction theory (Selten and Stoecker 1986, 

Selten and Buchta 1999) seems to capture much better the observed pattern of play when 

compared to the perfect equilibrium prediction. Curiously, the attraction point of learning 

direction dynamics, the impulse balance (Selten 2004), which we determine by examination 

of the impulse response dynamics, is again contained in the set of perfect equilibrium points. 

The simulations of impulse response dynamics seem to closely reproduce the observed 

trajectories for most groups in our first experiment, closer than the reinforcement learning 

trajectories do. Thus, we tentatively conclude that the perfect equilibrium dynamics are at 

work, but that full convergence to the set of perfect equilibrium points may take more 

repetitions. In a second experiment, we extend the number of repetitions to more than 200 

periods, but do not find convergence to the perfect equilibrium, as we had expected. Instead, 

we find that behavior seems to settle at a non-equilibrium distribution of strategies that shows 

a low level of strategic sophistication in the level-k model, but is supported by high levels of 

total payoffs leaning towards an overall efficient play. When subjects are partners in the 

repeated game, particularly, high levels of payoffs are prevalent. 

The remainder of the paper is structured as follows. Section 2 introduces the Game of 

Selten’s Horse and offers a discussion of the trembling-hand perfect equilibrium. Section 3 
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describes our experimental design, and section 4 reports the static test of the perfect 

equilibrium points. Section 5 discusses learning direction theory, impulse balance, impulse 

response as well as reinforcement learning trajectories, and compares the simulated 

trajectories to the data. Section 6 offers insights on alternative models and explanations, 

especially the quantal response (McKelvey and Palfrey 1995) and the level-k (Crawford 2013) 

models. Section 7 provides a robustness check of the results in long-term settings, before 

section 8 concludes the paper. 

 

 

2 Theoretical considerations 

Selten’s Horse is depicted in Figure 1. It is a three-player game with perfect recall, where 

every player has one information set. No proper subgames exist. Each player has two choices 

L  and R . A strategy profile represents the actions of the players; e.g., ( R , L , R ) indicates 

that players 1 and 3 play R  and player 2 plays L. Each pure strategy profile leads to a payoff 

triple; e.g., ( R , L , R ) leads to the payoff triple [4, 4, 0] where players 1 and 2 receive each a 

payoff of 4 and player 3 receives zero.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Selten’s Horse 

 

 

Since each player has only two pure strategies, a behavior strategy of player i  can be 
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symbol ip  will be used for this probability. A combination of behavior strategies is 

represented by the strategy profile ),,( 321 ppp .  

The best response functions in the Game of Selten’s Horse are thus described as 

follows:   
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There are two types of equilibrium points. 

Trembling-hand perfect equilibrium points: 
4

1
0,1,1 321  ppp  (1) 

Imperfect equilibrium points:    1,1
3

1
,0 321  ppp  (2) 

 

Selten (1975) proposed the trembling-hand perfect equilibrium refinement concept. 

The concept eliminates all imperfect equilibrium points in the Game of Selten’s Horse by 

using a perturbed version of the game that selects a unique trembling-hand equilibrium point 

as its limit point. Let us first review the discussion of Selten (1975) of the imperfect 

equilibrium type, followed by the discussion of the trembling-hand perfect equilibrium points.  

Imperfect equilibrium points are considered as unreasonable because of player 2’s 

choices. If players 1 and 3 play their imperfect equilibrium strategies, player 2’s expected 

payoff does not depend on his strategy. Since player 2’s information set is not reached, any 

strategy – including any in the imperfect equilibrium strategy set – is a best response. In order 

to support the imperfect equilibrium strategies of the others, player 2 is required to choose a 

strategy from the set of imperfect equilibrium strategies, i.e. choose R with a probability 

greater than one third. To see why it is unreasonable to expect that player 2 chooses to play R  

if his information set (node 3x  in Figure 1) is reached, assume the following: The players 

believe a specific imperfect equilibrium point, e.g. )1,1,0( , is the rational way to play Selten’s 
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Horse. When 3x  is reached this belief has been shown to be wrong. Player 2 has to take for 

granted that player 1 has chosen R . If he believes that player 3 will choose R  according to 

the equilibrium point, then his best response is L  where he will receive a payoff of 4  instead 

of R  with a payoff of 1. The same reasoning also applies to the other mixed strategy 

imperfect equilibrium points.   

This is different in the trembling-hand perfect equilibrium points, where the 

information set of player 3 should not be reached. Even if players 1 and 2 make mistakes so 

that player 3’s information set is reached, the trembling-hand perfect equilibrium strategies 

still maximize player 3’s expected payoff.  

Selten (1975) formalizes the notion of players making small mistakes in his concept of 

the perturbed game. In the perturbed game, players play with “trembling hands,” i.e. make 

mistakes with some very small probability 0 . Constructing a test sequence of k perturbed 

games with  kandk 0 , the trembling-hand perfect equilibrium is defined as the limit 

of the test sequence. Selten (1975) shows that in the Game of Selten’s Horse, all trembling-

hand perfect equilibrium points are perfect equilibria, i.e. limit points of test sequences of the 

perturbed game.1 

 

3 Experimental design 

To test the prediction of trembling-hand perfect equilibrium theory, we conducted six 

computerized (Fischbacher 2007) experimental sessions with Selten's Horse at the MaxLab of 

the University of Magdeburg in 2010. Each session involved 27 subjects, split in 3 

independent groups of 9.  A group of 9 consisted of 3 subjects of each player type. Subjects 

maintained their player type throughout the session. Groups of 9 subjects interacted over 50 

periods of random matching. Per period, 3 subgroups were randomly matched in each group. 

Subjects were not told the group size, but they were informed that the likelihood of being 

matched with the same two subjects in consecutive periods was small. 

Each period contained 100 random plays of the Game of Selten’s Horse in each sub-

group. In every period, each subject of player type i chose the relative frequency if of playing 

R in the 100 plays, knowing that with the remaining frequency, )1( if , L would be played. 

This choice represents our experimental implementation of the behavior strategies ip  in the 

Game of Selten’s Horse. A series of actions of R and L in the 100 plays was randomly drawn 

                                                
1 For further details and proofs see Selten (1975). 
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(without replacement) for each player i according to if . The 100 play outcomes were 

determined by combining the action series of the three players in the subgroup.  

There are two standard implementations of mixed-strategy payoffs in game theory 

experiments, which we apply as treatment variations. The players either receive the average 

payoff of all plays or the payoff of one randomly selected play.2 We vary the payment 

modalities in our treatments, accordingly. In our Average Pay Treatment, the payment in a 

period is equal to the average payoff over the 100 plays. In the Random Pay Treatment, the 

period payment is equal to the outcome realized in one of the 100 plays in a period. Since 

each play counts equally under Average Pay, whereas only one play counts under Random 

Pay the latter involves a much higher payoff variance than the former. 

Subjects were provided with the same feedback in both treatments. The outcomes in 

the 100 plays of a period were presented on the screen in a histogram that showed the 

observed frequencies of each possible outcome of the game 51,..., zz  in the 100 plays. The 

subjects also learned in both treatments the outcome of one particular play. Subjects 

additionally received a record of past period earnings and total earnings. 

 

4 General observations 

The experiment involves 18 independent observations, 9 in Average Pay and 9 in Random 

Pay. Subjects interacted in 3×3 groups in 50 consecutive periods of 100 plays each. In total, 

162 subjects participated in the experiment submitting a total of 3×2,700 behavior strategies. 

By participating in the experiment, a subject achieved an average payoff of € 16.10. Subjects 

received no show-up fee. Experimental sessions were completed within an hour, including the 

reading of the instructions.  

 

Observation 1: The data show no significant treatment effect. 

 

Figure 2 plots the behavior strategies submitted by players 1 to 3 over the course of the 

experiment. As one can easily see from the chart, the differences between the treatments are 

small and the average behavior strategies are quite stable over time in both treatments. We 

find no significant differences in decisions or outcomes between treatments (Mann-Whitney 

U-Test, α = 0.1, two-tailed). 

                                                
2 Friedman and Oprea 2012 use similar payoff protocols studying mixed strategies in a prisoner’s dilemma game. 
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The following behavior strategies represent the average choice per treatment; 

719.,242.,425. 321  AvgPAvgPAvgP fff  in the Average Pay treatment and 

637.,410.,534. 321  RanPRanPRanP fff  in the Random Pay treatment.  

Figure 3 shows the observed outcome distributions of the two treatments, 

corresponding to the notation {z1, z2, …, z5} in Figure 1. We find small, but insignificant 

differences between outcome frequencies across treatments. Even the largest treatment 

differences – as seen for the outcomes z2 (0, ·, 1) and z5 (1, 1, ·) – are not significant.  

The observed average outcomes in Figure 3 correspond to observed average earnings 

of 2.26, 1.71, and 1.10 per period in Average Pay and of 1.88, 1.82, and .91 in Random Pay 

for players of type 1, 2 and 3, respectively. Comparing these results to the trembling-hand 

perfect equilibrium points, we find that the average earnings of player 3 are close to the 

equilibrium prediction. Players 1 and 2, however, earn in excess of this equilibrium prediction.  

All three players earn substantially less than in the imperfect equilibrium. Hence, even though 

the game structure provides incentives to select the trembling-hand perfect equilibrium, out of 

equilibrium play empirically seem to entail very few negative payoff effects. 

 

 

 

 

 

 

 

 

 

 

Figure 2 Average behavior strategies chosen by players 1 to 3 (left to right).  

Solid line: Average Pay. Dashed line: Random Pay. Top: 10-period averages. Bottom: single-period average. 

 

 

Table 1 records the cumulative probabilities of playing R for each player type,3 and 

thus provides an overview of the observed individual strategies. The numbers show that the 

                                                
3 Overall periods, rounds, and players, the relative frequency of pure strategies was 46%, with 23% 0ip  and 

23% 1ip . The remaining 54% were mixed strategies. 
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most frequent choices were pure strategies. Player 1 type subjects chose imperfect equilibrium 

strategy 01 p and the perfect equilibrium 11 p  about equally frequently (about 20% each); 

player 2 type subjects most frequent choice was non-equilibrium strategy 02 p  (38% of 

time); and player 3 type subjects chose to play the imperfect equilibrium strategy 13 p  more 

frequently (about 30% of time) than any other strategy. Table 1 also indicates small 

differences in behavior between treatments. For instance, player 1 type subjects chose the 

pure strategy 11 p  more frequently in Random Pay than in Average Pay, implying the 

difference in average outcomes z2 and z5 that can be seen in Figure 3.4 Generally, we find no 

great differences in behavior between treatments which is overall good news for game theory. 

It suggests that both implementations, Average Pay and Random Pay, lead to similar results 

when using mixed strategies in the laboratory. From the recorded numbers in Table 1 the 

following observations are straightforward. 

 

Observation 2: The trembling-hand perfect equilibrium strategy of player 3, 
4

1
3 p , and the 

pure trembling-hand perfect equilibrium strategy of player 2, 12 p , are observed 

infrequently. 
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Figure 3 Average outcomes of play 

                                                
4 Player 3 subjects play more frequently left in Random Pay than in Average Pay, probably because they fear to 
regret their decision p3 > 0, if z4 is randomly chosen as final outcome. Similarly, player 2 and player 1 receive 
nothing if z1 or z3 is chosen as final outcome in Random Pay. The obvious response to a decrease in p3 is thus an 
increase in p1 and p2.  
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Table 1 (see also Figure A1.1 in the appendix) shows that trembling-hand perfect 

equilibrium strategy is rarely played by player 3: less than 13% under Average Pay and less 

than 15% in the Random Pay treatment. The highest frequency of trembling-hand perfect 

equilibrium play by player type 3 is 24% in one independent group and the minimum is 1% in 

another. These observed frequencies are even below the frequencies expected by chance 

(26%). Hence, the reported averages indicate no support for the trembling-hand perfect 

equilibrium strategy of player 3. 

According to the trembling-hand perfect equilibrium strategy, player 2 is expected to 

play R for sure, i.e., 12 p . In contrast to this prediction, we only observe a corresponding 

action of player 2 in 11% of the choices. Hence, player 2 plays 12 p  substantially less often 

than expected in the trembling-hand perfect equilibrium (100%), but substantially more often 

than suggested by a random choice from the entire action set, which sets 12 p   as only one 

of the 101 possible levels {0.00, 0.01, 0.02, …, 0.99,1.00}. 

 

Table 1. Cumulative distribution of subjects’ behavior strategy 

    p=0 [0,.25] [0,.33] [0,.50] [0,.75] [0,.99] [0,1] 

         
player 1 AvgPay 0.271 0.384 0.449 0.607 0.790 0.868 1 
 RandomPay 0.247 0.312 0.330 0.470 0.629 0.801 1 
 Overall 0.259 0.348** 0.389 0.539 0.710 0.834 1* 

         
player 2 AvgPay 0.443 0.671 0.719 0.836 0.878 0.936 1 
 RandomPay 0.347 0.497 0.530 0.636 0.690 0.809 1 
 Overall 0.395** 0.584** 0.624 0.736 0.784 0.873 1 
         
player 3 AvgPay 0.061 0.128 0.147 0.270 0.443 0.616 1 
 RandomPay 0.063 0.169 0.207 0.353 0.564 0.806 1 
 Overall 0.062*** 0.149 0.177 0.312 0.503 0.711 1 

                  
bold numbers indicate the most frequent choice of each player type;  

*, **, *** (Wilcoxon rank sum test result): non-cumulative relative frequency is significantly 
different between RandomPay and AvgPay at 10%, 5% and 1% level 

 

 

Observation 3: Player 3’s imperfect equilibrium strategy 13 p  is more frequently observed 

than the perfect equilibrium strategy
4

1
3 p .  
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Player 3 submitted 13 p  in 38% on average of decisions under Average Pay and 

23% under Random Pay, overall 30% of all decisions. This behavior is in line with the 

imperfect equilibrium points. The difference to the frequency of observed trembling-hand 

perfect equilibrium choices, 
4

1
3 p , which are observed in 13% and 19%, overall 16%, of 

player 3 decisions, is significant at the 10% level.5 Hence, we state the following. 

 

Observation 4: The trembling-hand perfect equilibrium strategy profiles are less frequently 

observed in our data than the imperfect equilibrium strategy profiles.6  

 

A related result is that the relative frequencies of outcomes 2z  and 5z  are also 

significantly different from one another (see figure 3); the p-value of the two-tailed Wilcoxon 

signed ranks test is .010. The imperfect equilibrium outcome is significantly more frequent in 

the data than the perfect equilibrium outcome. 

In line with Selten’s (1975) discussion of implausible behavior, we observe that player 

2 chooses the imperfect equilibrium strategy, i.e. 124
1  p , in the minority of the cases. 

Instead, player 2 chooses 02 p  most of the time, particularly when the other two players 

play according to the imperfect equilibrium strategy. We observe this particular type of 

strategy profile (0,0,1) in about one quarter of the data. For reasons of completeness we also 

note that in 5% of the cases players 1 and 2 play in line with their trembling-hand perfect 

equilibrium strategy, but player 3 deviates by choosing 13 p  instead of 
4

1
3 p . 

 

5 Best response dynamics 

A closer look at the data suggests that subjects adjust their strategies in a best response 

manner. When player 1 increases his probability of playing R , player 3 frequently decreases 

the probability of choosing R  and vice versa. When player 3 increases his probability of 

playing R , player 2 frequently decreases his probability of choosing R  and vice versa. In the 

following we investigate the best-response dynamics more closely.  

                                                
5 The p-value of the two-tailed, one-sample Wilcoxon signed ranks test on the 18 independent observations is 
0.089. 
6 Furthermore, according to the imperfect equilibrium strategy of player 2, the probability of playing R should be 
at least one third. In contrast, the data show that 61% of player 2’s choices involved smaller probabilities than 
predicted in any of the imperfect equilibrium strategies. Again, by random choice from the entire action set we 
would expect a higher frequency of choices that are in line with the imperfect equilibrium strategy. 
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5.1 Learning direction theory 

We apply learning direction theory (Selten and Stoecker 1986, Selten and Buchta 1999) to the 

data. According to learning direction theory, a player adjusts his behavior in hindsight in the 

direction of the ex-post best response or leaves it unchanged. Selten and Buchta (1999) 

illustrate learning direction theory by their analogy of an (autodidactic) marksman who learns 

how to hit a trunk with an arrow.  

”If he misses the trunk to the right, he will shift the position of the bow to the left and 

if he misses the trunk to the left he will shift the position of the bow to the right. The 

marksman looks at his experience from the last trial and adjusts his behavior” (p. 86, 

Selten & Buchta 1999). 

The ex-post best response function takes the other players’ actions as given, and determines 

the best response to these given actions. We can use the best response function given in 

section 2. In each best response function, we replace the strategy choices of the other players 

by the last period’s observed frequency of choosing R: 
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The feedback information on the distribution of outcomes allows subjects to 

approximately infer the strategies of the others. According to learning direction theory, 

subjects are more likely to adapt their strategy in the direction of their ex-post best response 

than in another direction. This impulse to adapt the strategy rests when the subject has played 

the best response. In this case, direction learning theory predicts no change.  

 

Observation 6: Subjects’ behavior is in line with learning direction theory.  
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We can test learning direction theory on the individual or the group level. On 

individual level, we measure whether subject exhibit more changes in the predicted than in the 

opposite direction. Column 1 in Table 2 reports the number of subjects in each independent 

matching group, who make more changes in the predicted direction. In 15 of 18 independent 

matching groups (83%) the majority of subjects behave in line with learning direction theory. 

The players deviating from learning direction theory are almost equally spread over the player 

types. (See the footnote in Table 2.)  

 

Table 2. Evidence in favor of learning direction theory 

Group 

Number of subjects 
with more changes in 

the predicted than in the 
opposite direction 

Number of subjects whose 
responses are in line rather 
than at odds with learning 

direction theory 

Excess number of 
changes as predicted 

over changes in 
opposite direction 

Excess number of 
responses in line 

rather than violating 
the prediction 

AvgP1 9 9 24 41 
AvgP2 9 9 44 188 
AvgP3 8 9 63 172 
AvgP4 7 8 7 90 
AvgP5 2 3 -105 -84 
AvgP6 8 8 126 140 
AvgP7 8 8 47 105 
AvgP8 7 8 26 118 
AvgP9 5 8 3 171 
RanP1 7 8 83 102 
RanP2 3 5 -26 -2 
RanP3 5 9 5 135 
RanP4 7 9 15 133 
RanP5 8 8 22 120 
RanP6 4 8 24 177 
RanP7 9 9 38 189 
RanP8 7 7 38 58 
RanP9 6 8 49 76 

Total 119a 

(73%) 
141b 

(87%) 
483 

(56%) 
1929 
(68%) 

a 
16, 14, 13 subjects of player type 1, 2, and 3 are at odds with learning direction theory.  

b 
7, 7, 7 subjects of player type 1, 2, and 3 are at odds with learning direction theory.  

 

 

Instead of only counting the cases in which a subject makes a predicted or unpredicted 

change, we can also count the cases in which the subjects repeat their last choice. These cases 

are – strictly speaking – also in line with learning direction theory, which predicts either no 

change or a change in the direction of the best response. Column 2 in Table 2 reports the 

number of subjects in each matching group who exhibit a behavior that is in line with learning 

direction theory in this strict sense. Given these numbers, 17 of 18 independent matching 

groups (94%) have a majority of subjects making choices in line with the learning direction 
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theory. Moreover 15 of 18 independent matching groups (83%) score an 8 or a 9, i.e. have 

almost all nine members in line with learning direction theory. Again, we find no bias in the 

player types deviating from the learning direction theory. 

On the group level, we can test for the excess of the number of changes in the 

predicted over the opposite direction. Alternatively, we also count in the cases without a 

change of the strategy as being in line with learning direction theory and examine the excess 

of the choices in line over those violating the learning direction theory. The columns 3 and 4 

of Table 2 show the two scores for each of the independent matching groups. In total, 16 of 18 

independent matching groups (89%) involve more changes (column 3) or more choices 

(column 4) in line with learning direction theory than in the opposite direction. Only two 

observations involve more changes or choices in the opposite direction than predicted by 

learning direction theory.7 Overall, our data clearly support learning direction theory.8 

 

5.2 Impulse response and impulse balance 

Impulse balance theory describes the long-term attraction point of the dynamics of learning 

direction theory (Selten 2004, Selten, Abbink and Cox 2005, Ockenfels and Selten 2005, 

Neugebauer and Selten 2006). Ex-post rationality results in a positive or negative impulse vis-

à-vis the pure strategy R  in accordance with learning direction theory. If the dynamics come 

to rest, we have an impulse balance point where positive and negative impulses cancel out.9 In 

the Game of Selten’s Horse, impulse balance points can be determined by the rest points of 

the impulse response trajectories, which result from an adaptive simulation procedure closely 

related to Chmura, Goerg and Selten (2012).10  

 Accordingly, the probabilities of playing R  in the Game of Selten’s Horse are updated 

after each round of feedback taking account of the most recently received impulses. A 

                                                
7 The probability of observing 2 or less failures in 18 observations is 0.0013 if both failure and success are 
equally likely. The Wilcoxon signed ranks test is also significant at the 1 percent level. 
8 Comparing the data to studies of less complex games, however, we find lowever agreement with learning 
direction theory. Neugebauer and Selten (2006), for example, report that only 8% of their subjects’ behavioral 
patterns were at odds with learning direction theory. 
9 In most specifications, the impulses based on losses are weighted more strongly than those based on gains (see 
Selten and Chmura 2008, Selten, Chmura and Goerg 2011, Chmura, Goerg, and Selten 2012). Selten, Abbink 
and Cox (2005) argue that differential weighting is in line with loss aversion. In the Game of Selten’s Horse, 
however, differential weighting is not necessary (and not used), because all payoffs are in the domain of gains, 
compared to the maximin outcome of 0. 
10 In a follow-up paper to our study, Goerg, Neugebauer and Sadrieh (2016) apply our approach, the impulse 
response dynamics, to the minimum effort game. Chmura and Güth (2011) investigate impulse matching 
dynamics in the minority game. The difference between impulse response dynamics and impulse matching 
dynamics lies in the updating rule. While the former is deterministic and only considers the impulses resulting 
from one-period hindsight, the latter is stochastic and adds up all previous periods’ impulses to create long-term 
drivers for upwards versus downwards adaptation of behavior.  
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positive impulse affects a movement of player i’s strategy by one step in the direction of R  in 

agreement with the best response dynamics (3). The step length in our case is 01.)( tri . A 

negative impulse affects a corresponding decrease of the simulated behavior strategy itp~  by 

one step. If no impulse is given, e.g. in the impulse balance point, the adjustment process rests. 
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Figure 5 Impulse response trajectory of strategies chosen by players of type 1 (filled square), 
2 (empty diamond), 3 (empty triangle) with initial profile (.5, .5, .5) 
 

 

For given an initial strategy profile (.5, .5, .5), figure 5 exhibits the trajectories of the 

three players towards the impulse balance of the game (1, 1, 0). In fact, the thus encountered 

impulse balance point equals the perfect pure strategy equilibrium in the Game of Selten’s 

Horse. This finding is curious, as the data show not much support of the perfect equilibrium 

and we have just shown that direction learning theory, which governs the dynamics of the 

impulse balance, is supported by the data. 

 We have a closer look at the dynamics within the data by studying the impulse 

response trajectories separately for each single 9-subject group. Our simulation ignores the 

actually received feedback of subjects or the original matchings after period 1, but we start 
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out the simulation at the initially observed strategy profiles and maintain the matching 

procedure within the 9-subject groups. In figures 6.1 (Average Pay) and 6.2 (Random Pay) we 

present the resulting simulation outcomes in a chart for each group jointly with the (smoothed) 

actually observed trajectories over the 50 repetitions. The observed behavior strategies of each 

player type are averaged over ten periods for each session, that is, each dot in the chart 

represents the average over 3×10 decisions of experimental subjects. For many groups the fit 

of the simulated trajectories is impressively close to the observed trajectories. 

 

Observation 7: The impulse response trajectories are closer to the observed trajectories than 

chance. 

 

As a benchmark, we conduct a Monte Carlo simulation with a one step adjustment by 

period, but where innovations are random. We compute the mean squared error on the 

described averages of 10 periods for each Monte Carlo simulation, and also for the impulse 

response simulation in 1,000 simulations. We find that for 14 sessions of 18 sessions the 

average mean squared error of the impulse response trajectory is smaller than the average 

mean squared error of the Monte Carlo simulation (see Table A1 in the appendix). The 

probability that 14 out of 18 or more successes would be drawn by chance is as low as .004. 

So we conclude that the fit of the observations by the impulse response trajectories is 

significantly better than chance. 

Despite the fact that we do not show the long-term dynamics in the charts of figure 6, 

note that all our simulations converge on the impulse balance point. There are important 

differences in the number of required repetitions for the convergence to complete, depending 

on the initial strategy profile of the group. A comparison of figures 5 and 6 suggests that the 

observed trajectories need more time than the simulated trajectories. By the end of most 

sessions, the trajectory of player 3's strategy is still moving to R  and the strategy of player 2 

to L , corresponding to the very first part in Figure 5.  

 

Observation 8: Reinforcement trajectories are closer to the observed trajectories than chance, 

but impulse response trajectories are even closer. 
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Figure 6.1 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Average Pay treatment: average behavior strategies, 
probability of playing R , over 10 periods 
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Figure 6.2 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Random Pay treatment: average behavior strategies, 
probability of playing R , over 10 period
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 In order to present a more competitive benchmark than chance, we also conduct the 

simulation of reinforcement dynamics (Erev and Roth 1998).11 As with the previous two 

simulations we start at the initial choices and matchings of the 9-subjects group. The resulting 

dynamics are reinforced in the following manner; 
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it ppe  is the expected payoff when playing RLj ,  conditionally of the other 

players i  employing their simulated behavior strategy, and R
i1  is the observed first 

behavior strategy of subject i  multiplied by 100. Again, we measure the average squared 

deviation of each subject’s reinforcement trajectory from the observed trajectory over each 

10-period interval and sum the deviations over the nine players and 5 time intervals. The 

simulation is conducted for each of the 18 independent sessions, and repeated 1,000 times. 

Comparing the average mean-squared error of the random trajectories with the error of the 

reinforcement trajectories, we find that in 13 of 18 sessions the latter is smaller than the 

former. The probability that 13 out of 18 or more successes would be drawn by chance is as 

low as .015. Thus, reinforcement learning also predicts the outcomes of the choices better 

than chance. However, compared to the impulse response trajectories the mean squared error 

is significantly larger. The same 14 sessions of 18 sessions that are better predicted with 

impulse response than by chance are also better predicted than with reinforcement dynamics. 

Hence, impulse response predicts the observed dynamics better than reinforcement learning, 

too.  

We note that the reinforcement dynamics do not necessarily converge on an 

equilibrium. As shown above in Figure 5, equilibrium adjustments may be non-monotonic 

with the impulse response model. In contrast, reinforcement trajectories are monotonic in our 

case. Each reinforcement trajectory converges towards the upper or lower boundary of 

                                                
11 Our adaptive approach of impulse response is outcome oriented, and is parameter free. So a comparison of the 
impulse response dynamics with reinforcement dynamics is straight forward. Belief learning models may also 
apply to our data (e.g., Cheung and Friedman 1997, Nyarko and Schotter 2002), or hybrid models as, in 
particular, the experienced weighted attraction model (Camerer 2002, Ho, Camerer and Chong 2007). However, 
for our setting these models require additional assumptions as beliefs are unobservable.  
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behavior strategies. Once a boundary is reached the trajectories settles there. Typically, 

depending on the starting point, the reinforcement trajectories move fast in early periods and 

thereafter need a very long time (many thousands simulation periods) to converge on a rest 

point. Depending on the starting point any strategy profile of extreme behavior strategies can 

institute a final rest point.  

 

 

6 Alternative theories of non-equilibrium behavior 

Our data show non-equilibrium behavior in the Game of Selten’s Horse. In other 

games, quantal response dynamics (McKelvey and Palfrey 1995), the level-k model (Nagel 

1995, Crawford 2013) and Pareto efficiency have been useful to illuminate non-equilibrium 

behavior (e.g., Garcia-Pola et al. 2020). The former two approaches apply best-response 

dynamics, and the latter is a traditional approach that evaluates the efficiency of the outcomes. 

 

6.1. Quantal response equilibrium 

Similarly to trembling hand perfection, the quantal response approach (McKelvey and Palfrey 

1995) allows that players make errors. Particularly, initial choices of inexperienced players 

are assumed to be noisy in the quantal response approach, assigning an equal probability to 

each strategy. Differently, however, trembling-hand perfection selects the equilibrium on the 

basis of robustness against errors, whereas the quantal response trajectory selects the 

equilibrium profile by reducing errors until they vanish.  

The following set of equations shows the logit quantal-response functions for the 

Game of Selten’s Horse of the noise parameter -1;  is assumed to be close to zero for 

inexperienced players and large for experienced subjects. 
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Figure 7. Principal branch of quantal response correspondence 

 

 

With perfect noise,  = 0, the proposed strategy profile is (0.5, 0.5, 0.5) and when 

noise vanishes, as  → ∞, the quantal response correspondence selects the perfect equilibrium 

profile (1, 1, 0). Figure 7 displays the quantal response curves, which are attracted to the 

trembling-hand perfect equilibrium.12 We note the similarity to Figure 5; the quantal response 

curves look like a smooth version of the impulse response trajectories. Before the quantal 

response curves reach the perfect equilibrium set at   18, they describe non-equilibrium 

behavior.  

 The initial choices of subject types 1 and 2 are almost uniformly distributed over the 

interval [0,1] with modal choices 0 and 0.5, and the initial choices of subject type 3 over 

[0.4,1] with modal choices 0.5 and 1. The observed initial cumulative distribution is depicted 

in Figure A1.2 of the appendix.  

 Similar to Capra et al. (1999) and Goeree and Holt (1999), we estimate  = 0.31, 

s.d. = .029, applying the MLE to the overall data. For the first period we have an estimate of 0, 

s.d. = .10. For the first (last) ten periods, our estimates of   are 0.03 (0.445), with s.d. of 

                                                
12 We made use of the Gambit software (McKelvey et al. 2014) to compute the principal curve of the logit 
quantal response correspondence. 
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0.031 (0.028). These estimates indicate a reduction of noise and a movement towards the 

trembling-hand perfect equilibrium over time in our experiment.  

 

6.2 Level-k non-equilibrium model 

The level-k model of cognitive reasoning implies a hierarchy of best-response modes. The 

standard approach of Crawford (2013) assumes that players with no strategic reasoning (i.e., 

level-0 types) make random choices. Level-1 types play best response to level-0 types, level-2 

types play best response to level-1 types, and so forth. Generally, level-k type players play 

best response to level-(k-1) type players. In many games, as for instance the centipede game 

(Garcia-Pola et al. 2020), level-k reasoning converges to common knowledge of rationality as 

k →∞. In the Game of Selten’s Horse, however, level-k responses do not converge as the 

level of reasoning is increased, but start to cycle instead. Table 3 shows the level-k responses 

for the levels k = {0, 1,…, 12}. The first cycle starts at level-2 and ends after five steps at 

level-6. Then, the next cycle begins at level-7 and ends at level-11 again after five steps that 

are identical to those in the first cycle. These cycles are then repeated over and over again 

without any variation or convergence.  

 

 

Table 3. Level-k responses in the Game of Selten’s Horse 

 behavior strategies cycle steps outcomes without k-level-mixtures 

Level k p1 p2 P3  z1 z2 z3 z4 z5 

0 0.5 0.5 0.5 – 0.25 0.25 0.125 0.125 0.25 

1 0.5 0 1 – 0 0.5 0 0.5 0 

2 1 0 1 step 1 0 0 0 1 0 

3 1 0 0 step 2 0 0 1 0 0 

4 0.5 1 0 step 3 0.5 0 0 0 0.5 

5 1 1 1 step 4 0 0 0 0 1 

6 0 0 0.5 step 5 0.5 0.5 0 0 0 

7 1 0 1 step 1 0 0 0 1 0 

8 1 0 0 step 2 0 0 1 0 0 

9 0.5 1 0 step 3 0.5 0 0 0 0.5 

10 1 1 1 step 4 0 0 0 0 1 

11 0 0 0.5 step 5 0.5 0.5 0 0 0 

12 1 0 1 step 1 0 0 0 1 0 

… … … … … … … … … … 
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Due to the cycles and due to the fact that only three different types of responses are 

contained in the level-k responses (i.e., pi = 0, pi = 0.5, or pi = 1), there is no one-to-one 

mapping of observed behavior to the strategic reasoning level of a subject. For example, 

observing the behavior strategy p1 = 1 may correspond to a player 1 who is reasoning on any 

level-k with k = {2, 3, 5, 7, 8, 10, 12,…}. This holds similarly true for any of the other two 

behavior strategies and players.  

 Since the identification of the level of reasoning on an individual level is not possible, 

we employed a population mixture identification strategy for our level-k analysis. Using a 

least-squares method, we identify the mixture of level-0, level-1, level-2, and level-3 players 

that induces a behavior strategy profile (p1, p2, p3) closest to the one we observe in our data. 

Table 4 shows the level-k mixtures we identify overall and for each treatment.13 

 

 

Table 4. Squared error minimizing level-k mixtures 

 Level 0 Level 1 Level 2 Level 3 

Average Pay 0.550 0.450 0.000 0.000 

Random Pay 0.800 0.150 0.050 0.000 

Overall 0.650 0.350 0.000 0.000 

 

 

 All in all, our level-k analysis seems to indicate that the level of reasoning used by 

subjects in the Game of Selten’s Horse is not very high. Substantially more than 50 percent of 

the subjects are identified as playing level-0 and the vast majority of the others reveals only a 

level-1 reasoning. However, as explained in the next subsection, we do not believe that the 

observed behavior strategies are due to low levels of strategic reasoning, but due to the 

specific structure of the game, in which player 1 can successfully drive Pareto efficient 

outcomes by choosing a behavior strategy close to the 50-50 mixture (i.e., p1 = 0.5). This 

form of cooperation probably entails a high level of reasoning, even though it is identified as 

level-0 behavior in the level-k model. 

 

 

 

                                                
13 We searched using the four levels of reasoning from level-0 to level-3, because most studies find that these 
four levels are sufficient to explain the data (see Costa-Gomes and Crawford 2006 and Crawford 2013). This 
seems to be confirmed by the fact that highest level in the level-k mixtures that we identify is level-2. None of 
the identified mixtures contains level-3 types.  
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6.3 Pareto efficiency and first mover advantage 

The Game of Selten’s Horse has a very interesting trait. Similar to social dilemma games, the 

trembling-hand perfect equilibrium deviates from Pareto efficiency. Collective rationality pits 

against the individual risk of trembling in decision making. Pareto efficiency is defined as any 

allocation from which no player can get better off without making another player worse off. 

The necessary condition to reach the Pareto efficient allocations in the Game of Selten’s 

Horse is player 3 chooses R. The imperfect equilibrium outcome z2, the non-equilibrium 

outcome z4 and all mixed outcomes between z2 and z4 are Pareto efficient. Note that in each 

of our experiments more than half of the outcomes are Pareto efficient. The Random Pay 

treatment has a lower frequency of Pareto efficient outcomes than the Average Pay treatment, 

although the effect is not significant; player 3 receives nothing if the final outcome is z4, 

therefore is prone to regret her decision p3 > 0, and to reduce the probability of playing R. 

Player 3 chooses R in a best-response manner when node x1 (following player 1’s 

choice left) is at least as likely as node x2 (following right and left choices of players 1 and 2, 

respectively). If, for instance, player 1 chooses p1 ≤ 0.5, the best response of player 3 is to 

choose p3 = 1. Player 2’s best response is then to choose p2 = 0.  

The way the game is played depends crucially on the strategy of player 1, who thus 

has a first-mover advantage. Given the best responses to player 1, any strategy p1  (0, 0.5) 

has a higher expected payoff than player 1 can achieve in any equilibrium. Despite the fact 

that p1 = 0.5 implies the best responses p2 = 0 and p3 = 1, it is no equilibrium strategy, since 

player 1 does not play a best response to the strategy profile of the other players.14 As shown 

in Table 1, the majority of choices (i.e., 53.9%) involves the interval p1 ≤ 0.5, and the 

average choice p1 = 0.480 is also contained in that interval. At the same time, the modal 

choices of player types 2 and 3 confirm the indicated pure best response strategies to this 

play.15 

 

 

 

 

                                                
14 It is an attractive strategy because it is sustainable, whereas the outcome (4,4,0), in which player 1 plays the 
best response to the described strategy profile of the other players, is unsustainable. Assuming rationality of all 
players, it should be a focal (non-equilibrium) play.  
15 Particularly, player type 2 deviates from her equilibrium play. In any equilibrium she should play R with a 
probability of at least 0.25. The data suggest that the majority of type 2 players violate that prediction. The 
triggering point of such behavior is that type 3 players choose right with a probability of above 0.25, thus making 
it type 2 players best response to choose L over R. 
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7 Robustness test: Long-run behavior 

The impulse response adjustment dynamics presented in section 5 and also the quantal 

response dynamics in section 6.1 can entertain speculations about the long-run behavior in 

experiments in view of trembling-hand perfection. The view-point of level-k or Pareto 

efficiency, on the other hand, would suggest a continuation of non-equilibrium behavior or a 

move towards the imperfect equilibrium set.   

This question needs to be addressed; will subjects’ behavior be attracted to the perfect 

equilibrium in the long-run game? We analyze the question in this section. To check 

convergence on any equilibrium, we conducted longer sessions than in the first study. A two-

hour long session would allow for up to 250 periods of interaction. Like in the first 

experiment, subjects were students of the University of Magdeburg, and every student 

participated in one cohort. Depending on their pace, some cohorts were interacting faster and 

others were interacting slower. Since we stopped the experiment at the sooner, after 2 hours or 

after 250 periods, the sessions ended after a different number of periods. 

To give the theory an excellent chance to succeed in the experiment, we considered 

both a strangers’ setting and a partners’ setting. In section 7.1, we report on the former one, 

and we report on the latter one in section 7.2.  

 

7.1 Experiment 2: long-run strangers’ experiment 

The experimental design was almost identical to the first study, only that the subjects were 

invited for a two-hour session, and the numbers of periods varied between 118 and 235 

depending of the pace of cohorts instead of 50 periods for everyone. Just as in the first 

experiment, we had 9 cohorts of nine subjects of each, the Random Pay treatment and the 

Average Pay treatment. Figure A2.1 and Table A2.1 in the Appendix preview the outcomes.  

The relative frequencies of the outcomes of the long-run strangers’ experiment are 

surprisingly similar to the ones reported for the first experiment with only 50 periods. 

Comparing the overall relative frequencies for the experiments, we see almost no treatment 

effect of the long-run average behavior regarding the use of strategy (as in Table A2.1) or 

outcomes; the p-values of the Mann-Whitney test comparing the first experiment with the 

long-run strangers’ experiment almost always exceed the 10-percent level, but once.16  

                                                
16 Only the first-type choice of playing right is (weakly) significantly different between the treatments; the p-
value of the Mann-Whitney test is 0.0935 when we compare the relative frequency of playing right with 
probability 1 across treatments. If this effect suggests anything, then that over time the pure right choice is less 
frequently observed in the long-run, contrary to what the perfect equilibrium proposes. The relative frequency of 
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Observation 9: The long-run behavior in the strangers’ setting does not converge on the 

perfect equilibrium. 

 

 The only indication of strategy adjustment that differs between the first experiment 

and the long-run strangers’ experiment indicates rather a move away than towards the perfect 

equilibrium with longer sessions. Although the comparison across treatments does not show 

an impact on the outcomes, we find such an impact in within-subjects comparison. For the 

first 50 periods, the relative frequency of the perfect-equilibrium outcome (1, 1, 1) is 0.1887, 

but it is only 0.1522 for the last 50 periods. The difference is weakly significant as the two-

tailed Wilcoxon signed ranks test confirms; the p-value is 0.0936.  

 Figures A2.1 and A2.2 display the average choice of the different player types together 

with the simulated impulse response trajectories by period interval. As above, each impulse- 

response trajectory initiates at the subjects’ first choice. The overall impression is different 

from the first experiment, as the impulse response trajectories rarely follow the observed 

choice over the longer time horizon. A typical choice trajectory starts at an intermediate 

probability of playing right, then moves to a higher or a smaller probability, where it remains 

relatively constant at no extreme probability level. The simulated impulse response trajectory, 

in contrast, follows its complex trajectory towards the pure trembling-hand-perfect 

equilibrium. As in the first experiment, player type 1 and particularly type 2 usually choose to 

play left rather than right and player type 3 plays right rather than left.17 This kind of non-

equilibrium behavior makes convergence on any equilibrium unlikely.  

 For the long-run strangers’ experiment, we obtain the following estimates of the logit 

quantal response model. We estimate  = 1, s.d. = .133, applying the MLE on the overall data. 

For the first (last) ten periods, we estimate  = 0.19, s.d. = .109, ( = 1.07, s.d. = .137), and 

for the first period  = 0, s.d. = .129. Compared to the first experiment, the noise level seems 

reduced in the long-run experiment, particularly for the later periods. 

 Running the same level-k analysis for our long-run strangers’ experiment as we have 

presented for the data of the first experiment, we identify the following level-k mixtures 

(level-0, level-1, level-2, level-3) minimizing the squared error of the predicted to observed 

behavior strategy vectors: (.60, .40, .00, .00) overall, (.65, .30, .05, .00) for the first 50 rounds, 

                                                                                                                                                   
the outcomes was not different across first and second experiment. We tested it for all periods of the long-run 
experiment as well as for the first 50 periods and the last 50 periods separately. 
17 In four cohorts (AvgP21, AvgP23, RanP29, RanP30) player 1 plays rather right and player 3 plays rather left. 
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and (.60, .40, .00, .00) for the last 50 rounds. As in the first experiment, the identified levels of 

reasoning in the long-run sessions seem very low, with substantially more than 50 percent of 

the subjects classified as level-0 types. Again, we conjecture that the detected low levels of 

reasoning do not reflect the subjects’ actual capabilities to analyze the game strategically and 

find the best response, but are due to the cooperative play that is especially driven by player 1 

choosing an almost perfectly mixed strategy to enforce the Pareto efficient outcome of the 

game.    

 

7.2 Experiment 3: long-run partners’ experiment 

Finally, we conducted long-run sessions of the Game of Selten’s Horse in a partners’ setting. 

Three subjects interacted repeatedly in the two-hour long session, with three cohorts 

interacting on one server at the same pace. The number of periods that were played varied 

between 111 and 158 depending on the pace of the groups’ interaction. The experiment 

involved 9 cohorts of each, the Random Pay treatment and the Average Pay treatment.  

The partners’ setting is interesting as it makes equilibrium selection relatively easy. 

The partners’ experiment can inform us about coordination problems that may arise in the 

strangers’ experiment. In the partners’ setting, however, there exist group incentives for 

cooperative play to capture the continuation payoff from cooperation.  

Figures A2.2, A3.3 and A3.4, and Table A2.2 in the appendix and Figure 7 show the 

outcomes and the average frequencies of strategy usage. Relative to the other experiments, we 

can state for the partners’ experiment the following. 

 

Observation 10: Subjects use pure strategies more frequently. The imperfect equilibrium 

outcome and the Pareto efficient outcome are more frequently achieved in the partners’ 

setting than in the strangers’ setting. 

 

 The average share of pure strategies is 0.660 in the partners’ setting, whereas it is 

0.370 in the long-run strangers’ setting (and 0.433 in the first experiment). The difference is 

significant; a p-value of 0.007 (0.021) according to the Mann-Whitney test. The average 

relative frequency of obtaining the imperfect (perfect) equilibrium outcome is 0.734 (0.099) 

in the partners’ experiment, whereas it is 0.409 (0.156) in the long-run strangers’ experiment 

and 0.368 (0.169) in the first experiment. The differences are significant; according to the 

Mann-Whitney test the p-value is 0.001 (0.002) with respect to the strangers’ experiment and 

0.000 (0.004) with respect to the first experiment. The share of Pareto-efficient outcomes is 
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0.814 in the partners’ experiment and 0.582 and 0.606 in the first and in the long-run 

strangers’ experiment; the difference is significant, p < 0.003. The differences between the 

long-run strangers’ and the first experiment are not significant in any of these comparisons at 

the 10-percent level. 

Interestingly in the Partners’ experiment we observe in one cohort (RanP51) the 

perfect equilibrium play repeatedly for almost 100 periods. Suddenly, however, player 1 

switches from right to left and player 3 from left to right to continue playing this way for the 

following 40 periods until the end of the experiment. This pattern suggests that the trembling-

hand perfect equilibrium can not be a stable outcome in the repeated setting. Similarly to 

social dilemma games, the benefits from collaboration stand out. 

We remark another cohort in the experiment (RanP54) that shows how player 1 can 

benefit from the first mover advantage. In that cohort, the player 1 chooses strategy p1 = 0.5 in 

all periods and triggers thus the best responses from players 2 and 3. The outcome is in 96% 

of periods Pareto efficient. That subject of player type 1 achieved the highest payoff even 

though other cohorts managed to finish more periods of play in the provided time. 

For the long-run partners’ experiment, we obtain the following estimates of the logit 

quantal response model. For the long-run partners experiment, we estimate  = 1.2166, s.d. 

= .2432, applying the MLE on the overall data. For the first (last) 10 periods the estimates are 

1.65, s.d. = .2527 (1.17, s.d. = .3613). 

 

7.3 Dynamics 

We find that the convergence patterns are different in the partners’ experiment than in the 

strangers’ experiment. Figure 7 displays the trajectories for the first 50 and last 50 periods. 

Player types 2 behave similarly in both treatments, player types 1 and 3 play more frequently 

pure strategies in the partners’ experiment. Hence, in the partners’ experiment the behavior 

strategies of these players are close to the imperfect equilibrium play. That explains why the 

outcome frequency of z2 is higher and the outcome frequency of z4 is lower in the partners’ 

than in the strangers’ setting. 

Direction learning is supported in the long-run experiments by the choices of the 

majority of subjects, see Tables A3.1 and A3.2 in the appendix. The impulse response 

trajectories (see Figures A3.1-4), however, seem to provide no good fit for the long term 

behavior in the Game of Selten’s Horse. The impulse response is attracted towards the 

trembling-hand perfect equilibrium in the long-run, but the observed behavior is not. It seems 

fair to say that it describes well the behavioral dynamics of our experimental sessions for 50 
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periods. In the long run, adjustments towards the Pareto-efficient outcomes explain the 

deviations of the observed behavior to the impulse response trajectories. The group decision 

process is frequently quite stable over time and seems to converge fast, particularly in the 

long-run partners’ experiment.  
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Figure 7 Average behavior strategies of player types 1 to 3 in the long-run experiments 
Each dot represents the ten-period average probability of playing R for the first and last fifty periods. Thin 
lines/filled dots (thick lines/empty dots) show the trajectories of the strangers’ (partners’) experiment. 
 

 

 

8 Conclusions 

We report experimental data on the Game of Selten’s Horse (Selten 1975) and suggest 

impulse response trajectories as an appropriate simulation approach for explaining the short-

term and intermediate behavior in the game. Impulse response is a one-step, deterministic 

simulation application of best-response dynamics interrelated with learning direction theory 

(Selten and Stoecker 1986), which receives empirical support in our experiment as well as in 

many other experiments. In contrast to other best-response learning applications (as e.g., 

Cournot learning), the impulse response trajectories account for the inertia in human 

interaction and predict how dynamic adjustments approach the equilibrium. In future research, 

it will be interesting to see how well the behavioral dynamics in other game environments are 

described by the impulse response trajectories.  

For the long run, the impulse response trajectories suggest that the dynamic 

adjustments of strategy choices in the Game of Selten’s Horse will drive behavior to the 

trembling-hand perfect equilibrium set. The logit quantal response equilibrium (McKelvey 

and Palfrey 1995) also suggests the selection of a trembling-hand perfect equilibrium as the 
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point of convergence when the noise vanishes. Notwithstanding, as our experimental data 

show, the trembling-hand perfect equilibrium is unattractive to subjects playing the Game of 

Selten’s Horse. 

Our experimental implementation allows the play of all equilibrium strategy profiles. 

However, equilibrium profiles are rarely observed in the experiments and the relative 

frequency of the trembling-hand perfect equilibrium outcomes declines with repetition.18 

Although the unreasonable imperfect equilibrium outcomes as suggested in Selten (1975) are 

obtained more frequently than the trembling-hand perfect equilibrium outcomes, we also find 

limited support for the imperfect equilibrium in our data. The most frequently observed 

strategy profile in our data involves the play of the imperfect equilibrium strategies by players 

1 and 3, but we rarely observe the corresponding equilibrium strategy of player 2. Since 

players 1 and 3 in these cases cannot observe the deviation of player 2’s strategy from 

equilibrium play, they do not promptly react with a best response to player 2’s non-

equilibrium play.  Even if player 1 could still increase his payoff by playing the trembling-

hand perfect strategy, he obtains three times the payoff from playing his imperfect 

equilibrium strategy than he would make in the trembling-hand perfect equilibrium. To obtain 

large continued payoff from cooperation for all players, the third player must be hooked on 

the right strategy. 

The observed play is characterized by non-equilibrium behavior, which can be 

modeled by level-k reasoning (Crawford 2013) as we have shown. Nonetheless, it is not 

irrational play; Pareto efficient outcomes are reached frequently. Subjects usually achieve a 

higher payoff than the one predicted by trembling-hand perfection. Trembling-hand perfection 

seems a rational way of play only for a short period of time in a population with no trust and 

forgiveness, or as a potential threat point. For the long run, collective rationality seems to 

favor payoff-richer non-equilibrium profiles in the Game of Selten’s Horse. 

                                                
18 In independent research, Berninghaus, Güth and Li (2012) studied a closely related 3-player (one-shot) game 
employing the strategy method. In their experimental design, subjects could not choose pure strategies, but 
always had minimum trembles. Despite the differences to our design their data also give little support to the 
perfect equilibrium. In line with our observed dynamics, Berlinghaus et al. (2012) wonder whether the perfect 
equilibrium may have a better chance of emerging as a stable and frequent outcome in a repeated game.  
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Appendix. Instructions 

 This experiment involves two sequences of 50 rounds. 

 In each round, you make decisions for 100 three-person games, which are played simultaneously. 

 In every round you are matched and play with two other participants in the experiment. The 

matching in each round are random. The probability to play in consecutive rounds in the same 

group is small. 

 The three players in each game have different positions. Players are either "Green", "Blue" or 

"Brown". At the beginning of the sequence each participant is assigned to one of three roles. You 

keep this role during the entire sequence. 

 The picture shows the game being played 100 times in each round. The diamonds and lines refer to 

the decisions of the players. The numbers in parentheses indicate the payoffs of the players, the 

payments are ordered as follows (Green, Blue, Brown). 

 

 

 

 

 

 

 

 

 

 

 

 

 Each player decides in each round, in how many of the 100 games of the round, he / she chooses 

"right" and in how many of the 100 games he / she chooses "Down". If the player, for example, 

chooses to play 80 games "Right", then s/he will play in 80 of the 100 games "right" and in 20 of 

100 games "down". If he / she chooses to play in 20 games, "Right", then s/he will play in 20 of the 

100 games "right" and in 80 of 100 games "down". 

 At the end of each round you will be informed about the payoffs of all three participants in your 

group in the 100 games. (See the following figure.) 

 [average pay treatment:] You earn your average payoff in the 100 games of the round.  

 [random pay treatment:] You earn one of your payoffs resulting in a single game of the round. This 

game will be chosen randomly in each round.  

 You will receive € 0.20 per point, and will be paid all your round payoffs. 

Down

Down

Brown

Green
Right Right

Right

RightDown
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Appendix. Tables 
 

Table A1. Mean squared errors of simulation and choice 
trajectories for each cohort 

cohort impulse response random reinforcement 
1 284 953 935 
2 447 537 488 
3 161 374 270 
4 135 208 140 
5 515 1392 1302 
6 155 355 243 
7 968 574 664 
8 71 204 138 
9 1308 851 997 

10 244 692 501 
11 336 355 348 
12 725 515 598 
13 972 834 912 
14 155 399 298 
15 155 400 298 
16 317 334 350 
17 477 704 613 
18 1175 1230 1221 

The mean squared errors are computed by summing the squared 
deviations of simulation and choice and taking averages 
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Table A2.1 Cumulative distribution of behavior strategies in the long-run 

strangers’ experiment 

    p=0 [0,.25] [0,.33] [0,.50] [0,.75] [0,.99] [0,1] 
         
player 1 AvgPay 0.192 0.356 0.407 0.563 0.756 0.892 1 
 RandomPay 0.237 0.342 0.371 0.529 0.692 0.885 1 
 Overall 0.229 0.361 0.398 0.542 0.728 0.890 1 

         
player 2 AvgPay 0.321 0.597 0.641 0.797 0.922 0.973 1 
 RandomPay 0.294 0.467 0.496 0.682 0.808 0.882 1 
 Overall 0.306 0.538 0.574 0.747 0.867 0.927 1 
         
player 3 AvgPay 0.095 0.150 0.187 0.271 0.378 0.581 1 
 RandomPay 0.075 0.168 0.191 0.304 0.506 0.785 1 
 Overall 0.086 0.160 0.191 0.283 0.427 0.668 1 

                  
bold numbers indicate the most frequent choice of each player type;  

*, **, *** (Wilcoxon rank sum test result): non-cumulative relative frequency is significantly 
different between RandomPay and AvgPay at 10%, 5% and 1% level 

 
 
  

Table A2.2 Cumulative distribution of behavior strategies in the long-run 
partners’ experiment 

    p=0 [0,.25] [0,.33] [0,.50] [0,.75] [0,.99] [0,1] 
         
player 1 AvgPay 0.737 0.838 0.850 0.877 0.956 0.991 1 
 RandomPay 0.431 0.590 0.623 0.860 0.878 0.900 1 
 Overall 0.572 0.703 0.727 0.871 0.917 0.946 1 

         
player 2 AvgPay 0.564 0.600 0.610 0.663 0.712 0.867 1 
 RandomPay 0.358 0.593 0.607 0.705 0.752 0.842 1 
 Overall 0.461 0.604 0.615 0.687 0.731 0.855 1 

         
player 3 AvgPay 0.046 0.062 0.070 0.085 0.107 0.135 1 
 RandomPay 0.100 0.127 0.143 0.177 0.234 0.547 1 
 Overall 0.073 0.094 0.107 0.131 0.170 0.341 1 

                  
bold numbers indicate the most frequent choice of each player type;  

*, **, *** (Wilcoxon rank sum test result): non-cumulative relative frequency is significantly 
different between RandomPay and AvgPay at 10%, 5% and 1% level 
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Table A3.1 Direction learning in the long-run strangers’ experiment 

Strangers  
Dir learning 

surplus subjects 
Dir learning surplus + 

no change subjects  

type 1 = 3 0  
 < 9 0  
 > 42 54  
     

type 2 = 3 0  
 < 11 2  
 > 40 52  
     

type 3 = 1 0  
 < 2 0  
 > 51 54  

     

Total = 7 1  
 < 22 3  
 > 133 (82%) 160 (99%)  

=/< /> indicate the number of subjects that respond as/less/more frequently in 

the direction predicted by as/than/than opposing to direction learning theory 

 
 

 
Table A3.2 Direction learning in the long-run partners’ experiment 

Partners  

Dir learning 
surplus 
subjects 

Dir learning 
surplus + no 
change subjects  

type 1 = 4 0  
 < 0 0  
 > 14 18  
     

type 2 = 0 0  
 < 5 1  
 > 13 17  
     

type 3 = 6 0  
 < 6 1  
 > 6 17  

     

Total = 10 0  
 < 11 2  
 > 33 (61%) 52 (96%)  

=/< /> indicate the number of subjects that respond as/less/more frequently in the 

direction predicted by as/than/than opposing to direction learning theory 
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Appendix. Figures 
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Figure A1.1 Cumulative choice distribution organized by type 
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Figure A1.2 Cumulative distribution of subjects’ first period choices organized by type 
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Figure A2.1 Average outcomes in the long-run strangers’ experiment 
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Figure A2.2 Average outcomes in the long-run partners’ experiment 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A3.1 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Average Pay treatment of the long-run strangers’ 
experiment: average behavior strategies, probability of playing R over 10 periods 
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Figure A3.2 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Random Pay treatment of the long-run strangers’ 
experiment: average behavior strategies, probability of playing R over 10 periods  
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Figure A3.3 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Average Pay treatment of the long-run partners’ 
experiment: average behavior strategies, probability of playing R over 10 periods 
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Figure A3.4 Observed trajectories (solid lines) and impulse response simulation (broken lines) in Random Pay treatment of the long-run partners’ 
experiment: average behavior strategies, probability of playing R over 10 periods 
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