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(2) Outline

Creating quantum experiments

Reinforcement learning and
the projective simulation model

Learning to design quantum experiments
with projective simulation
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(&) Creating novel quantum experiments

Creating novel experiments:

% Defining a research goal,
given existing tools

+ Finding a solution that
achieves this goal

< Executing the found
solution in the lab:

< understanding what is
needed

< ordering things

< writing programs for
Courtesy of Manuel Erhard (University of Vienna) talking to different
A typical example of complex arrangement of elements on devices
the optical table. < dealing with problems

- Pn”ni‘s’g{aigﬁt Alexey Melnikov Machine learning for designing new quantum experiments



@ Goal: multiphoton entanglement

We are interested in new implementations for the creation and manipulation of
complex quantum states.

For example, it is known how to construct a|000)+|111) state, but how to
construct a |000)+|111)+|222) state?

Or other interesting high-dimensional tripartite states.
Tripartite states are characterized by 3
numbers forming a Schmidt rank vector
(ry,75,7-), wherer, = rank(Trﬁ l//><l//‘)

Structure of multidimensional
entanglement in multipartite systems

(4,3,2)

M. Huber and |. |. de Vicente, Phys. Rev.
Lett. 110,030501 (2013)
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(&) Existing tools

Toolbox of optical elements:

Photon source
Nonlinear crystal
OAM-Hologram
Dove prism
Mirror

Beam splitter

o f e fe e e

Detector

Courtesy of Manuel Erhard (University of Vienna)

These optical elements, if arranged in a proper way, can
create multiphoton entangled states.

M universitat
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@ Existing tools
<+ Nonlinear crystal — entangled state initialization
1
‘l//o>: ﬁ(|_1a>|lb>+|0a>|0b>+ 1a> _1b>)
+ OAM-Hologram — shifts OAM

[)—>|l,+n,)

<« Mirror

L) =|=L)

<+ Dove prisms

_la>

< Non-polarizing symmetric 50/50 beam splitter — creating superpositions
1 1

la>%$(|lb>+i|_la>) |lb>%$(|la>+i|_lb>)

. iml/n

|la>%l€

<+ Detector — triggering a final state

. i“n”rig’gﬁf‘iéﬁt Alexey Melnikov Machine learning for designing new quantum experiments



@ Finding ways to achieve the goal

a measurement
(Vy)
i
s b
S 3-photon state
O .
.é_ of interest
d

There is a similarity to:

+ Circuit design (e.g., a generative approach by Alejandro Perdomo-Oirtiz,
a poster by In-Chan Choi)

< Hamiltonian design (e.g., a poster by Luca Innocenti)

<+ Quantum control

- i“n”rig’gﬁaiéﬁt Alexey Melnikov Machine learning for designing new quantum experiments 7



@ Finding ways to achieve the goal

How difficult is it to find a sequence of optical elements that has e.g [000)+|111)+|222)
state as an output!

Turned out to be not that easy

Number of possible configurations grows exponentially with the size of experiment.

With a reasonable limitation of 12 basic elements on the table, and having just 4
optical paths there are

More than 10" optical setups

. i“n”rig’gﬁaiéﬁt Alexey Melnikov Machine learning for designing new quantum experiments



@ The space of possibilities is complex

vertex = experiment

----------- -' edge = optical element

B, PPy % o
{BS ., Retl }

""’“""’"---»‘

around 45000 randomly generated experiments
~~ are shown

only 67 potentially interesting experiments create
high-dimensional multiphoton entanglement

M universitat - : . o ,
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@ Automating the design of experiments

Working principle of
automated search for

quantum experiments
(MELVIN)

Toolbox

N/ Report Setup
Calculate

Simplify Setup

Analyse properties
Schmidt-Rank Vector,

L

Satisfies criteria?

M. Krenn et. al., Phys. Rev. Lett. | 16,090405 (2016)
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(&) Automating the design of experiments

q> OAM-Parity
Sorter
‘ Non-Polarising
Beam Splitter

- Hologram
I Mirror

Nonlinear crystal

' Detector

M universitat -
mnsbruck . Alexey Melnikov

3-dimensional GHZ state, (10,6, 5) state
or (3,3,3) state

M. Krenn et. al., Phys. Rev. Lett. | 16,090405 (2016)
(3,3,3) state was implemented in arxiv:|1708.0388 |

Machine learning for designing new quantum experiments | |



@ Is automated random search good enough!?

No, we should try to

% find simpler experiments (simplified automatically, not by hand)
+ find more interesting experiments

< try to learn from the space of possibilities

How to do these improvements?

We do it by formulating these problems asjreinforcement Iearning}problems
and solving them with[ﬁrojective simulation |

. i“n”rig’gﬁf‘iéﬁt Alexey Melnikov Machine learning for designing new quantum experiments



@ Reinforcement learning (RL) framework

RL agent

Environment

[

state ‘

-— e
reward $10)¢

action X
-_—)

B universitat - Alexey Melnikov Machine learning for designing new quantum experiments




@ Reinforcement learning (RL) framework

The agent acts according to a policy TT, which maps input states to actions.

RL agent

Environment

State ;‘ (‘;3 O D e %
reward 1IN

action X

N (V) : s® 5 g®
agent’s parameters

The goal of learning is to modify the agent’s parameters, such that the agent
produces desired outputs.
Learning algorithm updates these parameters 1" = L(h") .

. i“n”rig’gﬁaiéﬁt Alexey Melnikov Machine learning for designing new quantum experiments |4



RL) Desired outputs

Desired outputs are such that they maximize some function of cumulative reward.

Example:
Markov Decision Processes (MDP), a class of RL environments

One usually maximizes an expected future
return

R(T)=Dy'r"
t=T

It is possible to converge to an optimal policy
in the limit

commons:V¥Valdoalvarez

. }Jn”ri;’g{aiéet Alexey Melnikov Machine learning for designing new quantum experiments |5
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M universitat
innsbruck

RL is challenging

RL is a very general machine learning framework

and a very challenging
from an agent’s point of view:

<+ there is no teacher, and no training examples are given, only
(often ambiguous) reward signals

<+ rewards are usually delayed, there are temporal correlations in data

< agent’s actions usually affect the environment, hence changing
the subsequent data

<+ number of interactions is limited, which leads to
the exploration-exploitation dilemma

Alexey Melnikov Machine learning for designing new quantum experiments
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M universitat
innsbruck

RL is challenging

RL is a very general machine learning framework

and a very challenging
from a developer’s point of view:

<+ agent’s performance is usually very sensitive to the choice of
meta-parameters

<+ reward function specification is hard;
agent usually “hacks’ your reward function

<+ agent’s performance is influenced by it’s individual interaction history;
there is usually a fraction of “unlucky” agents;
you never know if performance is bad, or you are just unlucky

Alexey Melnikov Machine learning for designing new quantum experiments



@ Projective simulation (PS)

The PS model is a physical approach to agency. The PS agent processes information
stochastically in a directed, weighted network of clips, where each clip represents a
remembered percept, action, or sequences thereof.

Episodic memory

Once a percept is observed, the network is activated, invoking a random walk
between the clips, until an action clip is hit and couples out as a real action of the
agent.

H.]. Briegel and G. De las Cuevas, Sci. Rep. 2,400 (2012)

M universitat
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@ Some features of PS

low computational complexity conceptually attractive

decision-making process is decision-making on graphs,

fast, we can do many trials flexibility of graphs
low model complexity ) ) k the framework is general

easy to choose P I‘Oj ective Python code

parameters ProjectiveSimulation.org

simulation

“_/

we can analyze the agent’s policy quantum walks
by observing graph properties on graphs

interpretability clear route to quantization

. i“n”rig’gﬁf‘iéﬁt Alexey Melnikov Machine learning for designing new quantum experiments 19


http://projectivesimulation.org

@ Learning in the PS model

Learning is realized by enhancing connections between relevant clips

All edges in the network have initially the

PR ATz same strength i1 = 1.

Strength determine the hopping probabilities
between the clips

Y Y
: : A
action clips o _ My
Pi = ) 7

PS network initially k
and so the initial behaviour is random.

Reward from the environment increases the probability to do the same action.

Learning algorithm

(t+1) _ 1,(8) | ()
hi]. —hi]. + 7

. i“n”riggﬁaiéﬁt Alexey Melnikov Machine learning for designing new quantum experiments 20



’s) Learning in the PS model

Learning is realized by enhancing connections between relevant clips

All edges in the network have initially the

PR ATz same strength i = 1.

100 1 X1 100 Strength determine the hopping probabilities
between the clips

. . h(t)
action clips P =
i

PS network after learning &
and so the initial behaviour is random.

Reward from the environment increases the probability to do the same action.

Learning algorithm

(t+1) _ 1,(8) | ()
hi]. —hi]. + 7

. }Jn”riggﬁaiéﬁt Alexey Melnikov Machine learning for designing new quantum experiments 21



Ps ) Changing environments

Environment may change phase [ (< =) phase II (= <)
5
g
O
E 3
=
& L
< I 7 =1/50 (upper)
£ - v = 1/10 (middle)
@ @ © 0'2: -------- v =1/5 (lower)
W= 00 200 300 400 _
Phase | Phase |l trials
Relearning is much faster, but the success rate is
lower

Learning algorithm

hff”) = hf;t) - V(hfjt) -1+ Tradeoff between flexibility and maximum

achievable success rate

. }Jn”ni‘s’g{aigﬁt Alexey Melnikov Machine learning for designing new quantum experiments



rs ) Glow mechanism

Learning algorithm

Rt — p(0) _ y (h(t) - 1) + g(t+1)/1(t)’ g(H'l)(Cl-, Cj) _ {

p(

M universitat

innsbruck ~ Alexey Melnikov

1, if (c;, cj) was traversed

(1 — 1) gc, ¢;), otherwise

[

action clip

p(esles)

action
p(66\05)

Machine learning for designing new quantum experiments
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’s ) RL: navigation problems

Percept: room coordinates (X, y)

2 Actions: left, right, up and down

Reward: +1 for reaching the (I, 9) room

A MW N =

B Reward awaits at least |4 decisions away from the start
The task is to find the shortest path

1T 2 3 4 5 6 7

Grid world problem

100

D o)
= S
— T

N
(@)
I

average number of steps

N
S
— T

PS network:
directed complete bipartite weighted graph

20 40 60 80 100
trials

Learning curve
AAM, A. Makmal, and H.J. Briegel, arXiv:1804.08607, accepted in IEEE Access
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@ RL: navigation problems

Percept: position and velocity (X, v)
Actions: accelerate to the left, right, or no acceleration
Reward: +1 for reaching the right mountain top

Reward awaits at least 86 decisions away from the start

. The task is to find the shortest path
Mountain car problem

500 ———

(219, T20]s
(019, ”020]

400 -

300 -

average number of steps
[\
=
=

PS network:
directed complete bipartite weighted graph

100"

trials

Learning curve
AAM, A. Makmal, and H.J. Briegel, arXiv:1804.08607, accepted in IEEE Access

M universitat

mnsbruck . Alexey Melnikov Machine learning for designing new quantum experiments 25



rs ) Choice of model parameters

In case of low-dimensional Markov decision processes the choice of parameters
is straightforward

1000

[
\=)
L I

800 - i

[y
o0
T T T T

600 - i

400 - ]

T /

00 o1l o2 T TToa o4 0.00 0.01 0.02 0.03 0.04
7 parameter 7 parameter

p—
(@)
T | T T T T T T T
|

average number of steps
> 3
L —— |
| |
average number of steps

Grid world problem Mountain car problem

2 hours per agent to check 6 hours per agent to check
the full parameter range the full parameter range

AAM, A. Makmal, and H.J. Briegel, arXiv:1804.08607, accepted in IEEE Access
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(,s) Glow 1] parameter: heuristics

30,
(72
a L
S o5l
7y ] |
o
O
E L
a) 20
. =
Two basic rules = f
15}

+ worldsize T — 77 |
worldsize | — 7 1
given that the maximum number of trials is the same

+ maximum number of trials T — n 1
maximum number of trials | — nl
given that the world size is the same

M universitat

mnsbruck . Alexey Melnikov Machine learning for designing new quantum experiments
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’s) Glow 77 parameter: analytics

lower bound on success probability relation between learning times
L—1
1+ tA(1 — )" ~ (L_l)m_ )L —1)
() = T M
Pi=1 () EK+ P Ttn) _ :111
SR S T(n,) (”—2— 1) (1 =m)L—1)

Approximation on the learning curves

100

- ‘ I‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ .
— i 140 -\ | .
2 | simulations i \ \w ]
L 80+ | 120\ ) ]
+ 0 1
n i . . la ¥ | 1 1
— | 2w approximation 3 1 "A_‘
S £ 100 | \ .
2 60 - o N
>
E O oy ‘-'\v\ ]
o K /)
0 60 |- \ -y ]
& 40 o -
C%O | E r \ \\V\.\
= I S 40f S ]
g | C . " 9”5 ~ )
< i £/ IO Y 1
20 20 - S SRR
— I i I L L ! L | L | | | = ! ! " = o . o - e e
0.20 0.25 0.30 0.35 0.40 100 200 300 400 500
7 parameter
n=01 n=02 n=024 n=20.3
trials
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@ Choice of model parameters

With standard tabular RL approaches it is usually more complex

15.5

15

14.5

14

I =500

400

Q-learning agent

0.6
120 hours per agent in the grid world problem o4

300

200

I 100

180 hours per agent in the mountain car problem 02,

0.0: ;
00 0z 04 05 085 10

AAM, A. Makmal, and H.]. Briegel, arXiv:1804.08607, accepted in |IEEE Access
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@ Choice of model parameters

With standard tabular RL approaches it is usually more complex

10

0.8

0.6

04

02

00 02 04 06 08 10

0.6

04

0.2

0.0

00 02 04 06 08 10

SARSA agent

10

0.8

0.6

04

0.2

0.0

5\5‘

00 02 04 06 08 10

1.07;

0.8

0.6

04

0.2

0.0
00 02 04 06 08 10

10

0.8

0.6

04

0.2

1.07,

0.8

0.6

04

0.2

10

0.8

0.6

0.4

02

0.0 0.0
00 02 04 06 08 10 00 02 04 06 038

1.0

1.0f;

0.8

0.6

04

0.2

0.0 0.0
00 02 04 06 08 10 00 02 04 06 038

a

120 hours per agent in the grid world problem

180 hours per agent in the mountain car problem

1.0

AAM, A. Makmal, and H.J. Briegel, arXiv:1804.08607, accepted in IEEE Access

M universitat
innsbruck

Alexey Melnikov

Machine learning for designing new quantum experiments

10

0.8

0.6

04

02if

0.0

1.07;

0.8

0.6

04

0.2

0.0

=16
F 155

00 02 04 06 08 10

15

14.5

14

0
e 02 U4 068 03 10

00 02 04 06 08 10

I =500

400

300

200

I 100
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@ Choice of model parameters

The performance is qualitatively and quantitatively similar

PS softmax with n = 0.024 -

Q-learning with Qg = 1,

e =0.01, p =0.95, a = 0.252

SARSA with Qg = 1,

e=001, =09, a=0.15 |

100 1 700
7 i ) w0
e I = PS softmax with n = 0.2 600 -
+ + i
Jf 4l — ()-learning with Qg =1, qff
2 e=0,u=08 a=0.38 2500}
_q.é 60 s SARSA with Qg =1, | =
= i e=0,u=08 a=0.38 §400
= = i
S0 o
g 40 ] < 300 -
s 5
5 | 5
0 ] 200 -
100 200 300 400 500 200

trials

Grid world problem

400

600 800

trials

AAM, A. Makmal, and H.]. Briegel, arXiv:1804.08607, accepted in |IEEE Access
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Ps ) Meta-learning within PS

Aske Plaat: meta-learning is one of the main ML challenges

PS can naturally be extended to account for meta-learning in RL

Projective Simulation Non-stationary environment,
e.g. a changing grid-world

1

e

agent

percepts

AN

@ s
L
~

Meta-level network

performance t

Base-level network

A. Makmal, AAM,V. Dunjko, and H.|. Briegel, IEEE Access 4,2110 (2016)

Machine learning for designing new quantum experiments
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(,s) Generalization within PS

A dynamic and autonomous machinery that enables PS agents to generalize

AAM, A. Makmal,V. Dunjko, and H.J. Briegel, Sci. Rep. 7, 14430 (2017)

M universitat
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s ) PS in robotics

PS in the problem of learning complex haptic manipulation skills

Ps.

# layer 1

binding

NV =

S. Hangl, E. Ugur, S. Szedmak, and J. Piater; IEEE/RS] IROS, p. 2799 (2016)

A talk by Justus Piater on Friday

M universitat
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Ps .
Slide Poke Sense N gce:tr?gwsg(layer 2)
N\ MMR Classifier \\
Envi t
1| .. ‘ Ny |1 ]|..||N; ‘ 1 - |
(layer 3)
' Preparatory
Flip Push'| Acelons (layer 4)




@ Quantum PS agent

A quantum state of the memory with N clips can be described by a state vector

|Ci>:‘i>'

A quantum walk in the memory is characterised by N unitaries

O>:2i4\/p71 ;)

@ — U&) T T

q1 u@) = U

Ui

Two-qubit probability unitaries for PS network with 4 memory units

G. D. Paparo,V. Dunjko, A. Makmal, M.A. Martin-Delgado, H. |. Briegel PRX 4,031002 (2014)

V. Dunjko, N. Friis, and H. . Briegel, New |. Phys. 17(2), 023006 (2015)
N. Friis, AAM, G. Kirchmair, and H. . Briegel, Sci. Rep. 5, 18036 (2015)

1 Alexey Melnikov Designing experiments with machine learning



@ Quantum PS agent

< quadratic speed-up in preparing a
stationary distribution

o

Percepts

A

Projective
Simulation

Environment

Y

Actuators

Actions

O - spectral gap of the stochastic
matrix

< quadratic speed-up in sampling

an action
O(Lj G. D. Paparo, et al., PRX 4,031002 (2014)
\/E T. Sriarunothai, et al., arXiv:1709.01366

€ - probability of sampling an action
from the stationary distribution

1 Alexey Melnikov Designing experiments with machine learning



@ There are several posters about PS

<+ Lea Trenkwalder

ojective gimulation

planning for Pr

ppr(em«
model
‘ au:u v:

1 D(‘r((pls
0
I acti ons em‘ ent

D)
<") ( ) .mm'A

/

. v'm’

CHERCY

— - = ¥ 2
5

Modelling collective motion
with Projective Simulation

(i 1R

\)_ o

Briogad

<+ Arne Hamann
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@ RL in quantum laboratory

Environment
PS agent
K reward
Analyzer ‘
AN
v 1

percept:

) (]

optical setup

action:

optical element

\
[
Optical table I l

AAM, H. Poulsen Nautrup, M. Krenn,V. Dunjko, M. Tiersch,A. Zeilinger, and H.J. Briegel,
PNAS |15, 1221 (2018)
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@
f ° ®  SRVs Toolbox
¢ (x X 1 ) B Sab D —

0
\'é”
2L/
O
.

N D & (3.3,2) ; BS,  ——
(333 @ Refl, — «—
o
433 @ Holo,, «—
Exploration space Scale-free network Complex maze

Design of new experiments is a navigation in a complex network

w -

/o’-‘~

Navigation in the maze Mountain car task
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@ Episodic memory of the PS agent

Fe " | e | e TEEEEEERERRERREEEETA
D {BS } {BS, ,DP, }. {BS, , DP, Refl }
RSSO eietvinietviniotuietoluiole S
&
{BS, , DP, Refl , BS, }:
~~~~ RS ‘,l.---------------------J
. ~~~
optical setups ! @ : @ @
(percept clips) ! \ AN At
4 - '«*l,\,f* \;::,,,//, E
placings of an ﬁ o, iﬂ v
optical element - Fas

(action clips)

Holo,2 Holog 2
— N N g _

6 x BS 4xDP 4x Refl 16 x Holo

Learning algorithm
WD =~y () =1)+ 802, gV =(1-m)g"
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@ Clip composition and clip deletion

tical set {BS, , DP , Refl,, BS, ,Hol !
S 80088066 S I R

DS \2’ Z’ tc I &L / k AP
‘” ISR *( < IS ) 7
I | ‘ \f ~ < 7~ 3 >> 4 \ ~<\’> >¢’\ ‘
>~ X
0, NN WS ~~:\l~£ N \\ *\/ EXCaSNS ~. /<
1 4 L7 ~; ~ A \» ~ oS SIS 'S R 2
1 4 N~ AL Tt Nk >I\ ~01 o> el RS S
1 4 VO 2 N> YIANXA L ALY T XAy N> 2RS S T
1 RN YoM INCTS AL AN O Y K IA TN ToATIN, R ‘
.. ’ , N7 b > \ 73 = $ S
! ] voo N N ST LY 7.2 LZ=Sp 5340w YW ¥
1 Y, »~ » S o~ ”~ > SIS TSNS~ Y ~
?, 1 \ A\ =7 L ~ WS NS T ~ ~ ~ N N
1 1 7 NeNY v o1 AN N SN 2 Bl ¥ | X N \ \
1 \ - - =X Twes, o =1 ~ T w ~a ~ TSN ~ ~
| s ‘- Z 2 S e” \/\¢)~$ IRt ~ao < e R ISR FOAEN N \
) _20 A3 P AN R SO NS AL S N TS~ o~ S N ‘
- -~ PEPRA RS ~ AT SN N > ~ ~
1 7 I A~ ~ I ~ 1 ~ 1
1 - ="\ SN2 N AL N2 2\ > Ay
- ,*’ x= NP, ~ ~ > « xs N IS (N
/ / \ |a ’, - \/ \/ I \1_’ / \\.\\/\"-\ , >\\\ \I ‘~ N < Q \\ W \
- v ~l N ~l \
[)lacmgs Of all "L by TR *\ -
Y Y
. .‘ . .Vi y* ‘ \\ \\\ . ’

BSab BS;. P, Refl, Holog Holod 2:

7 comp081te actions
v '

ba,Slca,CtlonS 'l----------------

|{BS Reﬂ BS }I

L---------------J

< Clip composition
We create composite actions in case a sequence of actions is rewarded

+ Clip deletion

We delete percepts (with edges) if the experiment didn’t show nontrivial SRV

We delete composite actions stochastically depending on their connectivities

( WA
» N(@) N(@) + Ng(n) \ %
(1) = = ~ 1 — Nyt
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@ PS agent designs new quantum experiments

= 1400 11400
4% . 1200 —— projective simulation 1 1200
E *qa; 10002_ automated search T 'i- 1000
.E‘g 800 ¢ 1800
‘25 600 % 1600
5 & 400 1400
=% 200 L 200
— 0 e 0
=

6 7 8 9 10 11 12

maximum length of experiment, L

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach

1000

RN
o
|

experiments
o
'_\
o
o
|

number of different

0.001
222 322 332

M universitat -
mnsbruck . Alexey Melnikov

W AS, L=6
PS, L =6
M AS, L=28
W PS, L=3
AS, L =10
WPS L=10
W AS, L =12
333 432 442 532 542 543 644 652 662 763 WS L=12

SRV class
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@ PS agent designs new quantum experiments

x 1072

oSO N B OO 00 O

fraction of interesing
experiments

number of experiments %103

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach

IIIIIIII l T T T 1 11T l T T T T 1 11T l T T T 1 11T l T T I 1rrrrr l T T T 1 11T l T T I 1rrrrr l T T T 1T 1rrr l T T T T 1 1rrr l T T T 1T 1rrr l T T T T 1 1rrr l T T T 1r1rrrr l T T T T 1 1rrr
W AS L=6

I= 1000 - .
<, _ PS, L =6
S=l= W AS, L=8
= 9 10 —
o B I W DPS =3
°%
g5 0100 - AS. L =10
g © - W PS L=10
=
= 0.001 B AS, L =12

222 R0 332 333 432 442 532 542 543 644 652 662 763 W PS, =12

SRV class
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@ PS agent designs new quantum experiments

N

2 ]

& 12 r 12
() L

= 10 mE

~ 10 . 110
S r J

o 8+ .18
H | . . . . )

Fg & projective simulation ]

S 6+ automated search 6
= 6 7 8 9 10 11 12

maximum length of experiment, L

The PS agent has found many more interesting experiments, in
comparison to the best previously known approach
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E 1000 |- R
T =2 | OPS, L=6
B wl | mAS L=8
= g WPS L=38
<)

£& 04100 AS, L =10
= @ B PS, L=10
=
= 0.001 B AS, L =12

222 322 332 333 432 442 532 542 543 644 652 662 763 W PS L=12
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@ PS agent designs new quantum experiments

(3,3,2) states (3,3,2) states (3,3, 3) states
Z 8 - g 8 1 B
g i {08 =& g ) {08 &
2 los 2 2 los 2
% 5l 0.6 S Eﬁ 6l 0.6 S
o 10.4 & o 10.4 &
S gl e S 4 e
< O 102 ¢ = 102 8
20 [ O o0 [ O
= 4 - 3 - 0 3 S e 0 Z
< 0 10 20 30 40 50 < 0 10 20 30 40 50 60
number of experiments x103 number of experiments x 103
|. The PS agent autonomously learned 3. The PS agent uses the knowledge of
to design target states (success building (3,3,2)-states to construct
curve) (3,3,3)-states (second phase curves)

2. The PS agent automatically learned
to optimize the length of those
experiments (length curve)
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Explored space of experiments

Alexey Melnikov

_'":,.¥ PL,'...‘ ¥
% gais :
SR IR)

VR
N

.'{'.-_ ,

o
N
e &
>
4 -

"

oy’
ey
e

Machine learning for designing new quantum experiments

44



(&) Discovering entanglement classes

{3, 2, 3}
{3, 4,5}
{3, 6,7}
{3, 2, 2}
{2,4,4}
{3, 2, 4}
{2, 2, 2}
{3, 3, 3}
{3,5, 2}
{2, 6, 6}
{4, 2, 5}
{5, 3, 3}

9478
662
235
2017
790
553
55
43
1385
691
1596

1355

11216
11873
14189
14311
19043
20178
20178
22344
23051
31806
84602

1334
41
49
126
170
22

283

190
453

{Holo[1, -2], Refl[3], Holo[4, -1], BS[3, 4], BS[1, 4]}

{Holo[1, -2], Refl[3], Holo[4, 2], BS[3, 4], BS[1, 4]}

{Holo[1, -2], Refl[3], Holo[4, 3], BS[3, 4], BS[1, 4]}

{Holo[1, -1], BS[2, 3],|BS[2, 4], DP[2], Refl[4], BS[2, 4]}
{DP[1], Refl[1], BS[1, 3], BS[2, 4], Holo[4, 2], BS[3, 4]}
{Holo[3, -2], BS[2, 3],|BS[2, 4], DP[2], Refl[4], BS[2, 4]}
{Holo[1, 2],|BS[2, 4], DP[2], Refl[4], BS[2, 4], BS[1, 4]}
{Holo[1, 2],‘35[2, 4], DP[2], Refl[4], BS|2, 4]: BS[1, 41}
{Holo[1, 2], BS[1, 3], Holo[2, -1], BS[1, 2], DP[4], Holo[4, -2]}
{Holo[1, 2], BS[1, 3], Holo[4, -4], BS[3, 41}

{Holo[1, 2], BS[1, 4], Holo[1, -2], BS[1, 2], Refl[3], Holo[3, -1]}
{Holo[4, 3], BS[1, 4], BS[2, 4], DP[2], Holo[3, 0], Refl[4], BS[2, 4]}

Certain elements combinations appear in different setups

M universitat
innsbruck

Alexey Melnikov

Machine learning for designing new quantum experiments 45



(&) Discovering entanglement classes

{2, 3, 3}
{3, 2, 2}
{3,5, 2}
{2, 2,2}
{3, 3, 3}
{4,4, 2}
{4,5, 2}
{3,5, 4}
{3,7, 6}
{2, 6, 6}

23131
338
1962
96

96
198

1894
11

461

2212

5002

5608

13615
13615
13618
17268
19888
38218
51830

2364 IDP[l], BS[2, 4], Refl[3], BS[1, 3]'
20 DP[1], BS[2, 4], Refl[3], BS[1, 3]} Holo[4, -1], BS[1, 4]}

474 {Holo[1, -1], Holo[2, 2], BS[2, 3], BS[1, 2]}

8 IDP[1], BS[2, 4], Refl[3], BS[1, 3]} Holo[1, 2], BS[1, 4]}

s B oo s

21 {DP[1], BS[2, 4], Refl[3], BS[1, 3]} Holo[2, 2], BS[2, 3]}

449 {Holo[1, -2], Holo[2, 2], BS[2, 3], BS[1, 2]}

4 {Holo[1, -2], Holo[3, -1], Refl[3], Holo[3, 1], BS[3, 4], BS[1, 3]}
2 {Holo[1, -2], Holo[3, -2], Refl[3], Holo[3, 1], BS[3, 4], BS[1, 3]}
85 {DP[1], BS[2, 4], Refl[3], BS[1, 3]} Holo[4, 3], BS[3, 4]}

Different agents have different sequences

These sequences can appear in different parts of an experiment
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@ Episodic memory analysis

M universitat
innsbruck

And output clips with the strongest connectivities

Alexey Melnikov

Let’s look inside the memory of the PS agent

{BS[1, 4], DP[1, 1], Refll[4], BSI[1, 4]} 2

{Holo[1, -2], Holo[4, -2], Refl[4], BSI[3, 4], BS[1, 4]}
{BS[1, 3], DP[4, 1], Refll4], BS[2, 4]} 1

{Holo[2, 1], Refl[3], Holo[4, -1], BS[3, 4], BS[1, 4]}
{Holo[1, 2], BS[1, 4], Holo[1, -2], BSI[1, 2]} 1
{Holo[1, -1], DP[2, 1], Holo[3, 2], BSI[1, 3], BSI[3, 4]}
{pP[1, 1], Refl[3], Holol3, 1], BSI[3, 4], BSI[1, 3]} 1
{Refl[4], Holo[4, -1], BS[3, 4], Refl[4], BS[1, 4]} 1
{Holo[2, 1], Holol[3, 1], Refl[4], BSI[3, 4], BSI[1, 3]}
{BS[1, 3], Holol[3, -2], DP[4, 1], Refl[4], BS[2, 4]}
{BS[1, 3], DP[2, 1], Refll[2], BS[2, 4]} 2

{BS[1, 4], DP[1, 1], Refll[1], BSI[1, 4]} 2

{Refl1[2], Holo[2, -1], BSI[1, 2], Holo[1, -2], BSI[1, 3]}
{Holo[1, -2], Holo[3, -2], Refl[4], BS[3, 4], BS[1, 4]}
{Holo[3, 1], Refl[4], BS[3, 4], Holo[3, -1], BS[1, 3]}
{Refl1[1], Refl[3], Holo[4, -1], BSI[3, 4], BS[1, 4]} 1
{pP[1, 1], BSI[1, 3], Refl[2], BS[2, 4]} 2

{Holo[1, 2], Refl[2], BS[1, 2], Holo[3, -2], BS[1, 3]}
{Holo[1, -1], Refll[2], BS[1, 2], Holo[3, -1], BSI[1, 3]}
{Refl[1], Holo[1l, 2], Holo[2, -1], BSI[1, 2], BS[1, 3]}
{Refl1[1], BS[1, 3], DP[4, 1], BS[2, 4]} 1

{Holo[1, -2], Holol[3, -1], Refl[4], BS[3, 4], BS[1, 4]}
{Holo[1, 2], Holol[3, -2], Refll[4], BSI[3, 4], BS[1, 3]}
{Holo[1, -2], Refl[2], BS[1, 2], Holol1l, 2], BS[1, 3]}
{Holo[1, 2], Holol[4, 1], Refl([4], BSI[3, 4], BSI[1, 4]}

Machine learning for designing new quantum experiments
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@ Something surprising

Let’s look inside the memory of the PS agent
And output clips with the strongest connectivities

Most connected clips:
a b

BSbc

Reﬂb
—+= DP.
BSs. Refl, —
b c b
spDd  [spDd] SPDC

| 1% 24%
(a) — parity sorter, which was originally designed for a different task
(b) — new parity sorter, equivalent to (a) in the Klyshko wave front picture

(c) — new method to increase dimensionality of photons
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@ Summary

< A search for new quantum experiments can be formulated as a RL problem

Environment

reward

Analyzer l '
1
percept: .
optical setup f >

—
b=d
action: ( B

1 optical element

Optical table I l

PS agent

< Solving this RL problem with PS sets a new level of performance

(1) many more interesting experiments are found 28O0 606 ® -.®
(2) short implementations of these experiments are ~ » '\ |

learned ey - Aaw
R R . BS,s BSy. DP, Refl, HOIOa,Q HO]Od,2
(3) experimental techniques are discovered A T et

Can machines genuinely contribute to scientific research?
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(2) Outlook

The described RL methodology can be applied beyond the considered example

Environment

rrrrr d

Analyzer

Optical table

The same can be used if at least one of these things is true:
+ there exists a set of goal states, in which these states are correlated

+ finding the simplest implementation is of interest, in case of a
complex space of possibilities

Thank you for your attention!

Active learning machine learns to create new quantum experiments

PNAS 115, 1221(2018)

ProjectiveSimulation.org
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