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CAUSAL INFERENCE (CLASSICAL)

The problem: discovering causal relations among a set of variables
(cf. Pearl, Spirtes-Glymour-Scheines)

Basic idea: A is a cause tor B ift
intervening on A has an effect on the statistics of B

Caveat: “correlation does not imply causation”:

no way to infer a causal relation
from a single probability distribution p(a,b).
It is necessary to probe different settings for a



CAUSAL INFERENCE (GENERAL)

Recently, various extensions of the notions of
“causal relation” and “causal network”

to quantum theory and beyond.

Basic idea (modulo variations across frameworks):

Variables: physical systems.
Causal relations: variable A is a cause for variable B iff

changing the state of A induces a change of the state of B

Leifer (2006), GC-D’Ariano-Perinotti (2008),
Coecke-Spekkens (2012), Leifer-Spekkens (2013),
Henson-Lal-Pusey (2014), Pienaar-Brukner (2015), Costa-Shrapnel (2016),

Portmann-Matt-Maurer-Renner-Tackmann (2017),
Allen-Barrett-Horsman-Lee-Spekkens (2017), MacLean-Ried-Spekkens-Resch (2017).



MOTIVATIONS FOR QUANTUM EXTENSION

* Foundational:
-understanding interplay between causality and quantum
probability

-find new principles for quantum theory

* Practical:
-identifying new quantum advantages
-identifying working principles for new quantum devices,
develop a “technology” of quantum causality.



PLAN OF THIS TALK

Formulate and analyze the quantum version of the task of
testing causal hypotheses.

In this task, one has a set of candidate hypotheses
on the causal relations occurring in a process
and the goal is to identify the correct hypothesis.



PROLOGUE



AN INTRIGUING EXAMPLE

Task: distinguish between

e Situation (1): A causes B _M- C —m— Tr

P

e Situation (2): A and B have a common cause

Fact: for some specific £ and C it is possible to distinguish
between (1) and (2) using only projective measurements.

Fitzsimons, Jones, and Vedral, Scientific Reports 5, 18281 (2015).
Ried, Agnew, Vermeyden, Janzing, Spekkens, and Resch, Nature Physics 11, 414 (2015).




QUESTION

In the classical world, projective measurements correspond to
passive observational strategies, where no intervention is allowed.

Question:
Can we find advantages in the situation where

arbitrary interventions are allowed?




TESTING
CAUSAL HYPOTHESES:

A THEORY-INDEPENDENT FRAMEWORK



CAUSAL DISCOVERY
V5 CAUSAL HYPOTHESIS TESTING

Causal discovery. Input: variables A, B, C, ...
Output: the causal relations among them.

Causal hypothesis testing: [nput: variables A, B, C, ...
and a set of hypotheses on the
causal relations among them.
Output: the correct hypothesis



CAUSAL HYPOTHESES

Causal Hypothesis: an hypothesis on the causal structure
of the process connecting the variables.

e.g. . B
ACC ACC

(H1) A causes B (H2) A causes C
but not C but not B

NB: causal hypotheses can be formulated
independently of the underlying theory.



TESTING CAUSAL HYPOTHESES

x= guess for the correct hypothesis

Special cases: process tomography, parallel queries, etc...



DISCRIMINATION RATE

Goal of causal hypothesis testing:
minimize the probability of choosing the wrong hypothesis.

Worst-case approach: since the process C is unknown
(a part from the fact that it is compatible with

one and only one of the given hypotheses)
we will consider the
worst-case error probability Perr (V)

—lo N
Discrimination rate: R = lim P err( )
N —00 N

quantifies the distinguishability of the hypotheses




EXAMPLE:

IDENTIFYING
THE CAUSAL INTERMEDIARY



CAUSAL INTERMEDIARIES

Variable B is a (complete) causal intermediary for variable A,
if “all the causal influences of A” propagate through B.

More formally: B’
Variable B is a causal intermediary for variable A if 4
* Bis an effect of A '
e every other effect of A, say B, is an effect of B B
(assuming that B’ takes place after B)

Example:

variable A localized at a spacetime point
and variable B localized in a section

of the forward light cone based at A.




IDENTIFYING THE CAUSAL INTERMEDIARY

Variables: A, B, and C

Hypothesis (1): B is a causal intermediary of A,
while C fluctuates uniformly at random.

Hypothesis (2): C is a causal intermediary of 4,
while B fluctuates uniformly at random.

Problem: decide which hypothesis is correct.




CLASSICAL
SOLUTION



SETTINGS

Assume that the random variables A, B, and C have all
the same dimension d.

With this assumption, Hypotheses (1) and (2) become:

Hypothesis (1): b is a permutation of g,
and c is uniformly random

Hypothesis (2): cis a permutation of g,
and b is uniformly random



NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value,
and observe the values taken by the output variables B and C.
Repeat for N times, possibly trying different values of A.

Example for N=8, d=2

L Z O 4 9 o) 7/ O
0 0 1 1 0 0 0 1
a 1 1 0 0 1 1 1 0

0 0 1 1 1 0 0




PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C
take values that are compatible with permutations.

In that unlucky case, the probability of error is 1/2.

If we try v different values for A,
the probability to be unlucky is

{injective functions from v element set to d element set }

Punlucky — Y,
3 d_,\.

did = 11d —2): < (d=v+1)
i




DISCRIMINATION RATE (NAIVE STRATEGY)

Choosing v=1, the error probability of the naive strategy
is minimal:

2 Punlucky 1
i e j\' =z et = ra
p"”"( ) 9 24N —1

Sed

=7 Ir N
Discrimination rate: R = lim 0g Perr (V)
N — 00 N

= logd




GENERAL CLASSICAL STRATEGIES

We have found the rate of the naive classical strategy.
What about general strategies?

Theorem [Hayashi, IEEE TIT, 55, 3807 (2009)]:
The optimal asymptotic rate in distinguishing two classical channels
can be attained by a parallel strategy.

Applying this theorem to a fixed pair of channels,
we obtain that log d is an upper bound to the rate.



IN SUMMARY

For classical variables of dimension d,
the optimal rate in identifying a complete causal intermediary
1S

RC = logd

Attained by the naive strategy
“initialize variable A for N times to the same value”




QUANTUM
SOLUTION



SETTINGS

Assume that the quantum systems A, B, and C have all
the same dimension d.

With this assumption, Hypotheses (1) and (2) become:

, , \ /
Hypothesis (1): CA_> BC(\PA) — (\U/)UT) B X (9)
/ (1

for some unknown unitary U

B
Hypothesis (2): C~1 £ BC-'( PA) L5 R (\,‘/ ,OV
B

)o

4

d

for some unknown unitary V



NAIVE QUANTUM STRATEGY

[nitialize the input system A
in a fixed state,

repeat for N times,

measure the output state.

Error probability:

N+d—1
d—1

9 d N

Perr ( N ) =

Worse than the classical
error probability.
But at least, same rate: log d




OPTIMAL
PARALLEL STRATEGIES



PARALLEL STRATEGIES

Without reference:

W i
A
C c

I
4 p

=0 -

With reference:
B ‘

A
C C
B

~C

LB
C c
A:B
- C cC
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OPTIMAL
PARALLEL STRATEGIES
WITHOUT
REFERENCE



OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p.

Divide the N input variables in p pairs. 0) @ (1) — [1) & |0)

Prepare each group in the singlet state |V7) = 7

Key intuition: invariance of the singlet
A il = b 300

we can test the causal structure without extracting
any information about the functional dependence between
cause and etfect.




ERROR PROBABILITY

For general dimension d,
divide the N input variables in groups of d
and prepare each group in the SU(d) singlet

1
Sa) = —= Y Chiko..kg [R1)lk2) - [Ka)
\/E' klyk27"'7kd

Perform the Helstrom measurement on the output.

1
2dN

s 1
Better than classical value po (V) = SN
2d’

Error probability: perr(fN ) =

but rate is still log d




OPTIMAL
PARALLEL STRATEGIES
WITH
REFERENCE



EQUIVALENT STRATEGIES

d=2, N even. Many ways to partition the inputs into pairs:
C C C C

< C C C

( C ( C etc,

etc...

C C

<C C
C C

/\
N
- & 1 B 1



IDEA: EQUIVALENT STRATEGIES IN

SUPERPOSITION
C
C
In dimension d:
C
C =1
where i labels the way to group the systems
C and L is the number of groupings
in the superposition
C

¢—



ERROR PROBABILITY

When there are r linearly independent groupings,
the error probability is

1
Q i 2 ) 7“>>1>
By =

ZdN

Picking the maximum 7, we obtain the rate

log pQ
err e 21 d
N 5

Twice the classical rate!




IN SUMMARY

For quantum variables of dimension d,
the optimal parallel strategy identifies
the complete causal intermediary with rate

Rq = 2logd

twice the classical rate.

The quantum rate is attained by preparing
singlets in a superposition of different groupings.




GENERAL
QUANTUM STRATEGIES



GENERAL CLASSICAL STRATEGIES?

We have found the rate of the best parallel strategies.
What about general strategies?

In principle, we should optimize over all quantum testers

GC-D’Ariano-Perinotti, PRL 101, 180501 (2008)
Gutoski-Watrous, Proc. STOC, p. 565-574 (2007).

However, the optimization is hard.



“‘70
A TRICK & 0
e

Define the fidelity divergence of two channels

' (C1 ®ZR)(p1), (C2 ® Ir)(p2)
5’F(Cl,62) — inft inf
R p1,p2 F(,Ol, ,02)

Fact: if we try to distinguish between two channels with N queries,
the error probability satisfies

N
_ OF(C1,05)

pzchl(cla C27 N)

7 4
Upper bound on the rate: R5"(C1,C2) < —log dF(Cy,C2)




OPTIMAL RATE

The fidelity divergence between the channels

Cazspclpa) = (UpUNp ® (—

and

Hence, we have the bound /i) < 2log d



IN SUMMARY

For quantum variables of dimension d,
the rate

RQ = ZIOgd

is optimal, and it is attained by preparing
singlets in a superposition of different groupings.




EXTENSION
TO
K CAUSAL HYPOTHESES



CAUSAL INTERMEDIARY: K CANDIDATES

Variables: A, By, B>... Bx

Hypothesis (i): B;is a causal intermediary of A,
=10k and all the other variables fluctuate
uniformly at random.

Problem: decide which hypothesis is correct.




OPTIMAL RATES

Classical: logd

Quantum without reference: log d
(attained with singlets)

Quantum with reference: 2logd
(attained with superposition of singlets,
optimal among all quantum strategies)

Note: rates are independent of the number of hypotheses k



SUMMARY
AND
OUTLOOK



CONCLUSIONS

e Theory-independent framework
for testing causal hypotheses

e Instance of the problem:
identifying the causal intermediary.

e (Classical solution: rate log d

 Quantum solution: rate 2 log d,
achieved by superposition of singlet states
in equivalent configurations



OUTLOOK

e [sitalways true that quantum theory does better
(or at least, not worse) than classical theory
in the task of causal hypothesis testing?

e [s quantum theory optimal for causal hypothesis testing?

e [f not, which physical principles determine the power
in identifying causal hypotheses?

e What about indefinite causal order?
How well can we test non-standard hypotheses on the
causal structure?

Reference for this work: https:/ /arxiv.org /abs/1806.06459




FACULTY OPENING AT HKU C5

A tenure track faculty position in Quantum Information Theory is
now open at the Computer Science Department of
The University of Hong Kong.

Target areas include (but are not limited to)
quantum complexity theory

uantum simulations

uantum machine learning

uantum Shannon theory

uantum cryptography

Deadline for applications: 31 October 2018

More information @
https:/ /www.cs.hku.hk /people / vacancies.jsp
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