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OUTLINE
1. Quantum paradigm in learning
2. Learning of quantum processes
3. Limitations

WARNING: 
Not exactly about machine learning.
Efficiency/complexity is not an issue.



  

QUANTISATION

MACHINE LEARNING 
is a field of computer science that uses statistical techniques to give 
computer systems the ability to "learn" (e.g., progressively improve 
performance on a specific task) with data, without being explicitly 
programmed.

QUANTUM MACHINE LEARNING
(a) an attempt to quantize machine learning
(b) new buzzword in quantum computation 

HOW TO QUANTIZE?
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Figure by Maria Schuld - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=55676381
V. Dunjko, J.M. Taylor, H.J. Briegel "Quantum-Enhanced Machine Learning", Phys. Rev. Lett. 117, 130501 (2017)
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FRAMEWORK

input/output data → bits of information
to learn  →  in/out function 

fx x’

result of learning 
 → a program simulating action f
 → stored in bits



  

QUANTUM LEARNING

input/output data → quantum states
to learn  →  quantum transformation 

Ɛρ ρ’

result of learning 
 → a program simulating the process
 → stored in bits
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QUANTUM TRAINING

Ɛ  → ξ
Ɛ

Sampling the transformation performance
 → use of entangled input states
 → known processes and measurements

Storing process in quantum machine (memory)  

ρ ξ
Ɛ



  

QUANTUM TRAINING

Ɛ  → ξ
Ɛ

Storing process in quantum machine (memory)  

No-cloning theorem
 → impossible to reuse the stored resource
 → number of uses must be considered during 

the training phase
 → limitations on training



  

PROCESS RETRIEVAL
“Inverting” the training phase.

ρ ρ’=Ɛ(ρ) 

ξ
Ɛ

programmable 
processor



  

PROCESS RETRIEVAL

ρ ρ’=Ɛ(ρ) 

ξ
Ɛ

programmable 
processor

NO-PROGRAMMING THEOREM
There is no perfect universal programming 
machine  retrieval cannot be universally perfect→



  

PROGRAMMABILITY
BEYOND NO-GO THEOREM

 → APPROXIMATE PERFORMANCE
 → PROBABILISTIC PERFORMANCE



  

PROGRAMMABILITY
BEYOND NO-GO THEOREM

 → APPROXIMATE PERFORMANCE

ρ ρ’=Ɛ’(ρ) 

ξ
Ɛ

programmable 
processor dist(Ɛ’,Ɛ)≤c



  

PROGRAMMABILITY
BEYOND NO-GO THEOREM

 → PROBABILISTIC PERFORMANCE

ρ ρ’=Ɛ(ρ) 

ξ
Ɛ

programmable 
processor

success/error 
detection

su
cc

es
s

prob(success)



  

APPROXIMATE Q LEARNING

Optimal strategy for unitary channels

A. Bisio, Gi. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, Phys. Rev. A 81, 032324  (2010)

MEASURE-AND-ROTATE



  

APPROXIMATE Q LEARNING

Optimal strategy for unitary channels

A. Bisio, Gi. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, Phys. Rev. A 81, 032324  (2010)

MEASURE-AND-ROTATE

 → optimal learning = optimal estimation
 → storing is classical (but still QQ type!) 



  

APPROXIMATE Q LEARNING
Optimal strategy for unitary channels
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  → optimal POVM (continuous)

  → optimal state
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APPROXIMATE Q LEARNING
Optimal strategy for unitary channels

A. Bisio, Gi. Chiribella, G. M. D’Ariano, S. Facchini, and P. Perinotti, Phys. Rev. A 81, 032324  (2010)

large N 1 for qubit→

ξ
U

Uest

ρ Uest ρ’
F≈1-π2/4N2



  

PROBABILISTIC Q LEARNING
 → PROBABILISTIC PERFORMANCE
 → N uses of the process

ρ ρ’=Ɛ(ρ) 

ξ
Ɛ

programmable 
processor

success/error 
detection

su
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sst
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retrieval



  

PROBABILISTIC Q LEARNING
Optimal strategy for unitary channels

ξ
U

  → optimal storing

|ψ〉=⊗p /d |I
j
〉〉

j∈IRR j j
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Optimal strategy for unitary channels

ξ
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  → optimal storing
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  → optimal retrieval

MEASURE-AND-ROTATE



  

PROBABILISTIC Q LEARNING
Optimal strategy for unitary channels

ξ
U

  → optimal storing

|ψ〉=⊗p /d |I
j
〉〉

j∈IRR j j

  → optimal retrieval

QUANTUM



  

PROBABILISTIC Q LEARNING
1  1 case→

ρ

time



  

PROBABILISTIC Q LEARNING
1  1 case→

ρ

time
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PROBABILISTIC Q LEARNING
1  1 case→
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PROBABILISTIC Q LEARNING
1  1 case→
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success

=1/d2 



  

PROBABILISTIC Q LEARNING
Optimal N  1 for unitary channels→

N
N-1+d2P

success
=



  

PROBABILISTIC Q LEARNING
Optimal N  1 for unitary channels→

ξ
U

  → optimal storing

|ψ〉=⊗p /d |I
j
〉〉

j∈IRR j j



  

PROBABILISTIC Q LEARNING*
Optimal N  1 for unitary channels→

 → optimal retrieval (quantum comb formalism)
 → reduction to linear programming problem

 → combinatorial identity for permutation group

 → result is analytical



  

RELATED RESULTS
Retrieval of inverse of U (undo) for qubits

 → the same success probability
 → difference only in retrieval 
 → probabilistic alignment of reference frame



  

RELATED RESULTS
Trade-off for probabilistic processors 

 → retrieval part provides best known bounds
(exponentially better than before) on the 
memory size as a function of failure 
probability f

dim H
mem

= ∑ d
j
2=(          )N-1+d2

N
j∈IRR

 (1/f)(           )d2 -1



  

SUMMARY

 → probabilistic quantum storage and retrieval
 → learning U without knowing

Approximate learning coincide with 
estimation, hence not really quantum.

Probabilistic learning is teleportation, 
hence, really quantum.

N
N-1+d2P

success
=
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