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Abstract

Current robot learning, and machine learning in general, requires carefully-
engineered setups (environments, objective functions, training data, etc.) for
learning to succeed. Perception and action spaces are specially crafted to meet
the requirements of the learning objective, which is specified in advance.
How can we construct robot learning systems that can learn in an open-ended
fashion, acquire skills not foreseen by its designers, and scale up to virtually
unlimited levels of complexity? I argue that a key to achieving this lies in
the robot's ability to learn abstract concepts that can be reused as a basis for
future learning, both in autonomous exploration and for teaching by humans.
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1. Preface

1.1. Classical Machine Learning

[Image1 from New Scientist2]

[From my LinkedIn page]
[Source3] [Image4 from The Next Web5]

1 https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2017/05/23120156/
rexfeatures_8828108ac1.jpg
2 https://www.newscientist.com/article/2132086-deepminds-ai-beats-worlds-best-go-player-in-
latest-face-off/
3 http://5.imimg.com/data5/YN/EU/MY-54329049/face-detection-and-recognition-500x500.jpg
4 https://cdn0.tnwcdn.com/wp-content/blogs.dir/1/files/2016/09/SwiftKey-neural-networks-
hed-796x398.jpg
5 https://thenextweb.com/apps/2016/09/16/swiftkey-improves-its-android-keyboard-predictions-
with-neural-networks/
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Preface

1.2. Autonomous Airshow

Apprenticeship Learning Via Inverse Reinforcement Learning [Abbeel et al.
2010]

1.3. How to learn such skills?

[Excerpt from Youtube6]

1.4. Machine Learning Paradigms

• Supervised Learning:  Given a training set  containing  training
examples , predict  for .

• Unsupervised Learning:  density estimation, clustering, data mining,
dimensionality reduction

• Reinforcement Learning:  Learn a policy  such that, at each time ,
taking action  maximizes the expected sum of future rewards.

• Evolutionary Learning:  optimization by stochastic alteration and
recombination of parameter vector segments, guided by heuristics

• Explanation-based Learning:  Given a domain theory (e.g., logical
assertions), derive new rules, guided by training examples

• …

6 https://www.youtube.com/watch?v=tf7IEVTDjng
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Preface

1.5. Machine Learning vs. Machine Intelligence

In all cases, machine learning requires specific, externally-provided problems,
defined in terms of objective functions fixed a priori.

• Can we express all we want our robot to do in terms of a single objective
function?

• Can we express human behavior in terms of a single objective function?

In evolutionary terms: survival of the species?

Is there a difference?

• Even if we can, is it useful?

The learning problem is massive.

We don’t have millions of years to evolve and train capable robots.

1.6. Artificial Intelligence

Formerly:  The quest for artificial systems with human-level cognitive
capabilities.

Today:  The quest for solutions to problems that cannot be easily solved by
hand.

Tongue in cheek:

In Practice:  An unsuccessful meta-science that spawns successful
scientific disciplines (symbolic planning, automated theorem proving,
computer vision, machine learning, data mining, …)

• Once we understand how to solve a problem, it is no longer considered to
require intelligence.

• Thus, AI never gets credit for its achievements.

Important

Open-Endedness

1.7. Systems of Abstract Concepts
contains
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Skill Learning Using Stacked Classifiers

2. Skill Learning Using Stacked Classifiers

Emre Ugur

2.1. Learning About Objects

[Ugur et al. 2014]

2.2. Sensorimotor Exploration: Poking

Simple Konzept:  How does one object behave under a manipulation?
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Skill Learning Using Stacked Classifiers

2.3. Sensorimotor Exploration: Stacking

More Complex Concept:  How do two objects interact under a
manipulation?

2.4. Self-Organized Learning: 0 Objects

[Ugur and Piater 2014]

2.5. Self-Organized Learning: Actions
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First, the robot chooses simple actions whose results are easy to predict,
before focusing on stacking actions.

[Ugur and Piater 2014]
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Skill Learning Using Stacked Classifiers

2.6. Self-Organized Learning: 10 Objects

[Ugur and Piater 2014]

2.7. Self-Organized Learning: 20 Objects

[Ugur and Piater 2014]

2.8. Self-Organized Learning: 80 Objects

[Ugur and Piater 2014]
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Skill Learning Using Projective Simulation

2.9. From Sensorimotor Interaction to Symbolic Planning

2.10. Learning about the top of the stack

2.11. Playing With Building Blocks!

• Symbol formation by sensorimotor interaction

Emre’s prior work among the pioneers

• Hierarchical concept learning

3. Skill Learning Using Projective Simulation

Simon Hangl
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Skill Learning Using Projective Simulation

3.1. Projective Simulation

Clip 1 ≡Percept 1

Clip 2 ≡Percept 2

Clip 3

Clip 4

Clip 5

Clip 6

Clip 7 ≡Action 1

Clip 8 ≡Action 2

p13

p14

p15
p24

p25

p63

p56

p64

p58

p68

p37

p67

• Episodic Compositional Memory (ECM): Markov network plus machinery
for learning transition probabilities from experience

• Clip: elementary piece of experience

• Learning: random walk with ECM parameters updated according to
rewards

• Execution: random walk

3.2. Picking and Placing Books: ECM
#

Slide Poke ... Sense N

1 .. N1 1 .. N2 1 .. NN...

ps1 ps2
ps...

psN

MMR Classifier

Flip ... Push

Sensing
actions (layer 2)

Environment
states
(layer 3)

Preparatory
actions (layer 4)

layer 1

3.3. Picking and Placing Books: Resulting Behavior

[Hangl et al. 2016]
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Skill Learning Using Projective Simulation

3.4. Picking and Placing Books: Learned ECM
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3.5. Enhancement: Environment Model
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3.6. Active Learning and Skill Creation
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Active Learning

• Entropy  is low, i.e., the agent
knows what to do in state .

• Find a higher-entropy state, and determine,
using the Environment Model, an action to
transition to it.

Creative Skill Creation

• Using the Environment Model, synthesize
a new compound preparatory skill clip, and
add it to the ECM.

• Akin to compiling cognitively-controlled
(cortical) complex skills into automated
(cerebellar) routines.
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Skill Learning Using Projective Simulation

3.7. Simulated Experiments

Without Active Learning With Active Learning
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• Skills:  void, flip, rotate 90°, rotate 180°, rotate 270°
From left to right, each curve adds 5 distractor skills.

• Skill success rate of 95%
• Means and standard deviations of 1000 simulated robots

3.8. Simulated Experiments

With Active Learning and Creativity
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• Initial Skills:  void, flip, rotate 90°
From left to right, each curve adds 5 distractor skills.

• Skill success rate of 95%
• Means and standard deviations of 1000 simulated robots

3.9. Learning Complex Manipulation Sequences!

Complex skill learning by sequencing actions

• with unified learning and execution,
• guided by reinforcement signals,
• adaptively creating compound skills.
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Search Space Management

4. Search Space Management
How can we scale this up?

4.1. Open-Ended Learning: The Ambition
The robot can learn things its designer did not specifically foresee.

Example:  Teach my dishwasher-un/loading robot to unscrew jam jar caps.

The robot can learn a quasi-infinity of things.

Gianluca Baldassarre’s difficult goal space

Note

Q:  Why not just program or train the robot to do its new job?

A:  Too complicated and time consuming; teaching should be
quick and effortless.

Olivier Sigaud nicely motivated why the problem cannot easily be
solved by neural networks.

Pragmatic standpoint driven by utility to humans.

4.2. Open-Ended Learning: The Challenge
In open-ended learning in the real world, both perception and action spaces
are necessarily very large.

Any perceptual detail; any motor pattern may become important in a novel
task!

Note

To be solvable, a learning problem requires

• either a strong bias,
• or a large number of training instances.

Corollary of the No Free Lunch theorems [Wolpert 1996]

The only way out:  Structure difficult learning problmes into a (partially-
ordered) set of simple learning problems!

Search Space Management

4.3. How to Build an Open-Ended Learner
Scientific Agenda:

1. Conventional Machine Learner
2. Learn Reusable Concepts
3. Shape the Hypothesis Space
4. Choose Learning Goals

Close this loop → autonomous learning strategy

4.4. Conventional Machine Learner

• Can learn one task at a time.

• Generalization capabilities critically depend on the representations of its
inputs and outputs.
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Search Space Management

4.5. Learn Reusable Concepts
Learn perceptual (features) or motor (options) concepts useful for future
learning problems
Examples:

• Representation Learning

representational rediscription

(possibly during sleep), as noted by Stéphane Doncieux and Kevin O’Regan
[Karmiloff-Smith, 1992]

• Parametrized Skills

• Hierarchical Learning
Curiosity-Driven Discovery of Tool Use [Forestier & Oudeyer, arXiv
2017]: forward-chaining of concepts

• Transfer Learning relies on concepts shared by the source and target tasks
Jochen Triesch

Note

during the IMOL 2017 panel discussion
Example: keep salad in bowl → keep water in glass relies on

• containment (matter kept in place by surrounding compartment)

• upright (normal opposite to gravity vector)
These (reusable) concepts should also generally be learned.
What about folding laundry? Requires completely different features/
actions/concepts.

Objective:

• Add the new concepts to the perception/action repertoire
• Learn constraints and biases (scaffolding)

to reduce the difficulty of subsequent learning problems.

4.6. Shape the Hypothesis Space
Begin with a reduced perception-action space or augmented learning bias;
relax these constraints as needed.
Examples:

• Maturation

• Gradual reduction of learning bias
• body height and weight for walking
• brain plasticity
• proximodistal exploration of body motor control

• Existing structure in the physical world
• Saliency
• Spatial coherence; physical contact

Kevin O’Regan’s toys attached to rakes

• Teaching
• Explicitly point out informative features or effective actions
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Conclusions

4.7. Choose Learning Goals

Choose new learning problems expected to yield reusable concepts.

Examples:

• autonomously (Artificial Curiosity)
• Pierre-Yves Oudeyer’s Intrinsically-Motivated Goal Exploration Processes
• highly powerful: goal babbling (Matthias Rolf) and empowerment

(Daniel Polani)

• parenting

4.8. And More…

• Meta-Learning – learn the above four skills

• Form associations from passive observation
• powerful way of adding structure to the perceptual space
• can be done without attention, activity, supervision, goals, etc.
• totally underused in robotics

• Knowledge Mining

5. Conclusions

5.1. Conclusions

• All practical Machine Learning systems are designed and/or trained for
given tasks; higher levels of open-ended learning are not yet within reach.

• Open-Ended Learning requires learning of reusable concepts.

• This will allow, and success will require, a combination of multiple
paradigms, including autonomous, exploratory learning (hierarchical/
transfer learning, artificial curiosity, …) and teaching.

5.2. A Learning Robot

[From the 1986 movie Short Circuit]
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