LIMITATIONS ON LEARNING OF QUANTUM PROCESSES

LIMITATIONS ON LEARNING OF QUANTUM PROCESSES

OUTLINE

Quantum paradigm in learning Learning of quantum processes Limitations

WARNING: Not exactly about machine learning. Efficiency/complexity is not an issue.

QUANTISATION

MACHINE LEARNING

is a field of computer science that uses statistical techniques to give computer systems the ability **to "learn"** (e.g., progressively improve performance on a specific task) **with data**, **without being explicitly programmed**.

QUANTUM MACHINE LEARNING (a) an attempt to quantize machine learning (b) new **buzzword** in quantum computation

HOW TO QUANTIZE?

QUANTISATION

without being explicitly **programmed**

V. Dunjko, J.M. Taylor, H.J. Briegel "Quantum-Enhanced Machine Learning", Phys. Rev. Lett. 117, 130501 (2017) Figure by Maria Schuld - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=55676381

QUANTISATION

V. Dunjko, J.M. Taylor, H.J. Briegel "Quantum-Enhanced Machine Learning", Phys. Rev. Lett. 117, 130501 (2017) Figure by Maria Schuld - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=55676381

FRAMEWORK

input/output data \rightarrow bits of information to learn \rightarrow in/out function

result of learning → a program simulating action f → stored in bits

QUANTUM LEARNING

input/output data → **quantum states** to learn → **quantum transformation**

ρ — **Β** — ρ'

result of learning → a program simulating the process → stored in bits

QUANTUM LEARNING

input/output data → **quantum states** to learn → **quantum transformation**

ρ — **3** — ρ'

result of learning \rightarrow a program simulating the process \rightarrow stored in bits Whits

QUANTUM TRAINING

Sampling the transformation performance → use of entangled input states

 \rightarrow known processes and measurements

Storing process in quantum machine (memory)

$$\mathbf{E} \rightarrow \mathbf{\xi}_{\mathbf{\epsilon}}$$

QUANTUM TRAINING

Storing process in quantum machine (memory)

No-cloning theorem

- \rightarrow impossible to reuse the stored resource
- → number of uses must be considered during the training phase
- \rightarrow limitations on training

PROCESS RETRIEVAL "Inverting" the training phase.

PROCESS RETRIEVAL ρ'=**E**(**ρ**)

programmable processor

NO-PROGRAMMING THEOREM

There is no perfect universal programming machine → retrieval cannot be universally perfect

PROGRAMMABILITY BEYOND NO-GO THEOREM

→ APPROXIMATE PERFORMANCE → PROBABILISTIC PERFORMANCE

PROGRAMMABILITY BEYOND NO-GO THEOREM

→ APPROXIMATE PERFORMANCE

PROGRAMMABILITY BEYOND NO-GO THEOREM

→ PROBABILISTIC PERFORMANCE

APPROXIMATE Q LEARNING

Optimal strategy for unitary channels

MEASURE-AND-ROTATE

APPROXIMATE Q LEARNING

Optimal strategy for unitary channels

MEASURE-AND-ROTATE

→ optimal learning = optimal estimation
→ storing is classical (but still QQ type!)

A. Bisio, Gi. Chiribella, G. M. D'Ariano, S. Facchini, and P. Perinotti, Phys. Rev. A 81, 032324 (2010)

APPROXIMATE Q LEARNING Optimal strategy for unitary channels

est

→ optimal POVM (continuous)

$$\mathsf{E}_{\mathsf{U}^{\mathsf{est}}} = |\mathsf{n}_{\mathsf{U}^{\mathsf{est}}}\rangle\langle\mathsf{n}_{\mathsf{U}^{\mathsf{est}}}|$$

$$|\mathbf{\eta}_{\mathbf{U}^{\text{est}}}\rangle = \bigotimes_{\mathbf{j}\in IRR} \sqrt{d_{\mathbf{j}}} |\mathbf{U}_{\mathbf{j}}\rangle\rangle$$

APPROXIMATE Q LEARNING Optimal strategy for unitary channels

A. Bisio, Gi. Chiribella, G. M. D'Ariano, S. Facchini, and P. Perinotti, Phys. Rev. A 81, 032324 (2010)

PROBABILISTIC Q LEARNING Optimal strategy for unitary channels

 \rightarrow optimal storing

$$|\Psi\rangle = \bigotimes_{j \in IRR} \sqrt{\rho_j/d_j} |I_j\rangle\rangle$$

PROBABILISTIC Q LEARNING Optimal strategy for unitary channels

 $\rightarrow \text{ optimal storing} \qquad \left\{ \begin{array}{c} - \\ - \\ - \\ \psi \right\} = \bigotimes \sqrt{p_j/d_j} |\mathbf{I}_j \rangle \\ \mathbf{I}_j \in IRR \qquad \left\{ \begin{array}{c} - \\ - \\ - \\ - \\ - \end{array} \right\}$

- \rightarrow optimal retrieval
 - MEASURE-AND-ROTATE

PROBABILISTIC Q LEARNING Optimal strategy for unitary channels

 \rightarrow optimal storing

$$|\Psi\rangle = \bigotimes_{j \in IRR} \sqrt{\rho_j/d_j} |\mathbf{I}_j\rangle\rangle$$

 \rightarrow optimal retrieval

QUANTUM

 $1 \rightarrow 1$ case

time

 $1 \rightarrow 1$ case

time

STORING

 $1 \rightarrow 1$ case

time

RETRIEVING

$1 \rightarrow 1$ case

time _

INCOMPLETE RETRIEVING

$1 \rightarrow 1$ case

time .

PROBABILISTIC Q LEARNING Optimal N→ 1 for unitary channels

PROBABILISTIC Q LEARNING Optimal N→ 1 for unitary channels

ーノ

$$\rightarrow \underline{\text{optimal storing}} \\ |\Psi\rangle = \bigotimes \sqrt{p_j/d_j} |I_j\rangle \\ |\Psi\rangle = \underbrace{\bigotimes \sqrt{p_j/d_j}}_{j \in IRR} |\Psi_j\rangle \\ |\Psi\rangle = \underbrace{\bigotimes \sqrt{p_j/d_j}}_{j \in IRR} |\Psi_j\rangle$$

PROBABILISTIC Q LEARNING* Optimal N→ 1 for unitary channels

→ <u>optimal retrieval</u> (quantum comb formalism)
→ reduction to linear programming problem

$$\begin{array}{ll} \underset{\mu_{J},p_{j}}{\text{maximize}} & \lambda = \sum_{J} d_{J}^{3} \mu_{J}, \\ \text{subject to} & 0 \leq d_{J} \mu_{J} \leq \frac{p_{j}}{d_{j}^{2}} \quad \forall j \in \mathbf{j}_{JJ} \quad \forall J \\ & p_{j} \geq 0 \quad \sum_{j} p_{j} = 1, \end{array}$$

→ combinatorial identity for permutation group

$$\sum_{j} (c_j - r_j)^2 \frac{h_J}{h_j} = N - 1$$

 \rightarrow result is analytical

RELATED RESULTS

Retrieval of inverse of U (undo) for qubits

- \rightarrow the same success probability
- \rightarrow difference only in retrieval
- → probabilistic alignment of reference frame

RELATED RESULTS

Trade-off for probabilistic processors
→ retrieval part provides best known bounds

(exponentially better than before) on the memory size as a function of failure probability f

dim
$$H_{mem} = \sum_{j \in IRR} d_j^2 = (N - 1 + d^2)$$

 $\propto (1/f)^{(d^2-1)}$

SUMMARY

→ probabilistic quantum storage and retrieval
→ learning U without knowing

Approximate learning coincide with estimation, hence not really quantum.

Probabilistic learning is teleportation, hence, really quantum.

THANK YOU FOR YOUR ATTENTION

Joint work with Michal Sedlak, Alessandro Bisio, Mario Ziman

Slovak Academy of Sciences, Bratislava, Slovakia Masaryk University, Brno, Czech Republic University of Pavia, Pavia, Italy