Accurate Energy Predictions via Machine Learning

Matthias Rupp

Fritz Haber Institute of the Max Planck Society, Berlin, Germany

Outline

1. Rationale

ab initio simulations, machine learning

2. Kernel learning

kernel trick, kernel ridge regression

3. Representations

many-body tensor representation

4. Energy predictions

energies of molecules and crystals

Rationale

Challenges in quantum mechanical simulations

High-throughput screening

[Castelli et al, Energy Environ Sci 12, 2013]

Long simulations

[Liwo et al, Proc Natl Acad Sci USA 102: 2362, 2005]

Large systems

[Image: Tarini et al, IEEE Trans Visual Comput Graph 2006]

Quantum effects

[Image: Hiller et al, Nature 476: 236, 2011]

Accurate simulations are limited by computational cost

accuracy	-	Method
		Full Configuration Interaction
		Coupled Cluster
		Møller-Plesset second order perturbation theory
		Kohn-Sham Density Functional Theory
		Tight Binding
		Molecular Mechanics

Is it possible to be both accurate and fast?

In high-throughput settings, machine learning offers a new trade-off

speed

Machine learning

Machine learning (ML) studies algorithms whose performance *improves with data* ("learning from experience"). [Mitchell, McGraw Hill, 1997]

- No explicitly programmed problem-specific solution
- Systematic identification of regularity in data for prediction & analysis
- Interpolation in high-dimensional spaces

Interpolating electronic structure calculations with machine learning

Correlated calculations can be rapidly and accurately interpolated

• reference calculations, — ground truth, --- machine learning model

Rupp, Int. J. Quant. Chem., 2015

Assumes similar structure, similar property Corresponding space or metric

Flexible functional form Smoothness assumption

Physics in the examples Flexibility versus physical constraints

Relationship with other models

ab initio	force fields	machine learning		
generally applicable	limited domain	generally applicable		
no or little fitting	fitting to one class	refitted to any dataset		
form from physics	form from physics	form from statistics		
deductive	mostly deductive	inductive		
few or no parameters	some parameters	many parameters		
high accuracy	limited accuracy	high accuracy		
slow	fast	in-between		
small systems	large systems	large systems		

Kernel learning

Learning with kernels

The kernel trick:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm using only inner products

Input space ${\cal X}$

Schölkopf & Smola: Learning with Kernels, 2002; Hofmann et al., Ann. Stat., 2008

Learning with kernels

The kernel trick:

- Transform samples into higher-dimensional space
- Implicitly compute inner products there
- Rewrite linear algorithm using only inner products

Schölkopf & Smola: Learning with Kernels, 2002; Hofmann et al., Ann. Stat., 2008

Kernel functions

Kernels correspond to inner products

Encode information about lengths and angles: $||x - z||^2 = \langle x, x \rangle - 2 \langle x, z \rangle + \langle z, z \rangle$, $\cos \theta = \frac{\langle x, z \rangle}{||x|| ||z||}$

If $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric positive semi-definite, then $k(x, z) = \langle \phi(x), \phi(z) \rangle$ for some $\phi : \mathcal{X} \to \mathcal{H}$

Useful properties

Closed convex cone structure Natural interface $\boldsymbol{K}_{ij} = k(x_i, x_j)$ \mathcal{X} can be any non-empty set

Examples of kernel functions

Regression with kernels

Linear ridge regression

For models

$$f(\boldsymbol{x}) = \sum_{i=1}^{d} \beta_i \boldsymbol{x}_i$$

minimizing

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \sum_{i=1}^n (f(\boldsymbol{x}_i) - y_i)^2 + \lambda ||\boldsymbol{\beta}||^2$$

yields

$$\boldsymbol{\beta} = \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

Kernel ridge regression For models $f(\boldsymbol{x}) = \sum_{i=1}^{n} \alpha_{i} k(\boldsymbol{x}_{i}, \boldsymbol{x})$ minimizing $\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \sum_{i=1} (f(\boldsymbol{x}_i) - y_i)^2 + \lambda ||\boldsymbol{\alpha}||_{\mathcal{H}}^2$ yields $oldsymbol{lpha} = ig(oldsymbol{\kappa} + \lambda oldsymbol{I}ig)^{-1}oldsymbol{y}$

A basis function picture of kernel regression

Weighted basis functions placed on training samples x_i

Vu et al., Int. J. Quant. Chem., 2015; Rupp, Int. J. Quant. Chem., 2015

The Gaussian process view

- Generalization of normal distribution
- Covariance = kernel

- Condition prior on data for posterior
- Variance as uncertainty estimate

Representations

Representations and Hilbert spaces

Numerical **representation** for arbitrary poly-atomic systems required Corresponding Hilbert space as feature space

No unique solution

Example: $(a, b) \mapsto (a^2, \sqrt{2}ab, b^2)$ $(a, b) \mapsto (a^2, ab, ab, b^2)$

Several state-of-the-art representations

symmetry functions bispectrum, smooth overlap of atomic positions moment tensor potentials **many-body-tensor** and distribution-based representations

Hilbert spaces for arbitrary atomistic systems

 $Representation = numerical \ encoding \ of \ atomistic \ system \ for \ accurate \ interpolation$

Requirements:

- (i) **Invariance** against transformations preserving the property translation, rotation, homonuclear permutations
- (ii) **Uniqueness**: different in property \Rightarrow different in representation reconstructability
- (iii) Smoothness: continuous, ideally differentiable
- (iv) Generality: work with any atomistic system molecules, periodic systems
- (v) Efficiency: fast to compute, require few reference calculations
- (vi) Simplicity: conceptually straightforward

[Bartók et al, Phys Rev B, 2013; Shapeev, Multiscale Model Simul, 2016; Behler, J Chem Phys, 2011]

The many-body tensor representation

Distribution of *k*-body terms stratified by chemical elements:

$$f_k(x, \mathbf{z}) = \sum_{i=1}^{N_a} w_k(i) \mathcal{D}(x, g_k(i)) \prod_{j=1}^k C_{z_j, Z_j}$$

[Huo & Rupp, arXiv, 2017]

Examples: molecules and bulk crystals

Example: surfaces

N atom on Pd(111) surface

MBTR of 2nd order (N-Pd)

Yasunobu Ando, work in progress, 2018

Energy predictions

The combinatorial nature of chemical and materials space

Molecule space Graph theory

Materials space Group theory

Combinatorial explosion Machine learning

Left: aspirin derivatives

Learning potential energy surfaces

Figure: Chang & von Lilienfeld, CHIMIA, 2014

Enthalpies of formation of small organic molecules

 $7\,211$ small organic molecules; C, N, O, S, Cl, saturated with H Relaxed geometries, formation energies at DFT/PBE level of theory

		E / kca	E / kcal mol $^{-1}$		lpha / Å ³	
Representation	Kernel	RMSE	MAE	RMSE	MAE	
CM [1]	Laplacian	4.76	3.47	0.17	0.13	
BoB [2]	Laplacian	2.86	1.79	0.12	0.09	
BAML [3]	Laplacian	2.54	1.15	0.12	0.07	
SOAP ^[4]	REMatch	1.61	0.92	0.07	0.05	
MBTR	Linear	1.14	0.74	0.10	0.07	
MBTR	Gaussian	0.97	0.60	0.06	0.04	

Rupp *et al.*, Phys. Rev. Lett., 2012; [2] Hansen *et al.*, J. Phys. Chem. Lett., 2015;
Huang & von Lilienfeld, J. Chem. Phys., 2016; [4] De *et al.*, Phys. Chem. Chem. Phys., 2016

Potential energy surfaces of organic molecules

Ab initio molecular dynamics; DFT/PBE, Tkatchenko-Scheffler van der Waals forces

Kernel	DTNN	GDML Matérn	ME lin	BTR ear	ME Gau	8TR ssian	
Molecule	MAE	MAE	RMSE	MAE	RMSE	MAE	[kcal/mol]
benzene	0.04	0.07	0.06	0.05	0.05	0.04	
uracil	-	0.11	0.14	0.10	0.06	0.04	
naphthalene	-	0.12	0.15	0.11	0.15	0.11	
aspirin	_	0.27	0.26	0.18	0.32	0.22	
salicylic acid	0.50	0.12	0.17	0.12	0.11	0.08	
malonaldehyde	0.19	0.16	0.28	0.21	0.13	0.10	
ethanol	_	0.15	0.22	0.16	0.10	0.07	
toluene	0.18	0.12	0.16	0.12	0.15	0.11	

DTNN = Deep Tensor Neural Network, Schütt et al., Nat. Comm, 2017; GDML = Gradient Domain Machine Learning, Chmiela et al., Sci. Adv., 2017

Different decorations in elpasolite crystals

Elpasolites ABC₂D₆

Density functional theory Relaxed geometry 12 k materials, 12 elements [Faber et al, Phys Rev Lett, 2016]

$\begin{array}{l} \mbox{Prediction error 8 meV/atom (0.1\% of range)} \\ \mbox{Convergence threshold 10 meV/atom} \end{array}$

Learning curves

Phase diagrams of Pt-group/transition metal binary alloys

Identification of low-energy compositions in convex hull

Active learning to exclude high-energy structures

Saves up to half the calculations $\label{eq:main} \mbox{MAE 39\,meV/atom}$

Hart, Curtarolo, Massalski, Levy, Phys Rev X, 2013

The NOMAD 2018 Kaggle challenge

Christopher Sutton (Fritz Haber Institute, Max Planck Society)

Al-Ga-In sesquioxides DFT, 3 k structures

Δ -learning

Geometry from Vegard's rule Enthalpy of formation and band gaps relaxed

Errors: 27 meV/atom (energy) 180 meV (band gap)

www.kaggle.com/c/nomad2018-predict-transparent-conductors

The NOMAD 2018 Kaggle challenge

Christopher Sutton (Fritz Haber Institute, Max Planck Society)

Binary alloys

With Gus Hart, Chandramouli Nyshadham, Brayden Bekker (Brigham Young University)

 $\begin{array}{l} \mbox{Binary alloys} \\ 10 \times 1\,k \,+\, 0.6\,k \mbox{ structures} \\ \mbox{DFT formation enthalpy} \end{array}$

Vegard's rule geometries fcc, bcc, hcp lattices all structures up to 8 atoms

Reliability

"It is not the estimate that matters so much, as the degree of confidence with the opinion" N. Taleb. 2004

Uncertainty estimates

Extrapolation versus interpolation Domain of applicability

Left: Logarithmized predictive variance versus signed error for energy predictions [Snyder et al., Phys. Rev. Lett., 2012] Reliability

RMSE 380 meV, MAE 200 meV, $R^2 = 0.9916$ RMSE 12 meV/atom, MAE 6 meV/atom, $R^2 = 0.9854$

Interpretability

Explain individual predictions Right for the right reason?

Sensitivity analysis

Local gradients explain variation, but not the "why"

How to quantify interpretability? How to interpret basis set expansions?

Summary

Interpolation of ab initio simulations Accurate and fast, via machine learning

Learning with kernels Kernel trick: implicit transformations

Representations Many-body tensor representation

Energy predictions Molecules, crystals, surfaces Outlook: towards crystal structure prediction

Tutorial

M. Rupp: Machine Learning for Quantum Mechanics in a Nutshell, *Int. J. Quant. Chem.* 15(16): 1058–1073, 2015. DOI 10.1002/qua.24954

Special Issue

Rupp, von Lilienfeld, Burke: Guest Editorial: Special Topic on Dataenabled Theoretical Chemistry, *J. Chem. Phys.* 148(24): 241401, 2018. DOI 10.1063/1.5043213

Code

Efficient C++ implementation with Python bindings available as part of my qmmlpack package.

To appear this year.

qmmlpack - a quantum mechanics / machine learning package

Package for kernel-based machine learning models that interpolate between first principles calculations of atomistic systems. It provides efficient C++ code with bindings to Mathematica and Python.

If you are using this software, please of

Matthias Pupp: Machine Learning for Quantum Mechanics in a Nutshell, International Journal of Quantum Chemin 115(18): 1059–1073, 2015. DOI

Requirement

Datasets

Public datasets of ab initio calculations for molecules, solids and liquids available.

qmml.org nomad-coe.eu

	Datasets A QM/ML resource
۱d	
	Molecules Solids Liquids
	Molecules
	MIb-17 Krind T. Schitt, Fachad Arbabeacht, Stofan Chenista, Klass Nature Communications 8: 13699, 2017. [DOI]: Stofan Ch Machine Learning of Accurate Energy Conserving Metershit Estimates are present incommerciant emotioner tradecretories.

Acknowledgements

Group

Current

Marcel Langer (PhD student)

Alex Goeßmann (PhD student)

Fabio Hernandez-Hernandez

(visitor)

Former

(visitor)

Lucas Deecke

(student)

Yasunobu Ando (visitor)

Funding

