Learning from Quantum Data: Strengths and Weaknesses

Ronald de Wolf

joint with Srinivasan Arunachalam and others

DuSoft

Quantum machine learning

The learner will be quantum, the data may be quantum

	Classical learner	Quantum learner
Classical data	Classical ML	?
Quantum data	?	This talk

 We will look at the strengths and weaknesses of quantum learning from quantum examples (mostly supervised learning)

Supervised learning

- Concept: some function f: {0,1}ⁿ → {0,1}.
 Think of x ∈ {0,1}ⁿ as an object described by n "features", and concept f as describing a set of related objects
- **Goal**: learn f from a small number of examples: (x, f(x))

	grey	brown	teeth	huge	f(x)
	1	0	1	0	1
	0	1	1	1	0
-	0	1	1	0	1
	0	0	1	0	0

Output hypothesis could be: $(x_1 \text{ OR } x_2) \text{ AND } \neg x_4$

Making this precise: Valiant's "theory of the learnable"

- ► Concept class C: set of concepts (small circuits, DNFs,...)
- Example for an unknown target concept f ∈ C: (x, f(x)), where x ~ unknown distribution D on {0,1}ⁿ
- ▶ Goal: using some i.i.d. examples, learner for C should output hypothesis h that is probably approximately correct (PAC).

h is a function of examples and of learner's randomness.

Error of h w.r.t. target f: $\operatorname{err}_{D}(f, h) = \operatorname{Pr}_{x \sim D}[f(x) \neq h(x)]$

• An algorithm (ε, δ) -PAC-learns C if:

$$\forall D \ \forall f \in \mathcal{C}: \Pr[\underbrace{\operatorname{err}_{D}(f,h) \leq \varepsilon}_{l \geq 1-\delta}] \geq 1-\delta$$

h is approximately correct

A good learner has small time & sample complexity

Quantum data

- Much interesting quantum ML assumes classical data can be turned into quantum superposition.
 But in general this is expensive
- Let's try to circumvent the problem of putting classical data in superposition, by assuming we start from quantum data
- Bshouty-Jackson'95: suppose example is a superposition

$$\sum_{x\in\{0,1\}^n}\sqrt{D(x)}|x,f(x)\rangle$$

Measuring this (n + 1)-qubit state gives a classical example, so quantum examples are at least as powerful as classical

Next slides: some cases where quantum examples are more powerful than classical for a fixed distribution D Uniform quantum examples help some learning problems

Quantum example under uniform D:

$$\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x,f(x)\rangle$$

▶ Key subroutine: Fourier sampling (Bernstein-Vazirani'92): assume range of f is {±1}. Can convert quantum example to

$$rac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}f(x)|x
angle$$

Hadamard transform turns this into $\sum_{s\in\{0,1\}^n}\widehat{f}(s)|s
angle$,

 $\widehat{f}(s) = rac{1}{2^n} \sum_x f(x) (-1)^{s \cdot x}$ are the Fourier coefficients of f

• This allows us to sample s from distribution $\hat{f}(s)^2$

Using Fourier sampling for learning

- If f is linear mod 2 (f(x) = s ⋅ x for one s), then the Fourier distribution f
 (s)² is peaked at s. We can learn f from one quantum example!
- Bshouty-Jackson'95: learn Disjunctive Normal Form (DNF) formulas in poly-time: Fourier sampling + classical "boosting" Best known classical learner takes time n^{O(log n)}
- Next slides: two new examples
 - Learning Fourier-sparse functions
 - Improving coupon collector

Learning Fourier-sparse Boolean functions

- *f*: {0,1}ⁿ → {±1} is *k*-Fourier-sparse if it has ≤ *k* non-zero Fourier coefficients
- Haviv-Regev'15: we can exactly learn such a function from O(nk log k) uniform samples (x, f(x)), and Ω(nk) samples are necessary
- Uniform quantum examples should be able to improve this.
 In particular, k = 1 is the special case of learning linear functions, where 1 quantum example suffices
- Next slide: learning f using O(k^{1.5}) uniform quantum examples (Arunachalam-Chakraborty-Lee-dW'18)

Learning Fourier-sparse *f* from quantum examples

- Our learner:
 - 1. Fourier sample O(rk) times. W.h.p.: span of the results = V. Now we can transform f by an \mathbb{F}_2 -linear map M to a function $f_M : \{0,1\}^r \to \{\pm 1\}$
 - 2. Now use Haviv-Regev to learn f_M using $O(rk \log k)$ classical uniform examples (M converts examples between f and f_M). Transform f_M back to get f.

Hence $\tilde{O}(k^{1.5})$ quantum examples suffice for learning f exactly

• Lower bound: $\Omega(k \log k)$ quantum examples needed

Quantum superposition helps the coupon collector

Coupon collector: sample uniformly from N elements. How many samples before you've seen each element at least once? Simple analysis:

 $\Pr[\text{see a new element} \mid \text{have already seen } i \text{ elements}] = \frac{N-i}{N}$

$$\mathbb{E}[\#\text{samples}] = \sum_{i=0}^{N-1} \mathbb{E}[\#\text{samples to see } (i+1)\text{st element}]$$
$$= \sum_{i=0}^{N-1} \frac{N}{N-i} = N \sum_{k=1}^{N} \frac{1}{k} \sim N \ln N$$

- Variation: sample uniformly from [N]\{i}.
 How many samples before you know i? Still ~ N ln N
- Suppose given superpositions instead of random samples. How many such quantum examples to learn i? O(N) suffice!

Proof: use Pretty Good Measurement

• Define
$$|\psi_i\rangle = \left(\frac{1}{\sqrt{N-1}}\sum_{j\in[N]\setminus\{i\}}|j\rangle\right)^{\otimes T}$$

Goal: do state identification on ensemble $\{|\psi_i\rangle, 1/N\}$

- Pretty good measurement has success probability at least square of the best-possible measurement (Barnum-Knill'02)
- ► Let $G_{i,j} = \frac{1}{N} \langle \psi_i | \psi_j \rangle$ be normalized Gram matrix of N states. Average success probability of PGM is $P_{PGM} = \sum_i (\sqrt{G}_{ii})^2 \sqrt{G}$ is easy to compute here, can show $P_{PGM} \approx 1 - e^{-T/N}$. Setting T = 2N gives $P_{PGM} \ge 2/3$
- Arunachalam-Childs-Kothari-dW'18: working on efficient implementation + tight analysis for all k, N

Ideally, we want our learner to work for all distributions D

Remember Valiant's model:
 an algorithm (ε, δ)-PAC-learns concept class C if

$$\forall D \quad \forall f \in \mathcal{C} : \quad \Pr[\underbrace{\operatorname{err}_{D}(f,h) \leq \varepsilon}_{h \text{ is approximately correct}}] \geq 1 - \delta$$

- We've seen examples where quantum examples help for a specific fixed D
- ▶ But in the PAC model, the learner has to succeed for all *D*
- Do quantum examples help also in this distribution-independent setting?

VC-dimension determines classical sample complexity

- Cornerstone of classical sample complexity: VC-dimension
 Set S = {s₁,..., s_d} ⊆ {0,1}ⁿ is shattered by C if for all a ∈ {0,1}^d, there is c ∈ C s.t. ∀i ∈ [d] : c(s_i) = a_i
 VC-dim(C) = max{d : ∃S of size d shattered by C}
- ► Equivalently, let M be the |C| × 2ⁿ matrix whose c-row is the truth-table of c. Then M contains complete 2^d × d rectangle
- ▶ Blumer-Ehrenfeucht-Haussler-Warmuth'86: every (ε, δ) -PAC-learner for C needs $\Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples
- ▶ Hanneke'16: for every concept class C, there exists an (ε, δ) -PAC-learner using $O\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$ examples

Quantum sample complexity

Could quantum sample complexity be significantly smaller than classical sample complexity in the PAC model?

- Classical sample complexity is $\Theta\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$
- Classical upper bound carries over to quantum examples
- Atici & Servedio'04: lower bound $\Omega\left(\frac{\sqrt{d}}{\varepsilon} + d + \frac{\log(1/\delta)}{\varepsilon}\right)$
- Arunachalam & dW'17: tight bounds Ω (^d/_ε + ^{log(1/δ)}/_ε) quantum examples are necessary to learn C

Hence in distribution-independent learning:

quantum examples are not significantly better than classical examples

Sketch of lower bound on quantum sample complexity

- Let S = {s₀, s₁,..., s_d} be shattered by C. Define distribution D with 1 − 8ε probability on s₀, and 8ε/d probability on each of {s₁,..., s_d}.
- ε-error learner takes T quantum examples and produces hypothesis h that agrees with c(s_i) for ≥ ⁷/₈ of i ∈ {1,...,d}. This is an approximate state identification problem
- ► Take a good error-correcting code E : {0,1}^k → {0,1}^d, with k = d/4, distance between any two codewords > d/4: approximating codeword E(z) ⇔ exactly identifying E(z)
- ► We now have an exact state identification problem with 2^k possible states. Quantum learner cannot be much better than the Pretty Good Measurement, and we can analyze precisely how well PGM can do as a function of *T*.

High success probability $\Rightarrow T \ge \Omega\left(\frac{d}{\varepsilon} + \frac{\log(1/\delta)}{\varepsilon}\right)$

Similar results for agnostic learning

► Agnostic learning: unknown distribution D generates examples (x, ℓ). We want to learn to predict bit ℓ from x. This allows to model situations where we only have "noisy" examples for target concept (maybe no fixed target exists)

▶ Best concept from C has error
$$OPT = \min_{c \in C} \Pr_{(x,\ell) \sim D}[c(x) \neq \ell]$$

- ▶ Goal of the learner: output $h \in C$ with error $\leq \mathsf{OPT} + \varepsilon$
- Classical sample complexity: $T = \Theta\left(\frac{d}{\varepsilon^2} + \frac{\log(1/\delta)}{\varepsilon^2}\right)$ NB: generalization error $\varepsilon = O(1/\sqrt{T})$, not O(1/T) as in PAC
- Again, we show the quantum sample complexity is the same, by analyzing PGM to get optimal quantum bound

Summary & Outlook

Quantum machine learning combines two great fields

- With classical data, you can get quadratic speed-ups for some ML problems, exponential speed-up under strong assumptions Biggest issue: how to put big classical data in superposition
- > This talk: assume we start from data in superposition
- Positive result: for fixed distributions (e.g., uniform) quantum examples can be very helpful: learning linear functions, DNF, k-sparse functions, coupon collector
- Negative result: for distribution-independent learning (PAC and agnostic), quantum does not reduce sample complexity