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Quantum machine learning

I The learner will be quantum, the data may be quantum

Classical learner Quantum learner

Classical data Classical ML ?

Quantum data ? This talk

I We will look at the
strengths and weaknesses of quantum learning
from quantum examples (mostly supervised learning)
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Supervised learning

I Concept: some function f : {0, 1}n → {0, 1}.
Think of x ∈ {0, 1}n as an object described by n “features”,
and concept f as describing a set of related objects

I Goal: learn f from a small number of examples: (x , f (x))

grey brown teeth huge f (x)

1 0 1 0 1

0 1 1 1 0

0 1 1 0 1

0 0 1 0 0

Output hypothesis could be: (x1 OR x2) AND ¬x4
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Making this precise: Valiant’s “theory of the learnable”

I Concept class C: set of concepts (small circuits, DNFs,. . . )

I Example for an unknown target concept f ∈ C:
(x , f (x)), where x ∼ unknown distribution D on {0, 1}n

I Goal: using some i.i.d. examples, learner for C should output
hypothesis h that is probably approximately correct (PAC).

h is a function of examples and of learner’s randomness.

Error of h w.r.t. target f : errD(f , h) = Prx∼D [f (x) 6= h(x)]

I An algorithm (ε, δ)-PAC-learns C if:

∀D ∀f ∈ C : Pr[ errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

I A good learner has small time & sample complexity
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Quantum data

I Much interesting quantum ML assumes classical data can be
turned into quantum superposition.
But in general this is expensive

I Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data

I Bshouty-Jackson’95: suppose example is a superposition∑
x∈{0,1}n

√
D(x)|x , f (x)〉

Measuring this (n + 1)-qubit state gives a classical example,
so quantum examples are at least as powerful as classical

I Next slides: some cases where quantum examples are more
powerful than classical for a fixed distribution D
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Uniform quantum examples help some learning problems

I Quantum example under uniform D:

1√
2n

∑
x∈{0,1}n

|x , f (x)〉

I Key subroutine: Fourier sampling (Bernstein-Vazirani’92):
assume range of f is {±1}. Can convert quantum example to

1√
2n

∑
x∈{0,1}n

f (x)|x〉

Hadamard transform turns this into
∑

s∈{0,1}n
f̂ (s)|s〉,

f̂ (s) = 1
2n
∑

x f (x)(−1)s·x are the Fourier coefficients of f

I This allows us to sample s from distribution f̂ (s)2



7/ 17

Using Fourier sampling for learning

I If f is linear mod 2 (f (x) = s · x for one s),
then the Fourier distribution f̂ (s)2 is peaked at s.

We can learn f from one quantum example!

I Bshouty-Jackson’95: learn Disjunctive Normal Form (DNF)
formulas in poly-time: Fourier sampling + classical “boosting”

Best known classical learner takes time nO(log n)

I Next slides: two new examples

I Learning Fourier-sparse functions

I Improving coupon collector
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Learning Fourier-sparse Boolean functions

I f : {0, 1}n → {±1} is k-Fourier-sparse if it has ≤ k non-zero
Fourier coefficients

I Haviv-Regev’15:
we can exactly learn such a function from O(nk log k) uniform
samples (x , f (x)), and Ω(nk) samples are necessary

I Uniform quantum examples should be able to improve this.
In particular, k = 1 is the special case of learning linear
functions, where 1 quantum example suffices

I Next slide: learning f using Õ(k1.5) uniform quantum
examples (Arunachalam-Chakraborty-Lee-dW’18)
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Learning Fourier-sparse f from quantum examples

I Fourier span of f : V = span{s : f̂ (s) 6= 0}.
Let r = dim(V ). Sanyal’15: r = O(

√
k log k)

I Our learner:

1. Fourier sample O(rk) times. W.h.p.: span of the results = V .
Now we can transform f by an F2-linear map M to a function
fM : {0, 1}r → {±1}

2. Now use Haviv-Regev to learn fM using O(rk log k) classical
uniform examples (M converts examples between f and fM).
Transform fM back to get f .

Hence Õ(k1.5) quantum examples suffice for learning f exactly

I Lower bound: Ω(k log k) quantum examples needed
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Quantum superposition helps the coupon collector

I Coupon collector: sample uniformly from N elements. How
many samples before you’ve seen each element at least once?

Simple analysis:

Pr[see a new element | have already seen i elements] =
N − i

N

E[#samples] =
N−1∑
i=0

E[#samples to see (i + 1)st element]

=
N−1∑
i=0

N

N − i
= N

N∑
k=1

1

k
∼ N lnN

I Variation: sample uniformly from [N]\{i}.
How many samples before you know i? Still ∼ N lnN

I Suppose given superpositions instead of random samples.

How many such quantum examples to learn i? O(N) suffice!
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Proof: use Pretty Good Measurement

I Define |ψi 〉 =

 1√
N − 1

∑
j∈[N]\{i}

|j〉

⊗T .

Goal: do state identification on ensemble {|ψi 〉, 1/N}
I Pretty good measurement has success probability at least

square of the best-possible measurement (Barnum-Knill’02)

I Let Gi ,j = 1
N 〈ψi |ψj〉 be normalized Gram matrix of N states.

Average success probability of PGM is PPGM =
∑
i

(
√
G ii )

2

√
G is easy to compute here, can show PPGM ≈ 1− e−T/N .

Setting T = 2N gives PPGM ≥ 2/3

I Arunachalam-Childs-Kothari-dW’18: working on
efficient implementation + tight analysis for all k ,N
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Ideally, we want our learner to work for all distributions D

I Remember Valiant’s model:
an algorithm (ε, δ)-PAC-learns concept class C if

∀D ∀f ∈ C : Pr[ errD(f , h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

I We’ve seen examples where quantum examples help
for a specific fixed D

I But in the PAC model, the learner has to succeed for all D

I Do quantum examples help also in this
distribution-independent setting?
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VC-dimension determines classical sample complexity

I Cornerstone of classical sample complexity: VC-dimension

Set S = {s1, . . . , sd} ⊆ {0, 1}n is shattered by C if
for all a ∈ {0, 1}d , there is c ∈ C s.t. ∀i ∈ [d ] : c(si ) = ai

VC-dim(C) = max{d : ∃S of size d shattered by C}

I Equivalently, let M be the |C| × 2n matrix whose c-row is the
truth-table of c . Then M contains complete 2d × d rectangle

I Blumer-Ehrenfeucht-Haussler-Warmuth’86:

every (ε, δ)-PAC-learner for C needs Ω
(
d
ε + log(1/δ)

ε

)
examples

I Hanneke’16: for every concept class C, there exists an

(ε, δ)-PAC-learner using O
(
d
ε + log(1/δ)

ε

)
examples
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Quantum sample complexity

Could quantum sample complexity be significantly smaller than
classical sample complexity in the PAC model?

I Classical sample complexity is Θ
(
d
ε + log(1/δ)

ε

)
I Classical upper bound carries over to quantum examples

I Atici & Servedio’04: lower bound Ω
(√

d
ε + d + log(1/δ)

ε

)
I Arunachalam & dW’17: tight bounds Ω

(
d
ε + log(1/δ)

ε

)
quantum examples are necessary to learn C

Hence in distribution-independent learning:

quantum examples are not significantly better than classical examples
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Sketch of lower bound on quantum sample complexity

I Let S = {s0, s1, . . . , sd} be shattered by C.
Define distribution D with 1− 8ε probability on s0,
and 8ε/d probability on each of {s1, . . . , sd}.

I ε-error learner takes T quantum examples and produces
hypothesis h that agrees with c(si ) for ≥ 7

8 of i ∈ {1, . . . , d}.
This is an approximate state identification problem

I Take a good error-correcting code E : {0, 1}k → {0, 1}d , with
k = d/4, distance between any two codewords > d/4:
approximating codeword E (z) ⇔ exactly identifying E (z)

I We now have an exact state identification problem with 2k

possible states. Quantum learner cannot be much better than
the Pretty Good Measurement, and we can analyze precisely
how well PGM can do as a function of T .

High success probability ⇒ T ≥ Ω
(
d
ε + log(1/δ)

ε

)
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Similar results for agnostic learning

I Agnostic learning: unknown distribution D generates
examples (x , `). We want to learn to predict bit ` from x .
This allows to model situations where we only have “noisy”
examples for target concept (maybe no fixed target exists)

I Best concept from C has error OPT = min
c∈C

Pr
(x ,`)∼D

[c(x) 6= `]

I Goal of the learner: output h ∈ C with error ≤ OPT + ε

I Classical sample complexity: T = Θ
(

d
ε2

+ log(1/δ)
ε2

)
NB: generalization error ε = O(1/

√
T ), not O(1/T ) as in PAC

I Again, we show the quantum sample complexity is the same,
by analyzing PGM to get optimal quantum bound
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Summary & Outlook

I Quantum machine learning combines two great fields

I With classical data, you can get quadratic speed-ups for some
ML problems, exponential speed-up under strong assumptions

Biggest issue: how to put big classical data in superposition

I This talk: assume we start from data in superposition

I Positive result: for fixed distributions (e.g., uniform) quantum
examples can be very helpful: learning linear functions, DNF,
k-sparse functions, coupon collector

I Negative result: for distribution-independent learning (PAC
and agnostic), quantum does not reduce sample complexity


