# Accurate Energy Predictions via Machine Learning 

Matthias Rupp

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

## Outline

1. Rationale
ab initio simulations, machine learning
2. Kernel learning kernel trick, kernel ridge regression
3. Representations many-body tensor representation
4. Energy predictions energies of molecules and crystals

Rationale

## Challenges in quantum mechanical simulations

High-throughput screening

[Castelli et al, Energy Environ Sci 12, 2013]
Long simulations

[Liwo et al, Proc Natl Acad Sci USA 102: 2362, 2005]

Large systems

[Image: Tarini et al, IEEE Trans Visual Comput Graph 2006]
Quantum effects

[Image: Hiller et al, Nature 476: 236, 2011]

## Accurate simulations are limited by computational cost

| $\begin{aligned} & \underset{0}{0} \\ & \stackrel{0}{U} \\ & \underset{\sim}{u} \\ & \end{aligned}$ | Method |
| :---: | :---: |
|  | Full Configuration Interaction |
|  | Coupled Cluster |
|  | M $\varnothing$ ller-Plesset second order perturbation theory |
|  | Kohn-Sham Density Functional Theory |
|  | Tight Binding |
|  | Molecular Mechanics |

Kohn-Sham Density Functional Theory
Tight Binding
Molecular Mechanics

Is it possible to be both accurate and fast?
In high-throughput settings, machine learning offers a new trade-off

## Machine learning

Machine learning (ML) studies algorithms whose performance improves with data ("learning from experience").


- No explicitly programmed problem-specific solution
- Systematic identification of regularity in data for prediction \& analysis
- Interpolation in high-dimensional spaces


## Interpolating electronic structure calculations with machine learning

Correlated calculations can be rapidly and accurately interpolated


Assumes similar structure, similar property Corresponding space or metric

Flexible functional form
Smoothness assumption

Physics in the examples
Flexibility versus physical constraints

- reference calculations, - ground truth, --- machine learning model


## Relationship with other models

| ab initio | force fields |  |
| :--- | :--- | :--- |
| generally applicable  <br> no or little fitting limited domain | generally applicable <br> form from physics | form from physics |

## Kernel learning

## Learning with kernels

The kernel trick:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm using only inner products

```
coc000000000000000000000000000000, x
Input space \(\mathcal{X}\)
```


## Learning with kernels

The kernel trick:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm using only inner products



## Kernel functions



Kernels correspond to inner products

Encode information about lengths and angles:
$\|x-z\|^{2}=\langle x, x\rangle-2\langle x, z\rangle+\langle z, z\rangle, \cos \theta=\frac{\langle x, z\rangle}{\|x\|\|z\|}$
If $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is symmetric positive semi-definite, then $k(x, z)=\langle\phi(x), \phi(z)\rangle$ for some $\phi: \mathcal{X} \rightarrow \mathcal{H}$

Useful properties
Closed convex cone structure
Natural interface $\boldsymbol{K}_{i j}=k\left(x_{i}, x_{j}\right)$
$\mathcal{X}$ can be any non-empty set

## Examples of kernel functions

Linear kernel

$$
k(\boldsymbol{x}, \boldsymbol{z})=\langle\boldsymbol{x}, \boldsymbol{z}\rangle
$$




Gaussian kernel

$$
\exp \left(-\|\boldsymbol{x}-\boldsymbol{z}\|^{2} / 2 \sigma^{2}\right)
$$




Laplacian kernel

$$
\exp \left(-\|\boldsymbol{x}-\boldsymbol{z}\|_{1} / \sigma\right)
$$



## Regression with kernels

## Linear ridge regression

For models

$$
f(\boldsymbol{x})=\sum_{i=1}^{d} \beta_{i} \boldsymbol{x}_{i}
$$

minimizing

$$
\min _{\boldsymbol{\beta} \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|\boldsymbol{\beta}\|^{2}
$$

yields

$$
\boldsymbol{\beta}=\left(\boldsymbol{X}^{T} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}
$$

## Kernel ridge regression

For models

$$
f(\boldsymbol{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}\right)
$$

minimizing
$\min _{\boldsymbol{\alpha} \in \mathbb{R}^{n}} \sum_{i=1}^{n}\left(f\left(\boldsymbol{x}_{\boldsymbol{i}}\right)-y_{i}\right)^{2}+\lambda\|\boldsymbol{\alpha}\|_{\mathcal{H}}^{2}$
yields
$\boldsymbol{\alpha}=(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y}$

## A basis function picture of kernel regression

Weighted basis functions placed on training samples $\boldsymbol{x}_{\boldsymbol{i}}$


- training samples $\left(x_{i}, y_{i}\right)$

- basis functions $k\left(x_{i}, x\right)$
-. prediction $\hat{f}(x)=\sum_{i} \alpha_{i} k\left(x_{i}, x\right)$


## The Gaussian process view



- Generalization of normal distribution
- Covariance $=$ kernel
- Condition prior on data for posterior
- Variance as uncertainty estimate

Representations

## Representations and Hilbert spaces

Numerical representation for arbitrary
poly-atomic systems required
Corresponding Hilbert space as feature space

No unique solution
Example:
$(a, b) \mapsto\left(a^{2}, \sqrt{2} a b, b^{2}\right)$
$(a, b) \mapsto\left(a^{2}, a b, a b, b^{2}\right)$

Several state-of-the-art representations
symmetry functions
bispectrum, smooth overlap of atomic positions
moment tensor potentials
many-body-tensor and distribution-based representations

## Hilbert spaces for arbitrary atomistic systems

Representation $=$ numerical encoding of atomistic system for accurate interpolation

## Requirements:

(i) Invariance against transformations preserving the property translation, rotation, homonuclear permutations
(ii) Uniqueness: different in property $\Rightarrow$ different in representation reconstructability
(iii) Smoothness: continuous, ideally differentiable
(iv) Generality: work with any atomistic system molecules, periodic systems
(v) Efficiency: fast to compute, require few reference calculations
(vi) Simplicity: conceptually straightforward

## The many-body tensor representation

Distribution of $k$-body terms stratified by chemical elements:

$$
f_{k}(x, \boldsymbol{z})=\sum_{i=1}^{N_{a}} w_{k}(\boldsymbol{i}) \mathcal{D}\left(x, g_{k}(\boldsymbol{i})\right) \prod_{j=1}^{k} C_{z_{j}, z_{i_{j}}}
$$



[Huo \& Rupp, arXiv, 2017]

## Examples: molecules and bulk crystals





## Example: surfaces



N atom on $\mathrm{Pd}(111)$ surface


MBTR of 2nd order ( $\mathbf{N}-\mathrm{Pd}$ )

[^0]Energy predictions

## The combinatorial nature of chemical and materials space



Molecule space Graph theory

Materials space Group theory

Combinatorial explosion Machine learning

Left: aspirin derivatives

Learning potential energy surfaces


## Enthalpies of formation of small organic molecules



7211 small organic molecules; C, N, O, S, Cl, saturated with H Relaxed geometries, formation energies at DFT/PBE level of theory

|  |  | $\mathrm{E} / \mathrm{kcal} \mathrm{mol}^{-1}$ |  |  | $\alpha / \AA^{3}$ |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Representation | Kernel | RMSE | MAE |  | RMSE | MAE |
| CM $[1]$ | Laplacian | 4.76 | 3.47 |  | 0.17 | 0.13 |
| BoB $[2]$ | Laplacian | 2.86 | 1.79 |  | 0.12 | 0.09 |
| BAML $[3]$ | Laplacian | 2.54 | 1.15 |  | 0.12 | 0.07 |
| SOAP $[4]$ | REMatch | 1.61 | 0.92 |  | 0.07 | 0.05 |
| MBTR | Linear | 1.14 | 0.74 |  | 0.10 | 0.07 |
| MBTR | Gaussian | $\mathbf{0 . 9 7}$ | $\mathbf{0 . 6 0}$ |  | $\mathbf{0 . 0 6}$ | $\mathbf{0 . 0 4}$ |

[1] Rupp et al., Phys. Rev. Lett., 2012; [2] Hansen et al., J. Phys. Chem. Lett., 2015;
[3] Huang \& von Lilienfeld, J. Chem. Phys., 2016; [4] De et al., Phys. Chem. Chem. Phys., 2016

## Potential energy surfaces of organic molecules

Ab initio molecular dynamics; DFT/PBE, Tkatchenko-Scheffler van der Waals forces

|  | DTNN | GDML | MBTR |  | MBTR |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Kernel | - | Matérn | linear |  | Gaussian |  |
| Molecule | MAE | MAE | RMSE | MAE | RMSE | MAE |
| benzene | $\mathbf{0 . 0 4}$ | 0.07 | 0.06 | 0.05 | 0.05 | $\mathbf{0 . 0 4}$ |
| uracil | - | 0.11 | 0.14 | 0.10 | 0.06 | $\mathbf{0 . 0 4}$ |
| naphthalene | - | 0.12 | 0.15 | $\mathbf{0 . 1 1}$ | 0.15 | $\mathbf{0 . 1 1}$ |
| aspirin | - | 0.27 | 0.26 | $\mathbf{0 . 1 8}$ | 0.32 | 0.22 |
| salicylic acid | 0.50 | 0.12 | 0.17 | 0.12 | 0.11 | $\mathbf{0 . 0 8}$ |
| malonaldehyde | 0.19 | 0.16 | 0.28 | 0.21 | 0.13 | $\mathbf{0 . 1 0}$ |
| ethanol | - | 0.15 | 0.22 | 0.16 | 0.10 | $\mathbf{0 . 0 7}$ |
| toluene | 0.18 | 0.12 | 0.16 | 0.12 | 0.15 | $\mathbf{0 . 1 1}$ |

## Different decorations in elpasolite crystals



Elpasolites $\mathrm{ABC}_{2} \mathrm{D}_{6}$
Density functional theory
Relaxed geometry
12 k materials, 12 elements
[Faber et al, Phys Rev Lett, 2016]

Prediction error $8 \mathrm{meV} /$ atom ( $0.1 \%$ of range) Convergence threshold $10 \mathrm{meV} /$ atom

## Learning curves


$11 \mathrm{k} \mathrm{ABC}_{2} \mathrm{D}_{6}$ structures 12 chemical elements DFT/PBE level of theory
$4611 \mathrm{ABC}_{2}$ structures
22 chemical elements
DFT/PBE level of theory
--- 1,2,3 chemical elements removed

## Phase diagrams of Pt-group/transition metal binary alloys



Identification of low-energy compositions in convex hull

Active learning to exclude high-energy structures

Saves up to half the calculations
MAE $39 \mathrm{meV} /$ atom

## The NOMAD 2018 Kaggle challenge

Christopher Sutton (Fritz Haber Institute, Max Planck Society)
(4) Research Prediction Competition
Nomad2018 Predicting Transparent Conductors
Predict the key properties of novel transparent semiconductors
883 teams 24 days ago
(atin


Al-Ga-In sesquioxides
DFT, 3 k structures
$\Delta$-learning
Geometry from Vegard's rule
Enthalpy of formation and band gaps relaxed
Errors:
$27 \mathrm{meV} /$ atom (energy) 180 meV (band gap)
www.kaggle.com/c/nomad2018-predict-transparent-conductors

## The NOMAD 2018 Kaggle challenge

Christopher Sutton (Fritz Haber Institute, Max Planck Society)


Vegard's rule geometries


Relaxed geometries

## Binary alloys

With Gus Hart, Chandramouli Nyshadham, Brayden Bekker (Brigham Young University)


Binary alloys
$10 \times 1 \mathrm{k}+0.6 \mathrm{k}$ structures
DFT formation enthalpy

Vegard's rule geometries
fcc, bcc, hcp lattices
all structures up to 8 atoms

## Reliability

"It is not the estimate that matters so much, as the degree of confidence with the opinion"
N. Taleb, 2004


## Uncertainty estimates

Extrapolation versus interpolation Domain of applicability

Left: Logarithmized predictive variance versus signed error for energy predictions [Snyder et al., Phys. Rev. Lett., 2012]

## Reliability



RMSE 380 meV , MAE $200 \mathrm{meV}, R^{2}=0.9916$ RMSE $12 \mathrm{meV} /$ atom, MAE $6 \mathrm{meV} /$ atom, $R^{2}=0.9854$

## Interpretability



Explain individual predictions
Right for the right reason?

Sensitivity analysis
Local gradients explain variation, but not the "why"

How to quantify interpretability?
How to interpret basis set expansions?

## Summary



Interpolation of ab initio simulations Accurate and fast, via machine learning

Learning with kernels
Kernel trick: implicit transformations

Representations
Many-body tensor representation

Energy predictions
Molecules, crystals, surfaces

## Outlook: towards crystal structure prediction



## Tutorial

M. Rupp: Machine Learning for Quantum Mechanics in a Nutshell, Int. J. Quant. Chem. 15(16): 1058-1073, 2015.

DOI 10.1002/qua. 24954

## Code

Efficient C++ implementation with Python bindings available as part of my qmmlpack package.
To appear this year.
 learning package


sou are wisng this sotwrere phese cte

 Requirements

## Special Issue

 DOI 10.1063/1.5043213
## Datasets

Public datasets of ab initio calculations for molecules, solids and liquids available.
qmml.org
nomad-coe.eu


## Datasets

A QM/ML resource

Molesules


## Acknowledgements

## Group

Current

## Funding



Former



[^0]:    Yasunobu Ando, work in progress, 2018

