
Institute for
Theoretical Physics

Quantum Machine Learning Plus
Innsbruck, September 18, 2018

Alexey Melnikov

Machine learning for designing
new quantum experiments

Machine learning for designing new quantum experimentsAlexey Melnikov

Outline

 2

...

Clip 2

Clip 3

Clip 4

Clip 5

p13

p23
p32

p35

p41
1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Creating quantum experiments

Reinforcement learning and  
the projective simulation model

Learning to design quantum experiments
with projective simulation

Machine learning for designing new quantum experimentsAlexey Melnikov

Creating novel quantum experiments

 3

✤ Defining a research goal,
given existing tools

Creating novel experiments:

A typical example of complex arrangement of elements on
the optical table.

✤ Finding a solution that
achieves this goal

✤ Executing the found
solution in the lab:
✤ understanding what is

needed
✤ ordering things
✤ writing programs for

talking to different
devices

✤ dealing with problems

Courtesy of Manuel Erhard (University of Vienna)

Machine learning for designing new quantum experimentsAlexey Melnikov

Goal: multiphoton entanglement

 4

For example, it is known how to construct a state, but how to
construct a state?

Structure of multidimensional
entanglement in multipartite systems

Tripartite states are characterized by 3
numbers forming a Schmidt rank vector
(SRV):

, where

Or other interesting high-dimensional tripartite states.

We are interested in new implementations for the creation and manipulation of
complex quantum states.

M. Huber and J. I. de Vicente, Phys. Rev.
Lett. 110, 030501 (2013)

000 + 111
000 + 111 + 222

(rA ,rB ,rC) rn = rank Trn ψ ψ()

Machine learning for designing new quantum experimentsAlexey Melnikov

Existing tools

 5

These optical elements, if arranged in a proper way, can
create multiphoton entangled states.

Courtesy of Manuel Erhard (University of Vienna)

✤ Beam splitter

✤ OAM-Hologram
✤ Dove prism
✤ Mirror

✤ Photon source

Toolbox of optical elements:

✤ Nonlinear crystal

✤ Detector

Machine learning for designing new quantum experimentsAlexey Melnikov

Existing tools

 6

✤ Non-polarizing symmetric 50/50 beam splitter — creating superpositions

✤ OAM-Hologram — shifts OAM

✤ Dove prisms

✤ Mirror

✤ Nonlinear crystal — entangled state initialization

✤ Detector — triggering a final state

la → la + nA

la → −la

la → ieiπ l /n −la

la → 1
2

lb + i −la() lb → 1
2

la + i −lb()

ψ 0 = 1
3

−1a 1b + 0a 0b + 1a −1b()

Machine learning for designing new quantum experimentsAlexey Melnikov

Finding ways to achieve the goal

 7

a

b

c

d

measurement
ψ 0

ψ 0

Holo

Refl

BS

BS

op
tic

al
 p

at
hs

} 3-photon state
of interest

There is a similarity to:

✤ Circuit design (e.g., a generative approach by Alejandro Perdomo-Ortiz,  
a poster by In-Chan Choi)

✤ Hamiltonian design (e.g., a poster by Luca Innocenti)

✤ Quantum control

Machine learning for designing new quantum experimentsAlexey Melnikov

Finding ways to achieve the goal

 8

Turned out to be not that easy

How difficult is it to find a sequence of optical elements that has e.g
state as an output?

Number of possible configurations grows exponentially with the size of experiment.

With a reasonable limitation of 12 basic elements on the table, and having just 4
optical paths there are

More than optical setups1017

000 + 111 + 222

Machine learning for designing new quantum experimentsAlexey Melnikov

The space of possibilities is complex

 9

around 45000 randomly generated experiments  
are shown

only 67 potentially interesting experiments create
high-dimensional multiphoton entanglement

∅
{BSbc}

{BSbc , DPb , Reflb}
{BSbc , DPb}

{BSbc , DPb , Reflb ,DPb}

vertex = experiment
edge = optical element

{BSbc , DPb , Reflb ,DPb , Reflb}

Machine learning for designing new quantum experimentsAlexey Melnikov

Automating the design of experiments

 10

M. Krenn et. al., Phys. Rev. Lett. 116, 090405 (2016)

Working principle of
automated search for
quantum experiments
(MELVIN)

Machine learning for designing new quantum experimentsAlexey Melnikov

Automating the design of experiments

 11

3-dimensional GHZ state,
or (3,3,3) state

M. Krenn et. al., Phys. Rev. Lett. 116, 090405 (2016)
(3,3,3) state was implemented in arxiv:1708.03881

(10, 6, 5) state

Machine learning for designing new quantum experimentsAlexey Melnikov 12

✤ find simpler experiments (simplified automatically, not by hand)

✤ find more interesting experiments

We do it by formulating these problems as reinforcement learning problems
and solving them with projective simulation

How to do these improvements?

No, we should try to

Is automated random search good enough?

✤ try to learn from the space of possibilities

Machine learning for designing new quantum experimentsAlexey Melnikov

Reinforcement learning (RL) framework

 13

RL

action

reward

Environment

RL agent

state

Machine learning for designing new quantum experimentsAlexey Melnikov

Reinforcement learning (RL) framework

 14

RL

agent’s parameters

The agent acts according to a policy π, which maps input states to actions.

action

reward

Environment

RL agent

state

s(t) , r(t)

π (h(t)) : s(t) → a(t)
h(t)

The goal of learning is to modify the agent’s parameters, such that the agent
produces desired outputs.
Learning algorithm updates these parameters .h(t+1) = L(h(t))

Machine learning for designing new quantum experimentsAlexey Melnikov

Desired outputs

 15

RL

Desired outputs are such that they maximize some function of cumulative reward.

One usually maximizes an expected future
return

Example:
Markov Decision Processes (MDP), a class of RL environments

R(T) = γ tr (t)
t=T

∞

∑
It is possible to converge to an optimal policy
in the limit

commons:Waldoalvarez

Machine learning for designing new quantum experimentsAlexey Melnikov

RL is challenging

 16

RL is a very general machine learning framework

and a very challenging

✤ there is no teacher, and no training examples are given, only  
(often ambiguous) reward signals

✤ rewards are usually delayed, there are temporal correlations in data

✤ agent’s actions usually affect the environment, hence changing  
the subsequent data

✤ number of interactions is limited, which leads to  
the exploration-exploitation dilemma

RL

from an agent’s point of view:

Machine learning for designing new quantum experimentsAlexey Melnikov

RL is challenging

 17

✤ agent’s performance is usually very sensitive to the choice of  
meta-parameters

✤ reward function specification is hard;  
agent usually “hacks” your reward function

✤ agent’s performance is influenced by it’s individual interaction history;  
there is usually a fraction of “unlucky” agents;  
you never know if performance is bad, or you are just unlucky

RL

from a developer’s point of view:

RL is a very general machine learning framework

and a very challenging

Machine learning for designing new quantum experimentsAlexey Melnikov

Projective simulation (PS)

 18

PS

The PS model is a physical approach to agency. The PS agent processes information
stochastically in a directed, weighted network of clips, where each clip represents a
remembered percept, action, or sequences thereof.

Once a percept is observed, the network is activated, invoking a random walk
between the clips, until an action clip is hit and couples out as a real action of the
agent.

Episodic memory

H. J. Briegel and G. De las Cuevas, Sci. Rep. 2, 400 (2012)

percept
action

percept clip action clip
c1

...

c2

c3

c4

c5

c6

...

p(c2|c1)

p(c3|c1)

p(c3|c2)
p(c2|c3)

p(c5|c3)

p(c6|c5)

p(c1|c4)

Machine learning for designing new quantum experimentsAlexey Melnikov

Some features of PS

 19

PS

01

02

03 04

05

06

projective
simulation

interpretability

we can analyze the agent’s policy
by observing graph properties

low model complexity

easy to choose
parameters

low computational complexity

decision-making process is
fast, we can do many trials

conceptually attractive

clear route to quantization

the framework is general

decision-making on graphs,
flexibility of graphs

quantum walks
on graphs

Python code
ProjectiveSimulation.org

http://projectivesimulation.org

Machine learning for designing new quantum experimentsAlexey Melnikov

Learning in the PS model

 20

PS

PS network initially

()

+ �

1 1 1 1

Learning is realized by enhancing connections between relevant clips

percept clips

action clips

Learning algorithm

Reward from the environment increases the probability to do the same action.

hij
(t+1) = hij

(t) + r(t)

All edges in the network have initially the
same strength .

Strength determine the hopping probabilities
between the clips

and so the initial behaviour is random.

pij
(t) =

hij
(t)

hik
(t)

k
∑ ,

h = 1

Machine learning for designing new quantum experimentsAlexey Melnikov

Learning in the PS model

 21

PS

()

+ �

100 1001 1

PS network after learning

Learning is realized by enhancing connections between relevant clips

percept clips

action clips

Learning algorithm

Reward from the environment increases the probability to do the same action.

hij
(t+1) = hij

(t) + r(t)

All edges in the network have initially the
same strength .

Strength determine the hopping probabilities
between the clips

and so the initial behaviour is random.

pij
(t) =

hij
(t)

hik
(t)

k
∑ ,

h = 1

Machine learning for designing new quantum experimentsAlexey Melnikov

Changing environments

 22

PS

Tradeoff between flexibility and maximum
achievable success rate

Environment may change

()

+ �

()

+ �

Phase I Phase II
100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

� = 1/50 (upper)

� = 1/10 (middle)

� = 1/5 (lower)

phase I (()) phase II () ()

trials

av
er
ag
e
e�

ci
en
cy

Relearning is much faster, but the success rate is
lower Learning algorithm

hij
(t+1) = hij

(t) − γ (hij
(t) −1)+ r(t)

Machine learning for designing new quantum experimentsAlexey Melnikov

Glow mechanism

 23

PS

Learning algorithm

h (t+ 1) = h (t) − γ (h (t) − 1) + g (t+ 1)λ(t), g (t+ 1)(ci, cj) = {
1, if (ci, cj) was traversed

(1 − η) g (t)(ci, cj), otherwise

percept
action

percept clip action clip
c1

...

c2

c3

c4

c5

c6

...

p(c2|c1)

p(c3|c1)

p(c3|c2)
p(c2|c3)

p(c5|c3)

p(c6|c5)

p(c1|c4)

Machine learning for designing new quantum experimentsAlexey Melnikov

RL: navigation problems

 24

PS

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Grid world problem

Reward awaits at least 14 decisions away from the start

Percept: room coordinates (x, y)
Actions: left, right, up and down
Reward: +1 for reaching the (1, 9) room

x = 1
y = 1

x = 1
y = 2

... x = 6
y = 9

(*) +

hij

gij

The task is to find the shortest path

PS network:  
directed complete bipartite weighted graph �� �� �� �� ���

��

��

��

��

���

trials

av
er

ag
e

nu
m

be
r

of
st

ep
s

Learning curve

Machine learning for designing new quantum experimentsAlexey Melnikov

RL: navigation problems

 25

PS

Mountain car problem

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9

Reward awaits at least 86 decisions away from the start

Percept: position and velocity (x, v)
Actions: accelerate to the left, right, or no acceleration
Reward: +1 for reaching the right mountain top

The task is to find the shortest path

[x0, x1],
[v0, v1]

(x1, x2],
[v0, v1]

... (x19, x20],
(v19, v20]

� = +

hij

gij

Learning curve

��� ��� ��� ��� ����
���

���

���

���

���

trials

av
er

ag
e

nu
m

be
r

of
st

ep
s

PS network:  
directed complete bipartite weighted graph

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

Machine learning for designing new quantum experimentsAlexey Melnikov

Choice of model parameters

 26

PS

��� ��� ��� ��� ���
��

��

��

��

��

��

��

⌘ parameter

av
er

ag
e

nu
m

be
r

of
st

ep
s

���� ���� ���� ���� ����

���

���

���

���

����

⌘ parameter

av
er

ag
e

nu
m

be
r

of
st

ep
s

Mountain car problemGrid world problem

In case of low-dimensional Markov decision processes the choice of parameters
is straightforward

2 hours per agent to check
the full parameter range

6 hours per agent to check
the full parameter range

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

Machine learning for designing new quantum experimentsAlexey Melnikov

Glow parameter: heuristics

 27

PS η

 

✤ world size —  
world size —  
given that the maximum number of trials is the same

✤ maximum number of trials —  
maximum number of trials —  
given that the world size is the same

η
η

↑
↑
↓

↓

↑ η ↑
↓ η ↓

Two basic rules
��� ��� ��� ��� ���

��

��

��

��
⌘ = 0.24
⌘ = 0.1
⌘ = 10�4

trials

nu
m

be
r

of
 s

te
ps

Machine learning for designing new quantum experimentsAlexey Melnikov 28

PS

���� ���� ���� ���� ����

��

��

��

��

���

⌘ parameter

av
er

ag
e

nu
m

be
r

of
st

ep
s
l

simulations

approximation

T̃(η1)
T̃(η2)

=
(1

η1
− 1) ((1 − η1)−L − 1)

(1
η2

− 1) ((1 − η2)−L − 1)

= 0.1 = 0.2 = 0.24 = 0.3

trials

nu
m

be
r

of
 s

te
ps

pl= L(t) =
L−1

∏
m= 0

1 + tλ(1 − η)m

K + tλ(1 − η)m

lower bound on success probability relation between learning times

Approximation on the learning curves

Glow parameter: analyticsη

Machine learning for designing new quantum experimentsAlexey Melnikov

Choice of model parameters

 29

PS

14

14.5

15

15.5

≥16

" = 0.001
Q0 = 0

" = 0.005
Q0 = 0

" = 0.01
Q0 = 0

" = 0.02
Q0 = 0

" = 0.03
Q0 = 0

" = 0
Q0 = 1

" = 10�4

Q0 = 1
" = 10�3

Q0 = 1
" = 10�2

Q0 = 1
" = 0.02
Q0 = 1

�

↵

Q-learning agent

With standard tabular RL approaches it is usually more complex

120 hours per agent in the grid world problem

180 hours per agent in the mountain car problem
���

���

���

���

≥���

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

Machine learning for designing new quantum experimentsAlexey Melnikov

Choice of model parameters

 30

PS

With standard tabular RL approaches it is usually more complex

��

����

��

����

≥��

" = 0.001
Q0 = 0

" = 0.005
Q0 = 0

" = 0.01
Q0 = 0

" = 0.02
Q0 = 0

" = 0.03
Q0 = 0

" = 0
Q0 = 1

" = 10�4

Q0 = 1
" = 10�3

Q0 = 1
" = 10�2

Q0 = 1
" = 0.02
Q0 = 1

�

↵

SARSA agent

120 hours per agent in the grid world problem

180 hours per agent in the mountain car problem
���

���

���

���

≥���

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

Machine learning for designing new quantum experimentsAlexey Melnikov

Choice of model parameters

 31

PS

AAM, A. Makmal, and H. J. Briegel, arXiv:1804.08607, accepted in IEEE Access

The performance is qualitatively and quantitatively similar

��� ��� ��� ��� ���

��

��

��

��

���

trials

av
er

ag
e

nu
m

be
r

of
st

ep
s

PS softmax with ⌘ = 0.2

Q-learning with Q0 = 1,
" = 0, µ = 0.8, ↵ = 0.8

SARSA with Q0 = 1,
" = 0, µ = 0.8, ↵ = 0.8

��� ��� ��� ��� ����

���

���

���

���

���

���

trials

av
er

ag
e

nu
m

be
r

of
st

ep
s PS softmax with ⌘ = 0.024

Q-learning with Q0 = 1,
" = 0.01, µ = 0.95, ↵ = 0.25

SARSA with Q0 = 1,
" = 0.01, µ = 0.9, ↵ = 0.15

Grid world problem Mountain car problem

Machine learning for designing new quantum experimentsAlexey Melnikov

Meta-learning within PS

 32

PS

Projective Simulation
agent

Non-stationary environment,
e.g. a changing grid-world

percepts

actions

percept
action

Clip 1

Clip 2

Clip 3

Clip 4

Clip 5

Clip 6

...

p12

p13

p23
p32

p35
p56

p41

Base-level network

Clip 1

...

Clip 2

Clip 3

Clip 4

Clip 5

Clip 6

...

p12

p13

p23
p32

p35
p56

p41

Meta-level network

performance

meta-parameters

A. Makmal, AAM, V. Dunjko, and H. J. Briegel, IEEE Access 4, 2110 (2016)

PS can naturally be extended to account for meta-learning in RL

Aske Plaat: meta-learning is one of the main ML challenges

Machine learning for designing new quantum experimentsAlexey Melnikov

Generalization within PS

 33

PS

6

clips and wildcard clips are connected to matching wild-
card clips and to all actions. Note that the wildcard clips
(#, color) are never created, as no color is seen twice.

percept clips

(arrow, #) clips

(#, #) clip

action clips

(() + *)) * + ... (

 " ... #

#

(+ * ...

FIG. 7: The enhanced PS network as it is built up in the
neverending-color scenario. Each percept- and wildcard-clip
is connected to higher-level matching wildcard clips and to all
n action clips. For clarity, only one-level edges to and from
wildcard clips are solid, while other edges are semitransparent.
The thickness of the edges does not reflect their weights.

To illustrate the fundamental di↵erence in performance
between the basic- and the enhanced-PS model we con-
sider their asymptotic e�ciencies. As explained above,
the basic PS agent can only be successful with probability
1/n. To see that the enhanced PS agent can do better,
we take a closer look on the (arrow, #) clips. These clips
will, eventually, have very strong edges to the correct ac-
tion clip. In fact, in the case of zero damping (� = 0)
we consider here, the h-values of these edges will tend to
infinity with time, implying that once an (arrow, #) clip
is hit, the probability to hop to the correct action clip
becomes unity. This is illustrated for the left-arrow case
in Fig. 8.

At each time step, the agent is confronted with a cer-
tain colored arrow. The corresponding new percept clip
is created and a random walk on the network begins.
To determine the exact asymptotic e�ciency of the en-
hanced PS agent, we should consider two possibilities:
Either the wildcard corresponding clip (arrow, #) is hit,
or it is not. In the first case, which occurs with probabil-
ity p = 1/(n + 2), the excitation will hop to the correct
action with unit probability and the agent will be re-
warded. In the second case, no action is preferred over
the others and the correct action will be reached with
probability 1/n.7 Overall, the e�ciency of the enhanced
PS agents is thus given by:

E1(n) = p+(1� p)
1

n
=

1 + 2n

n(n+ 2)
>

1

n
, p =

1

n+ 2
, (3)

which is independent of the precise value of the reward
� (as long as it is a positive constant).

In Fig. 9, the average e�ciency of the enhanced PS
agents, obtained through numerical simulation, is plot-
ted as a function of time, in solid red curves, for several

7
It is possible that an edge from the full wildcard clip (#, #)

to some action clip was previously rewarded, yet when averaging

over all agents we still get an averaged success probability of 1/n.

((... (

(

 " ... #

1
1 1

1

1

1#

1

FIG. 8: The enhanced PS network as it is built up for the
neverending-color scenario with K = 2 categories. Only the
subnetwork corresponding to the left-arrow is shown. The
weight of the edge from the wildcard clip ((, #) to the cor-
rect action clip () goes to h =1 with time. Hopping to the
((, #) clip then leads to the rewarded action with certainty.
Otherwise, hopping randomly to any of the other clips is only
successful with probability 1/n. Edges that are relevant for
the analysis are solid, whereas other edges are semitranspar-
ent. The thickness of the edges does not reflect their weights.

values of n. Initially, the averaged e�ciency is 1/n, i.e.
completely random (which is the best performance of the
basic agent). It then grows, indicating that the agents be-
gin to learn how to respond correctly, until it reaches its
asymptotic value, as given in Eq. (3) and marked in the
figure with a dashed blue line. It is seen that in these
cases, the asymptotic e�ciency is achieved already after
tens to hundreds time steps (see the next Section for an
analytical expression of the learning rate). The simula-
tions were carried with 105 agents and a zero damping
parameter (� = 0). Since the asymptotic e�ciency of
Eq. (3) is independent of the reward � and to ease the
following analytical analysis, we chose a high value of
� = 1000. Setting a smaller reward would only amount
to a slower learning curve, but with no qualitative di↵er-
ence.

n = 5

n = 3

n = 2

e�
ci
en
cy

E t
(n
)

time step

FIG. 9: Learning curves of the enhanced PS agents in the
neverending-color scenario for n = 2, 3 and 5 actions. Simu-
lations over 105 agents are shown in red, where a high reward
of � = 1000 was used. Asymptotic e�ciencies E1(n) (Eq. (3))
are shown in dashed blue. The corresponding analytical ap-
proximation curves (Eq. (4)) are shown in dotted black.

We have therefore shown that the generalization mech-
anism leads to a clear qualitative advantage in this sce-
nario: without it the agent can not learn, whereas with

AAM, A. Makmal, V. Dunjko, and H. J. Briegel, Sci. Rep. 7, 14430 (2017)

A dynamic and autonomous machinery that enables PS agents to generalize

Machine learning for designing new quantum experimentsAlexey Melnikov

PS in robotics

 34

PS

S. Hangl, E. Ugur, S. Szedmak, and J. Piater, IEEE/RSJ IROS, p. 2799 (2016)

Regression (MMR [7]). In the playing phase the data required to
initialize the classifier is generated autonomously as well. We also
show how the robot can create skill hierarchies by adding complex
skills to its repertoire of preparatory skills. In this way, the robot
can learn increasingly more complex tasks over time.

II. RELATED WORK

Belief-space planning where the systems state is partially ob-
served by sensors is similar in nature. In most belief-space planning
methods a control policy is trained and at each time step the next
commands are predicted [8], [9]. These commands are given in the
action space of the robot, while we select complete controllers.
This causes a significant reduction of the learning complexity.
Such macro actions were used in a navigation task to reduce the
dimensionality [10]. However, these macro actions were limited to
the navigation domain (e.g. relocation primitives). In a manipulation
scenario, this method would require pre-defined primitives, which is
hard to achieve generally. Other related work uses haptic feedback
to derive information about the environment. Robots can learn the
meaning of haptic adjectives that were previously assigned to a set
of objects by interacting (tap, squeeze, slide, . . .) with them [11].
Similarly, interaction primitives were used to classify objects by
using haptic feedback clustered with K-means [12]. Similar in spirit,
these methods do only deal with the estimation of properties and
not with manipulation. Associative skill memories on the other hand
[13] assign typical task-specific force patterns to manipulations.
The patterns are used to predict the success of manipulation during
execution. Therefore the robot can react in time and change the
trajectory accordingly. Jain et. al. transferred haptic time series
collected from stereotypical tasks performed by humans to robotic
manipulation [14]. The data was used categorize objects or detect
anomalies during the execution. Manipulation primitives have been
proposed in order to estimate object poses and further afforded
actions [15]. Primitives are composed in order to transfer the object
to a pose in which a task can be executed. Even though using similar
ideas, our approach is not limited to object poses as state space.
Vigorito et. al. [16] predicted manipulation effects (in contrast to
our method) and composed skills by planning in state space by
optimizing intrinsic reward. Another class of competitors are logic-
based planning systems, e.g. STRIPS [17], where provably-correct
plans are derived to achieve a certain goal by matching pre- and
post-conditions of action primitives. This requires a higher level of
abstraction and often prior knowledge (e.g., how abstract symbols
are created from real-world data). In contrast, our method does
not predict outcomes of actions, but learns successful sequences
of actions in an open loop. Open-loop planners for grasping [18],
[19] rearrange the objects in clutter in order to perform simpler
grasps. However, this method is restricted to the grasping domain.
Applications of deep learning to robotics (Levine et. al. [20]) are
interesting in this context as they require a high autonomy because
of the huge data demand. Large scale autonomous experiments were
performed to train a CNN for grasp success prediction, which is
used to servo the robot in a closed loop. In contrast to our work
they do not need to design internal representations but require a
huge amount of data.

III. SYSTEM ARCHITECTURE

The method comprises two interrelated pathways, the execution
pathway and the playing pathway. The execution pathway is used to
execute a complex skill, i.e. to execute the sensing action, estimate
the perceptual state from haptic data, perform the preparatory
action and finally execute the complex skill. Initially, the system

#

Slide Poke ... Sense N

1 .. N1 1 .. N2 1 .. NN...

ps1 ps2
ps...

psN

MMR Classifier

Flip ... Push

Sensing
actions (layer 2)

Environment
states
(layer 3)

Preparatory
actions (layer 4)

layer 1

Fig. 2. ECM in the hierarchical skill learning scenario for one complex
skill.

does not know which sensing action and which preparatory skills
are required to achieve a certain task. It also has no information
about what haptic feedback corresponds to which predefined (or
automatically generated) discrete perceptual states. The playing
pathway is used to acquire this information by playing with the
object. In order to train a novel skill, the robot needs to gather
haptic information about the perceptual states it might observe (e.g.
the rotation of a book or information whether a box is opened
or closed) and explores the environment with its sensing actions.
Each action Si is assumed to leave the perceptual states ESij

unchanged (e.g., they do not change the rotation of a book) and
can therefore be performed multiple times. This is important in
order to create a haptic database for each state ESij . After creating
this database the system is trained to select a sensing action and to
pick the preparation skill that ensures the successful execution of
the novel skill given an estimated perceptual state. This is achieved
by a reinforcement learning method called projective simulation
(PS) [6]. In each roll-out (skill execution, reward collection and
model update) the execution pathway is performed and the reward
is measured until the success rate reaches a certain threshold.
When the success rate for the novel skill is high enough, it is
added to the set of preparatory skills. This way, the construction
of skill hierarchies is possible, as a complex skill can be used
as a preparatory action for another complex skill. For example,
placing a book on a shelf requires grasping it first. If the robot
only knows how to push objects, it will not be able to perform the
complex placing action. However, as soon as it has learned how to
properly grasp a book, it can do the placement by using grasping
as a preparatory skill.

A. Execution pathway
In order to execute a novel complex skill that was trained by

playing, the following steps are executed (Fig. 3(b)):
• Select a sensing action in order to collect data for perceptual

state estimation.
• Perform the sensing action and measure haptic data.
• Estimate the perceptual state by classifying the haptic data.
• Select and execute a preparatory skill to transform the environ-

ment into a state in which the complex action can be executed
successfully.

• Execute the complex skill, e.g. by replay of trained trajectories
or execution of hard-coded controllers.

1) relational model for sensing / preparation pairs: The re-
lational model is the heart of the method and is used for two
essential tasks: (1) selecting the best sensing action given a desired
task, and (2) selecting the correct preparatory action given the
estimated perceptual state. We use projective simulation (PS) for
skill execution and skill learning. PS is a reinforcement learning
method that consists of an episodic and compositional memory

2800

Slide

bottom binding open top

Poke

1 2 3 4

Press

1 2 3 4

push 90 push 180 push 270 flip nothing

Fig. 4. Qualitative sketch of the episodic memory after learning how to
grasp a book. Coloured lines indicate a high probability of the transition.
Semantic labels are assigned to perceptual states if available.

h(ci, cj). Sensing actions that can discriminate well between their
states should be preferred, and the discrimination score Di can
be used as an initial transition weight between the #-clip (starting
clip of each random walk) and clip Si with pSi / hSi = Di.
The transition probabilities between layers 2 and 3 are given by
the time series classifier, where only the transition to the predicted
state has nonzero probability. The weights from layer 3 to layer 4
are initialized with the constant value hinit (uniform distribution).

3) Relation learning: In order to learn which sensing actions
are discriminative for a given task and which preparatory skills
should be used in an observed state, PS provides a way to update
the transition weights by using external rewards. The update is
done with a modified version of the original PS update rules [6].
Random-walk paths should be more likely in future situations if
the action taken was rewarded, i.e. the complex action succeeded
after performing the preparation action, and should be less likely
otherwise. Let {s = c1 ! c2 ! · · · ! cK = a} be a random walk
path that received a reward �(t) 2 R. The weights are updated by

ht+1
ij|{z}

next weight

= max(1.0, ht
ij|{z}

current weight

� �
�
ht
ij � 1

�
| {z }

damping

+⇢ij �(t)

|{z}
reward

) (3)

where ht
ij = ht (ci, cj). ⇢ij is 1 if the path consists of a transition

ci ! cj and 0 otherwise. The forgetting factor � defines how
quickly the model forgets previously-achieved rewards for a given
path. It should only be nonzero if the robot is placed in an
environment where the behaviour of the objects changes slowly over
time (e.g., the object can break and change its physical properties
after manipulating it for a few hours).

4) Building skill hierarchies: If complex skill A can be executed
with a certain confidence, it is added to the ECM of another
complex skill B by connecting it to each clip in layer 2 with the
initial weight hinit. The robot then goes back to the playing phase for
skill B. If B already has a high confidence, the transition weights
to certain preparatory skills will be high compared to hinit and the
probability of exploring the new preparatory skill A is low but
nonzero. If the confidence is low, all weights will be low and the
robot will start exploring the novel preparatory skill. Thus, PS is
well suited for constructing skill hierarchies.

IV. EVALUATION

For evaluation we apply our approach to a complex book grasping
task in an autonomous playing scenario. In a placement task a skill
hierarchy using the grasping skill is learned. We use statistics (e.g.
experimental success rates of skills) of the book grasping scenario
to simulate the convergence behaviour of the same setting in case
more preparatory skills are used. We further show that the same

Drop into box

Tabletop grasp

Rot 90 Rot 180 Rot 270 Nothing

Handover grasp

Lean against wall

Tabletop grasp

Rot 90 Rot 180 Rot 270 Nothing

Fig. 6. Skill hierarchies for given complex skills (sub-skills with very low
usage probability are omitted). For leaning vertically the correct orientation
of the book matters. For the tabletop grasp the book is always grasped at the
binding side, whereas in the handover grasp this is not the case (handover
grasp is omitted). For dropping the book orientation does not matter and
the hand-over grasp is considered.

sensing actions and preparatory skills can be used for the different
problem of placing an object into a (closed) box.

A. Applicability to real-world tasks
We apply our method to a book grasping task (see video 2). The

main challenge is to get a finger underneath the book in order to
grasp it. The book is grasped by squeezing it between both hands,
lifting it on the binding side and then using in-hand manipulation
to wrap the fingers around it. It is easy to teach this skill for a
single specific situation (e.g. by kinesthetic teaching) but hard to
generalize to arbitrary situations because of the complex interplay
of two arms and the book in several different orientations.

The experiments were performed with two KUKA LWR 4+
robotic arms with Schunk SDH grippers (Fig. 5(a)). Different types
of books (soft-cover, hard-cover, varying sizes) were used to train
the haptic database. All experiments were performed with the built-
in impedance mode of the KUKA arms, which allows books of
different dimensions to be handled without explicitly coding them
into the skills.

Three different sensing actions were used: Sliding (finger slides
along the edge that is parallel to the table edges, while the second
hand keeps the object in place), Poking (the object is poked from
the top) and Pressing (the book is squeezed between the 2 hands).
As preparatory skills we used a discretised version (90, 180 and
270 degrees) of a rotation controller that rotates the object by
an arbitrary angle. We also used a flipping controller (flipping
the book upside down). The reward was estimated automatically
by measuring the force on the end-effector. After rewarding the
book was dropped onto the table and a random rotation action
was selected to prepare another random starting state. The learning
parameters of the PS model were set to �succ = 1000 (successful
roll-outs), �fail = �30, hinit = 200 and � = 0 (no forgetting).

One of the challenges was to design robust controllers for
autonomous play. All the controllers and machine learning tech-
niques were developed within the kukadu framework34. The code
is available online and free to use. The robot was made to play
for 100 roll-outs. For creation of the haptic database the book was
pushed clockwise by 90 degrees in order prepare the perceptual
states autonomously. At each rotation, 50 samples per sensing
controller were collected. A qualitative sketch of the learned ECM is
shown in Fig. 4. The thick, coloured lines correspond to transitions
with high weights and high probability. The dominant sensing
action is the sliding action, and its child states have a semantic
meaning, i.e., the orientation of the book. The transitions between
the state clips and the preparatory skills match the ground truth. The

2https://iis.uibk.ac.at/public/shangl/iros2016/iros.mpg
3https://github.com/shangl/kukadu
4https://github.com/shangl/iros2016

2802

Robotic Playing for Hierarchical Complex Skill Learning

Simon Hangl, Emre Ugur, Sandor Szedmak and Justus Piater1

Abstract— In complex manipulation scenarios (e.g. tasks requiring
complex interaction of two hands or in-hand manipulation), generaliza-
tion is a hard problem. Current methods still either require a substantial
amount of (supervised) training data and / or strong assumptions
on both the environment and the task. In this paradigm, controllers
solving these tasks tend to be complex. We propose a paradigm of
maintaining simpler controllers solving the task in a small number of
specific situations. In order to generalize to novel situations, the robot
transforms the environment from novel situations into a situation where
the solution of the task is already known. Our solution to this problem
is to play with objects and use previously trained skills (basis skills).
These skills can either be used for estimating or for changing the
current state of the environment and are organized in skill hierarchies.
The approach is evaluated in complex pick-and-place scenarios that
involve complex manipulation. We further show that these skills can
be learned by autonomous playing.

I. INTRODUCTION

Complex object manipulation in uncontrolled environments is a
hard and not yet completely solved problem in robotics. One of the
major issues in this context is the problem of generalizing motor
skills [1]–[4]. Much of it incorporates a paradigm where the aim
is to adapt the controller itself to the changing environments. This
increases the complexity of the manipulation controller, as it should
deal with a wide range of different situations.

We propose to combine simpler and previously-learned skills
in order to achieve more complex tasks. The aim is to exploit
simple skills to transfer the environment into a state where simple
controllers can achieve the desired complex task. This allows the
complexity of the controllers to be reduced, as they do not have to
deal with generalization.

Humans use similar behavioural patterns e.g. in sports such as
golf. The player always tries to stand in the same position relative
to the ball instead of adapting the swing itself in order to hit
the ball from another position. Therefore, the player is able to
execute the same (or very similar), previously-learned trajectories.
This can highly reduce the training cost by constraining the search
space. We emphasize that in most approaches in robotics, the robot
would have to adapt the swing in order to hit the ball from many
different positions. A similar strategy seems to be exploited by
human infants. Piaget observed similar patterns in infant playing
at the age between 8 and 12 months [5]. This stage in the life
of infants is called the coordination of secondary schemata and
Piaget calls it the stage of first actually intelligent behaviours.
Infants use previously-learned skills to bring the objects into a
state where they can perform an intended action (e.g. kicking an
obstacle out of the way to grasp an object; pulling a string attached
to an object to bring it within reach). An important property of this
stage is that they do not predict the effects of these actions directly,
but rather learn to compose previously-known skills to achieve a
specific task. They do not have an understanding of what the effect
of a manipulation is. However, they know that a composition of
certain skills leads to a successful manipulation. In this paper we
propose a method that follows a similar paradigm. The robot holds

1Department of Computer Science, University of Innsbruck, 6020 Inns-
bruck, Austria first.last@uibk.ac.at

Fig. 1. Book manipulation: Infant vs. autonomous robot

a set of preparatory skills. These are used to bring the system
from an arbitrary state to a state where a desired complex skill
can be executed with limited generalization demands. Let s be the
complete (and unknown) physical state of the system the robot is
located in. We use a set S of sensing actions Si 2 S and the haptic
sensor data tSi (s) / p (tSi | s) collected during the execution of
Si to gather task-relevant information from the environment. We
use a classifier to estimate discrete sensing action-dependent state
labels ESij / p (ESi = ESij |tSi). In the remainder of the paper
we will refer to these estimated labels ESij as the perceptual state
(given the sensing action Si). These labels can be predefined by
supervision or generated from experience. Given the observed state
ESij the robot will pick an appropriate preparatory skill. After
preparation, the complex skill is executed in order to achieve a
desired task. For clarity we will illustrate the single components
in a tabletop book grasping scenario (Fig. 1). In this case the
robot cannot perform conventional grasping strategies because it
cannot get the fingers below book. The complex skill involves the
coordination of two hands, where one hand prevents the book from
sliding while the other presses against the binding of the book and
tries to lift it. The second hand performs an in-hand manipulation
to position a finger underneath the book in order to finally grasp it
(Fig. 1). The relevant perceptual state, namely the robot-relative
orientation of the book, can be determined by a sliding action
(sensing action) along the book surface. The complex behaviour
is shown for one specific orientation. Pushing controllers might
be handy to prepare this orientation from an arbitrary orientation.
Therefore, pushing controllers are good preparatory skills for this
task.

The learning problem solved in this paper is how to au-
tonomously learn to generalize complex skills shown by kinesthetic
teaching (or hard-coding) within the paradigm described above.
This involves the selection of the best sensing action and the best
preparatory skill given a specific perceptual state in a so-called
playing phase. We do this by using a reinforcement learning method
called projective simulation (PS [6]) which is well suited for this
type of learning problems. Further, we show how the sensor data
gathered during the sensing action can be mapped to the discrete
perceptual state by a data-driven classifier called Maximum Margin

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 2799

A talk by Justus Piater on Friday

PS in the problem of learning complex haptic manipulation skills

Designing experiments with machine learningAlexey Melnikov 35

Ui 0 = pij
j=1

N

∑ cj .

A quantum walk in the memory is characterised by N unitaries

Two-qubit probability unitaries for PS network with 4 memory units

V. Dunjko, N. Friis, and H. J. Briegel, New J. Phys. 17(2), 023006 (2015)

A quantum state of the memory with N clips can be described by a state vector
ci = i .

N. Friis, AAM, G. Kirchmair, and H. J. Briegel, Sci. Rep. 5, 18036 (2015)

Quantum PS agentPS

G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado, H. J. Briegel PRX 4, 031002 (2014)

Designing experiments with machine learningAlexey Melnikov 36

2

(A)

En
vi
ro
nm
en
t

Sensors

Actuators

Projective
Simulation

Memory

Percepts

Actions

Agent

(B)

Q-RPS

FIG. 1. Learning agent & quantum reflecting projec-
tive simulation (Q-RPS). (A) Learning agents receive per-
ceptual input (“percepts”) from and act on the environment.
The projective simulation (PS) decision-making process draws
from the agent’s memory and can be modeled as a random
walk in a clip network, which, in turn, is represented by a
stochastic matrix P . (B) Q-RPS agents enhance the relative
probability of (desired) actions (green columns) compared to
other clips (grey) that may include undesired actions or per-
cepts (blue) within the stationary distribution of P before
sampling, achieving a quadratic speed-up w.r.t. to classical
RPS agents.

contrast, is able to obtain such an action quadratically
faster, i.e., within a time of the order 1/

p
�✏.

Here, we report on the first proof-of-principle exper-
imental demonstration of quantum-enhanced reinforce-
ment learning system, complementing the recent exper-
imental works in the context of (un)supervised learning
[16–18]. We model the deliberation process of an RPS
learning agent in a system of two qubits that are encoded
in the energy levels of one ion each. Within experimen-
tal uncertainties, our results confirm the agent’s action
output according to the desired distributions and within
deliberation times that are quadratically improved with
respect to comparable classical agents. This laboratory
demonstration of speeding up a learning agent’s delibera-
tion process can be seen as the first experiment combining
novel concepts from machine learning with the potential
of ion trap quantum computers where complete quantum
algorithms have been demonstrated [19–22] and feasible
concepts for scaling up [23–25] are vigorously pursued.

THEORETICAL FRAMEWORK OF RPS

A generic picture for modeling autonomous learning
scenarios is that of repeated rounds of interaction be-
tween an agent and its environment. In each round the
agent receives perceptual input (“percepts”) from the
environment, processes the input using an internal de-

liberation mechanism, and finally acts upon (or reacts
to) the environment, i.e., performs an “action” (see, e.g.,
Ref. [13]). Depending on the reward system in place and
the given percept, such actions may be rewarded or not,
which leads the agent to update its deliberation process,
the agent learns.
Within the projective simulation (PS) [13] paradigm

for learning agents, the decision-making procedure is cast
as a (physically motivated) stochastic di↵usion process
within an episodic compositional memory (ECM), i.e., a
(classical or quantum) random walk in a representation
of the agent’s memory containing the interaction history.
One may think of the ECM as a network of clips that
can correspond to remembered percepts, remembered ac-
tions, or combinations thereof. Mathematically, this clip
network is described by a stochastic matrix (defining a
Markov chain) P = (pij), where the pij with 0  pij  1
and

P
i pij = 1 represent transition probabilities between

the clips labeled i and j with i, j 2 {1, 2, . . . , N}. The
learning process is implemented through an update of
the N ⇥N matrix P , which, in turn, serves as a basis for
the random walks in the clip network. Di↵erent types of
PS agents vary in their deliberation mechanisms, update
rules, and other specifications.
In particular, one may distinguish between PS agents

based on “hitting” and “mixing”. For the former type of
PS agent, a random walk could, for instance, start from
a clip c1 called by the initially received percept. The
first “step” of the random walk then corresponds to a
transition to clips cj with probabilities p1j . The agent
then samples from the resulting distribution {p1j}j . If
such a sample provides an action, e.g., if the clip ck is
“hit”, this action is selected as output, otherwise the
walk continues on from the clip ck. An advanced variant
of the PS model based on “mixing” is reflecting projec-
tive simulation (RPS) [15]. There, the Markov chain is
first “mixed”, i.e., an appropriate number 2 of steps are
applied until the stationary distribution is attained (ap-
proximately), before a sample is taken. This, or other im-
plementations of random walks in the clip network pro-
vide the basis for the PS framework for learning. The
classical PS framework can be used to solve standard
textbook problems in reinforcement learning [26–28], and
has recently been applied in advanced robotics [29], adap-
tive quantum computation [30], as well as in the machine-
generated design of quantum experiments [31].

Here, we focus on RPS agents, where the deliberation
process based on mixing allows for a speed-up of Q-RPS
agents w.r.t. to their classical counterparts [15]. In con-
trast to basic hitting-based PS agents, the clip network of
RPS agents is structured into several sub-networks, one
for each percept clip, and each with its own stochastic
matrix P . In addition to being stochastic, these matri-

2
The mixing time depends on the spectral gap � of the Markov

chain P , i.e., the di↵erence between the two largest eigenvalues

of P [15].

T. Sriarunothai, et al., arXiv:1709.01366

Quantum PS agent

✤ quadratic speed-up in preparing a  
stationary distribution

O 1
δ

⎛
⎝⎜

⎞
⎠⎟

O 1
ε

⎛
⎝⎜

⎞
⎠⎟

✤ quadratic speed-up in sampling 
an action

δ - spectral gap of the stochastic 
 matrix

ε - probability of sampling an action  
 from the stationary distribution

PS

G. D. Paparo, et al., PRX 4, 031002 (2014)

Designing experiments with machine learningAlexey Melnikov 37

There are several posters about PSPS

✤ Andrea López-Incera

✤ Lea Trenkwalder ✤ Arne Hamann

Machine learning for designing new quantum experimentsAlexey Melnikov

RL in quantum laboratory

 38

AAM, H. Poulsen Nautrup, M. Krenn, V. Dunjko, M. Tiersch, A. Zeilinger, and H. J. Briegel,  
PNAS 115, 1221 (2018)

Environment

Analyzer

Optical table

PS agent

percept:

action:

optical element

optical setup

reward

Machine learning for designing new quantum experimentsAlexey Melnikov

Why RL?

 39

Exploration space Scale-free network Complex maze

Navigation in the maze Mountain car task

Design of new experiments is a navigation in a complex network

Machine learning for designing new quantum experimentsAlexey Melnikov

Episodic memory of the PS agent

 40

optical setups

(percept clips)

placings of an

optical element

(action clips)

pij

s1 s2 s3 s4 s5 s6 s7 s8 s9 ... sN

a1 ... a4 ... a8 ... a12 ... a18 ... a30

BSab BSbc DPb Reflb Holoa,2 Holod,2

6⇥BS 4⇥DP 4⇥Refl 16⇥Holo

∅ {BSbc} {BSbc , DPb} {BSbc , DPb , Reflb}

{BSbc , DPb , Reflb , BSbc}

hij
(t+1) = hij

(t) − γ (hij
(t) −1)+ gij

(t)λ , g(t+1) = (1−η)g(t)
Learning algorithm

Machine learning for designing new quantum experimentsAlexey Melnikov

Clip composition and clip deletion

 41

We create composite actions in case a sequence of actions is rewarded

We delete percepts (with edges) if the experiment didn’t show nontrivial SRV
We delete composite actions stochastically depending on their connectivities

✤ Clip composition

✤ Clip deletion

{BSbc , DPb , Reflb , BSbc}

{BSbc , DPb , Reflb , BSbc ,Holoa2}optical setups

(percept clips)

placings of an

optical element

(action clips)

pij

s1 s2 s3 s4 s5 s6 s7 s8 s9 ... sN

a1 ... a4 ... a8 ... a12 ... a18 ... a30 a31 a32 ...

basic actions

composite actions
BSab BSbc DPb Reflb Holoa,2 Holod,2

pdel
aj

(t) = N(t)
∑N(t)

k= 1 hkj(t)

N(t)

= (N(t) + NR(t)
N(t))

−N(t)
≈1 − NR(t)

Machine learning for designing new quantum experimentsAlexey Melnikov

PS agent designs new quantum experiments

 42

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach

0.001

0.100

10

1000

222 322 332 333 432 442 532 542 543 644 652 662 763

SRV class

nu
m
b
er

of
d
i↵
er
en
t

ex
p
er
im

en
ts

AS, L = 6

PS, L = 6

AS, L = 8

PS, L = 8

AS, L = 10

PS, L = 10

AS, L = 12

PS, L = 12

a b

c d

e

6 7 8 9 10 11 12
0

200
400
600
800
1000
1200
1400

0
200
400
600
800
1000
1200
1400

maximum length of experiment, L

nu
m
b
er

of
in
te
re
st
in
g

ex
p
er
im

en
ts

projective simulation

automated search

Machine learning for designing new quantum experimentsAlexey Melnikov

PS agent designs new quantum experiments

 42

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach

0.001

0.100

10

1000

222 322 332 333 432 442 532 542 543 644 652 662 763

SRV class

nu
m
b
er

of
d
i↵
er
en
t

ex
p
er
im

en
ts

AS, L = 6

PS, L = 6

AS, L = 8

PS, L = 8

AS, L = 10

PS, L = 10

AS, L = 12

PS, L = 12

a b

c d

e

0 2 4 6 8 10
0

2

4

6

8

10

0

2

4

6

8

10

number of experimentsfr
ac
ti
on

of
in
te
re
si
n
g

ex
p
er
im

en
ts

⇥103

⇥
10

�
2

L = 12

Machine learning for designing new quantum experimentsAlexey Melnikov

PS agent designs new quantum experiments

 42

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach

0.001

0.100

10

1000

222 322 332 333 432 442 532 542 543 644 652 662 763

SRV class

nu
m
b
er

of
d
i↵
er
en
t

ex
p
er
im

en
ts

AS, L = 6

PS, L = 6

AS, L = 8

PS, L = 8

AS, L = 10

PS, L = 10

AS, L = 12

PS, L = 12

a b

c d

e

6 7 8 9 10 11 12

6

8

10

12

6

8

10

12

maximum length of experiment, L

nu
m
b
er

of
S
R
V

cl
as
se
s

projective simulation

automated search

Machine learning for designing new quantum experimentsAlexey Melnikov

PS agent designs new quantum experiments

 43

1. The PS agent autonomously learned
to design target states (success
curve)

2. The PS agent automatically learned
to optimize the length of those
experiments (length curve)

0 10 20 30 40 50
4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

number of experiments

le
n
gt
h
of

ex
p
er
im

en
t

su
cc
es
s
p
ro
b
ab

il
it
y

⇥103

(3, 3, 2) states

0 10 20 30 40 50 60
4

5

6

7

8

0

0.2

0.4

0.6

0.8

1

number of experiments

le
n
gt
h
of

ex
p
er
im

en
t

su
cc
es
s
p
ro
b
ab

il
it
y

⇥103

(3, 3, 2) states (3, 3, 3) states

3. The PS agent uses the knowledge of
building (3,3,2)-states to construct
(3,3,3)-states (second phase curves)

Machine learning for designing new quantum experimentsAlexey Melnikov

Explored space of experiments

 44

Machine learning for designing new quantum experimentsAlexey Melnikov

Discovering entanglement classes

 45

Frequently Occuring Percepts

69

{BS[2, 4], DP[2], Refl[4], BS[2, 4]} the most frequently seen percept

{3, 2, 3} 9478 1355 1334 {Holo[1, -2], Refl[3], Holo[4, -1], BS[3, 4], BS[1, 4]}
{3, 4, 5} 662 11216 41 {Holo[1, -2], Refl[3], Holo[4, 2], BS[3, 4], BS[1, 4]}
{3, 6, 7} 235 11873 49 {Holo[1, -2], Refl[3], Holo[4, 3], BS[3, 4], BS[1, 4]}
{3, 2, 2} 2017 14189 126 {Holo[1, -1], BS[2, 3], BS[2, 4], DP[2], Refl[4], BS[2, 4]}
{2, 4, 4} 790 14311 170 {DP[1], Refl[1], BS[1, 3], BS[2, 4], Holo[4, 2], BS[3, 4]}
{3, 2, 4} 553 19043 22 {Holo[3, -2], BS[2, 3], BS[2, 4], DP[2], Refl[4], BS[2, 4]}
{2, 2, 2} 55 20178 8 {Holo[1, 2], BS[2, 4], DP[2], Refl[4], BS[2, 4], BS[1, 4]}
{3, 3, 3} 43 20178 5 {Holo[1, 2], BS[2, 4], DP[2], Refl[4], BS[2, 4], BS[1, 4]}
{3, 5, 2} 1385 22344 283 {Holo[1, 2], BS[1, 3], Holo[2, -1], BS[1, 2], DP[4], Holo[4, -2]}
{2, 6, 6} 691 23051 190 {Holo[1, 2], BS[1, 3], Holo[4, -4], BS[3, 4]}
{4, 2, 5} 1596 31806 453 {Holo[1, 2], BS[1, 4], Holo[1, -2], BS[1, 2], Refl[3], Holo[3, -1]}
{5, 3, 3} 6 84602 3 {Holo[4, 3], BS[1, 4], BS[2, 4], DP[2], Holo[3, 0], Refl[4], BS[2, 4]}

Certain elements combinations appear in different setups

Machine learning for designing new quantum experimentsAlexey Melnikov

Discovering entanglement classes

 46

Frequently Occuring Percepts

70

{DP[1], BS[2, 4], Refl[3], BS[1, 3]} the most frequently seen percept

{2, 3, 3} 23131 2212 2364 {DP[1], BS[2, 4], Refl[3], BS[1, 3]}
{3, 2, 2} 338 5002 20 {DP[1], BS[2, 4], Refl[3], BS[1, 3], Holo[4, -1], BS[1, 4]}
{3, 5, 2} 1962 5608 474 {Holo[1, -1], Holo[2, 2], BS[2, 3], BS[1, 2]}
{2, 2, 2} 96 13615 8 {DP[1], BS[2, 4], Refl[3], BS[1, 3], Holo[1, 2], BS[1, 4]}
{3, 3, 3} 96 13615 8 {DP[1], BS[2, 4], Refl[3], BS[1, 3], Holo[1, 2], BS[1, 4]}
{4, 4, 2} 198 13618 21 {DP[1], BS[2, 4], Refl[3], BS[1, 3], Holo[2, 2], BS[2, 3]}
{4, 5, 2} 1894 17268 449 {Holo[1, -2], Holo[2, 2], BS[2, 3], BS[1, 2]}
{3, 5, 4} 11 19888 4 {Holo[1, -2], Holo[3, -1], Refl[3], Holo[3, 1], BS[3, 4], BS[1, 3]}
{3, 7, 6} 9 38218 2 {Holo[1, -2], Holo[3, -2], Refl[3], Holo[3, 1], BS[3, 4], BS[1, 3]}
{2, 6, 6} 461 51830 85 {DP[1], BS[2, 4], Refl[3], BS[1, 3], Holo[4, 3], BS[3, 4]}

Different agents have different sequences

These sequences can appear in different parts of an experiment

Machine learning for designing new quantum experimentsAlexey Melnikov

Episodic memory analysis

 47

Let’s look inside the memory of the PS agent
And output clips with the strongest connectivities

…

Machine learning for designing new quantum experimentsAlexey Melnikov

Something surprising

 48

Let’s look inside the memory of the PS agent

(a) — parity sorter, which was originally designed for a different task

(b) — new parity sorter, equivalent to (a) in the Klyshko wave front picture

(c) — new method to increase dimensionality of photons

And output clips with the strongest connectivities

Most connected clips:

11% 21% 24%

a b c

Machine learning for designing new quantum experimentsAlexey Melnikov

Summary

 49

(1) many more interesting experiments are found
(2) short implementations of these experiments are
learned

✤ A search for new quantum experiments can be formulated as a RL problem

✤ Solving this RL problem with PS sets a new level of performance

(3) experimental techniques are discovered

Can machines genuinely contribute to scientific research?

optical setups

(percept clips)

placings of an

optical element

(action clips)

pij

s1 s2 s3 s4 s5 s6 s7 s8 s9 ... sN

a1 ... a4 ... a8 ... a12 ... a18 ... a30

BSab BSbc DPb Reflb Holoa,2 Holod,2

6⇥BS 4⇥DP 4⇥Refl 16⇥Holo

Environment

Analyzer

Optical table

PS agent

percept:

action:

optical element

optical setup

reward

Machine learning for designing new quantum experimentsAlexey Melnikov

Outlook

 50

Thank you for your attention!
Active learning machine learns to create new quantum experiments

PNAS 115, 1221(2018)

The described RL methodology can be applied beyond the considered example

The same can be used if at least one of these things is true:

✤ there exists a set of goal states, in which these states are correlated

✤ finding the simplest implementation is of interest, in case of a  
complex space of possibilities

ProjectiveSimulation.org

Environment

Analyzer

Optical table

PS agent

percept:

action:

optical element

optical setup

reward

http://ProjectiveSimulation.org

