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CAUSAL INFERENCE (CLASSICAL)

The problem:  discovering causal relations among a set of variables  
                           (cf. Pearl, Spirtes-Glymour-Scheines) 

Basic idea: A is a cause for B iff  
                    intervening on A has an effect on the statistics of B

Caveat:  “correlation does not imply causation”:

no way to infer a causal relation  
from a single probability distribution p(a,b).
It is necessary to probe different settings for a 



CAUSAL INFERENCE (GENERAL)

Recently, various extensions of the notions of 
                 “causal relation” and “causal network”  
                  to quantum theory and beyond.

Basic idea (modulo variations across frameworks): 
Variables:  physical systems.
Causal relations: variable A is a cause for variable B iff  
                               changing the state of A induces a change of the state of B

Leifer (2006), GC-D’Ariano-Perinotti (2008),  
Coecke-Spekkens (2012), Leifer-Spekkens (2013),  
Henson-Lal-Pusey (2014), Pienaar-Brukner (2015), Costa-Shrapnel (2016),  
Portmann-Matt-Maurer-Renner-Tackmann (2017),  
Allen-Barrett-Horsman-Lee-Spekkens (2017), MacLean-Ried-Spekkens-Resch (2017).



MOTIVATIONS FOR QUANTUM EXTENSION 

• Practical: 
   -identifying new quantum advantages
   -identifying working principles for new quantum devices,
    develop a “technology” of quantum causality. 

• Foundational: 
   -understanding interplay between causality and quantum 
    probability     
  -find new principles for quantum theory



PLAN OF THIS TALK

Formulate and analyze the quantum version of the task of  
testing causal hypotheses. 

In this task, one has a set of candidate hypotheses  
on the causal relations occurring in a process
and the goal is to identify the correct hypothesis.   



PROLOGUE



AN INTRIGUING EXAMPLE

Task: distinguish between 

• Situation (2): A and B have a common cause  

• Situation (1):  A causes B  

Fact: for some specific     and     it is possible to distinguish  
         between (1) and (2) using only projective measurements.
Fitzsimons, Jones, and Vedral, Scientific  Reports 5, 18281 (2015).  
Ried, Agnew, Vermeyden, Janzing, Spekkens, and Resch, Nature Physics 11, 414  (2015). 



QUESTION

In the classical world, projective measurements correspond to
passive observational strategies, where no intervention is allowed.

Question:  
Can we find advantages in the situation where  
arbitrary interventions are allowed?



TESTING 
CAUSAL HYPOTHESES:

A THEORY-INDEPENDENT FRAMEWORK



CAUSAL DISCOVERY  
VS CAUSAL HYPOTHESIS TESTING

Causal discovery.    Input:       variables A, B, C, …
            Output:    the causal relations among them.

Causal hypothesis testing:     Input:  variables A, B, C, …
                                                                 and a set of hypotheses on the 
                                                                 causal relations among them.

                          Output: the correct hypothesis



CAUSAL HYPOTHESES

Causal Hypothesis:  an hypothesis on the causal structure   
                                     of the process connecting the variables.  

e.g. 

A
B

C
A

B

C

(H1) A causes B
         but not C

(H2) A causes C
         but not B

NB:    causal hypotheses can be formulated  
           independently of the underlying theory.



TESTING CAUSAL HYPOTHESES

The experimenter can probe the same process  
for a finite number of times, performing arbitrary interventions.

A
B

C
A

B

C
A

B

C
A

B

C
…

… …
…
…

Most general intervention:

x=  guess for the correct hypothesis

Special cases: process tomography, parallel queries, etc…



DISCRIMINATION RATE

Goal of causal hypothesis testing:   
minimize the probability of choosing the wrong hypothesis.

Worst-case approach: since the process       is unknown
                                        (a part from the fact that it is compatible with 
                                         one and only one of the given hypotheses) 
                                         we will consider the  
                                         worst-case error probability 
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ships depends on the physical theory, which determines
which maps represent allowed physical processes.

Now, given a set of variables, we may have di↵erent hy-
pothesis on the causal relationships existing among them.
To fix the ideas, consider a three-variable scenario, where
variable A may cause either variable B or variable C, but
not both. The causal relation is described by a process C,
with input A and outputs B and C. The two alternative
causal hypotheses are that A causes B but not C, or that
A causes C but not B. The problem of causal hypothe-
sis testing is to distinguish between these two hypotheses,
without having further knowledge of the physical process
responsible for the causal relation. This means that the
process C is unknown, except for the fact that it must
compatible with one of the two hypotheses.

In order to decide which hypothesis is correct, we as-
sume that the experimenter has black box access to the
process C, inducing the causal relation between the vari-
ables A,B, and C. The experimenter can probe the black
box for N times, intervening between query and another,
as illustrated in Figure 1. In the end, the data collected
in the experiment will be used to guess which causal hy-
pothesis is the correct one. See Supplementary Note 1
for a more detailed discussion.

FIG. 1. Testing scheme of the black box. make the state
as big as the measurement In order to decide the direction
into which the information is output by the black box C, the exper-
imenter can test C for N times. Most generally, such a test prepares
a state  , which acts as the input of C and as a reference system,
followed by N uses of the black box C. After each use, the exper-
imenter intervenes by forwarding the output of C, together with
the reference system, to a gate Ui, i = 1, 2, . . . , N � 1. Finally, the
overall output is measured according to Pbx, where bx denotes the
possible measurement outcomes that predict the correct hypothe-
sis.

The performance of the test is measured by the proba-
bility of that the guessed hypothesis is correct, or equiv-
alently how often the prediction fails. Since the explicit
form of the process C is unknown, we will consider the
worst case probability over all processes compatible with
the given causal hypotheses. An important parameter is
the rate at which the causal hypotheses can be distin-
guished from each other, defined as

R = lim
N!1

� log perr(N)

N
, (1)

where perr(N) is the probability of guessing an incorrect
hypothesis, and log denotes the logarithm in base two.
We call R the discrimination rate. Its operational mean-
ing is that, for every error threshold ✏, the number of
queries needed to identify the correct hypothesis with er-

ror probability smaller than ✏ grows as log ✏�1
/R at the

leading order.
Note that the problem of distinguishing between causal

hypotheses is formulated in a theory independent way:
one can consider the same set of causal hypotheses in two
di↵erent physical theories, and ask which theory o↵ers
the best discrimination rate.

FIG. 2. Spacetime picture of a causal intermediary. Vari-
able A is localized at a point in spacetime, and its causal influences
propagate inside the light cone. Variable B is distributed over a
section of the light cone of A and intercepts all the influences of A.
Every other variable B0 that is a↵ected by A and comes after B
must be obtained from variable B through some physical process.
The variable B acts as a causal intermediary for variable A.

Identifying causal intermediaries. In the following we
focus on an instance of causal hypothesis testing, where
the problem is to identify which variable acts as a causal
intermediary for a given variable. We say that variable
B is a causal intermediary for A if all the influences of
A propagate through B. Physically, one can interpret B
as a slice of the forward light cone starting from A, so
that all the causal influences of A must pass through B,
as illustrated in Figure 2. Mathematically, the fact that
B is a causal intermediary means that for every other
variable B

0 and for every process C
0 with input A and

output B0, one can decompose C0 as C0 = R �C, where R
is a suitable process from B to B

0. In a picture:

A
C
0 B0

= A
C

B
R

B0
. (2)

The condition that a variable is a causal intermediary
of another has a simple characterization in the physical
theories where every process is fundamentally reversible,
i.e. it arises from a reversible interaction between the
input system and an environment. The reversibility con-
dition is captured by the diagram

A
C

B =
A

U

B

⌘ E E0
Tr

, (3)

where variables E and E
0 play the role of the environ-

ment before and after the interaction, ⌘ is the initial state
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The condition that a variable is a causal intermediary
of another has a simple characterization in the physical
theories where every process is fundamentally reversible,
i.e. it arises from a reversible interaction between the
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where variables E and E
0 play the role of the environ-

ment before and after the interaction, ⌘ is the initial state

Discrimination rate:

quantifies the distinguishability of the hypotheses



EXAMPLE:

IDENTIFYING
THE CAUSAL INTERMEDIARY



CAUSAL INTERMEDIARIES

More formally: 
Variable B is a causal intermediary for variable A if
• B is an effect of A 
• every other effect of A, say B’, is an effect of B
   (assuming that B’ takes place after B)
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The condition that a variable is a causal intermedi-
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, (3)

where variables E and E
0 play the role of the environ-

ment before and after the interaction, ⌘ is the initial state

Variable B is a (complete) causal intermediary for variable A,
if “all the causal influences of A” propagate through B.

Example: 
variable A localized at a spacetime point
and variable B localized in a section  
of the forward light cone based at A.



IDENTIFYING  THE CAUSAL INTERMEDIARY

Hypothesis (1):   B is a causal intermediary of A,  
                              while C fluctuates uniformly at random.

Variables:    A, B, and C

Hypothesis (2):   C is a causal intermediary of A,  
                              while B fluctuates uniformly at random.

Problem:    decide which hypothesis is correct.



CLASSICAL 
SOLUTION



SETTINGS

With this assumption, Hypotheses (1) and (2) become:

Hypothesis (1):      b is a permutation of a,  
                                 and c is uniformly random 

Hypothesis (2):     c is a permutation of a,  
                                and b is uniformly random 

Assume that the random variables A, B, and C have all  
the same dimension d.  



NAIVE CLASSICAL STRATEGY

Initialize the input variable A to a certain value, 
and observe the values taken by the output variables B and C.
Repeat for N times, possibly trying different values of A.

Example for N=8, d=2

1 2 3 4 5 6 7 8

A 0 0 1 1 0 0 0 1

B 1 1 0 0 1 1 1 0

C 0 0 1 1 1 0 0 1



PROBABILITY OF ERROR (NAIVE STRATEGY)

Error occurs when both variables B and C 
take values that are compatible with permutations. 

In that unlucky case, the probability of error is 1/2. 

If we try v different values for A, 
the probability to be unlucky is



DISCRIMINATION RATE (NAIVE STRATEGY)

Choosing v=1, the error probability of the naive strategy  
is minimal:
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Discrimination rate:
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of the environment, U is a reversible process, and Tr de-
scribes the process of discarding system E

0. Equation (3)
holds in quantum theory, where every quantum channel
can be extended to a unitary process, and where Tr is
the partial trace. It also holds in classical theory, where
every stochastic process can be extended to an invertible
function, and Tr is the operation of marginalization.

When condition (3) is satisfied, the variable A can be
in principle recovered from variables B and E

0. In other
words, A can be an e↵ect of itself. Now, if variable B is
to be a causal intermediary of A, the process C must be
correctable, in the sense that its action can be undone
by another process R. If in addition the state spaces
of variables A and B are finite dimensional and of the
same dimension, then the process C must be physically
reversible. In classical theory, this means that C is an
invertible function. In quantum theory, this means that
C is a unitary channel, of the form C(⇢) = U⇢U

† for some
unitary operator U .

We will consider the the scenario where the experi-
menter is given an input variable A and k candidate
variables B1, B2, . . . , Bk, with the hypothesis that one
and only one of these variables is a causal intermediary
for A, while the other k � 1 variables fluctuate at ran-
dom from one run of the experiment to the next. We will
first analyze the problem for k = 2, and then extend our
solution to arbitrary numbers of candidate variables.

Optimal classical strategy. Suppose that A, B, and C

are identical random variables, with values in a finite al-
phabet of size d. In this case, the fact that X 2 {B,C}

is a causal intermediary for A means that the map from
A to X is invertible. The first (second) causal hypothe-
sis corresponds to the case where B (C) is an invertible
function of A, while C (B) is uniformly random. Other
than this, no information about the functional relation
between the variables is known to the experimenter. In
particular, the experimenter does not know which invert-
ible function relates the variable A with its causal inter-
mediary.

Now, we need to determine how well can one distin-
guish between the two hypotheses with a finite number
of experiments. In principle, in order to find the optimal
strategy we should examine all sequential strategies, as
in Figure 1. However, in classical theory, a simplification
arises: the optimal discrimination rate can be achieved
by a parallel strategy, wherein the N input variables are
initially set beginning to some prescribed set of values
[20]. Without loss of generality, we assume that the vari-
able A is initialized to the value a = 0 forN0 times, to the
value a = 1 for N1 times, and so on. The possibility of
an error arises is when the randomly fluctuating variable
accidentally takes values that are compatible with an in-
vertible function, so that the outcome of the test gives
no ground to discriminate between the two hypotheses.
The probability of such inconclusive scenario is equal to
P (d, v)/dN , where v is the number of distinct values of
A probed in the experiment and P (d, v) = d!/(d� v)! is
the number of injective functions from a v-element set to

a d-element set. The probability of confusion is minimal
for v = 1, leading to the overall error probability

p
C
err =

1

2dN�1
(4)

(here the factor 1/2 results from the random choice be-
tween the two alternative hypotheses). The rate at which
the two causal hypotheses can be distinguished from each
other is then equal to

RC = log d . (5)

Quantum strategies. The quantum setting involves
three quantum variables, A, B, and C, corresponding
to quantum systems of dimension d. The fact that
X 2 {B,C} is a causal intermediary for A means that
the map from A to X is a unitary channel. The first
(second) causal hypothesis is that the state of B (C) is
obtained from the state of A through unitary evolution,
while the state of C (B) is maximally mixed.
As it turns out, finding the optimal quantum strat-

egy is much trickier than in the classical case. The gen-
eral setting for the problem is provided in Supplementary
Note 1. Heuristically, one might be tempted to adopt
the straightforward generalization of the classical strat-
egy: initialize system A in a pure state | i, collect the
output state of systems B and C, repeat the experiment
for N times, and measure the output systems in order
to identify the correct causal hypothesis. Unfortunately,
the performance of this strategy is much worse than the
performance of the classical strategy it tries to repro-
duce: when the number of experiments is large, the ratio
between the quantum error probability and the classi-
cal error probability grows as Nd�1 (see Supplementary
Note 2). The reason for the larger error is that in quan-
tum theory the functional dependency between cause and
e↵ect can be any unitary channel, while in classical the-
ory only permutations are allowed. In spite of this, we
will show that genuinely quantum strategies can identify
the correct hypothesis exponentially faster than the best
classical strategy.
Quantum strategies can take advantage of three key

features. The first feature is entanglement among the
input systems: when the causal structure is probed for
N � 2 times, the N copies of the quantum variable A

can be initialized in an entangled state [21, 22]. The
second feature is entanglement with a reference variable
R, which does not take part directly in the process, but
helps distinguishing among the di↵erent alternatives [23–
25]. The third feature is coherence in time: the unknown
causal relation could be probed through a sequence of
interventions, maintaining coherence from one time step
to the next [26–29]. The three type of strategies corre-
sponding to the above three features are illustrated in
Figure 3. In the following we will see how these three
features play out in our problem.

Entanglement across the input variables: quantum
strategies catch up with classical strategies. Let us con-
sider the scenario where only entanglement across the
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We have found the rate of the naive classical strategy. 
What about general strategies?  

Theorem [Hayashi, IEEE TIT, 55, 3807 (2009)]:  
The optimal asymptotic rate in distinguishing two classical channels
can be attained by a parallel strategy.

Applying this theorem to a fixed pair of channels,  
we obtain that  log d is an upper bound to the rate.



IN SUMMARY

For classical variables of dimension d, 
the optimal rate in identifying a complete causal intermediary 
is

Attained by the naive strategy  
“initialize variable A for N times to the same value”

3

of the environment, U is a reversible process, and Tr de-
scribes the process of discarding system E

0. Equation (3)
holds in quantum theory, where every quantum channel
can be extended to a unitary process, and where Tr is
the partial trace. It also holds in classical theory, where
every stochastic process can be extended to an invertible
function, and Tr is the operation of marginalization.

When condition (3) is satisfied, the variable A can be
in principle recovered from variables B and E

0. In other
words, A can be an e↵ect of itself. Now, if variable B is
to be a causal intermediary of A, the process C must be
correctable, in the sense that its action can be undone
by another process R. If in addition the state spaces
of variables A and B are finite dimensional and of the
same dimension, then the process C must be physically
reversible. In classical theory, this means that C is an
invertible function. In quantum theory, this means that
C is a unitary channel, of the form C(⇢) = U⇢U

† for some
unitary operator U .

We will consider the the scenario where the experi-
menter is given an input variable A and k candidate
variables B1, B2, . . . , Bk, with the hypothesis that one
and only one of these variables is a causal intermediary
for A, while the other k � 1 variables fluctuate at ran-
dom from one run of the experiment to the next. We will
first analyze the problem for k = 2, and then extend our
solution to arbitrary numbers of candidate variables.

Optimal classical strategy. Suppose that A, B, and C

are identical random variables, with values in a finite al-
phabet of size d. In this case, the fact that X 2 {B,C}

is a causal intermediary for A means that the map from
A to X is invertible. The first (second) causal hypothe-
sis corresponds to the case where B (C) is an invertible
function of A, while C (B) is uniformly random. Other
than this, no information about the functional relation
between the variables is known to the experimenter. In
particular, the experimenter does not know which invert-
ible function relates the variable A with its causal inter-
mediary.

Now, we need to determine how well can one distin-
guish between the two hypotheses with a finite number
of experiments. In principle, in order to find the optimal
strategy we should examine all sequential strategies, as
in Figure 1. However, in classical theory, a simplification
arises: the optimal discrimination rate can be achieved
by a parallel strategy, wherein the N input variables are
initially set beginning to some prescribed set of values
[20]. Without loss of generality, we assume that the vari-
able A is initialized to the value a = 0 forN0 times, to the
value a = 1 for N1 times, and so on. The possibility of
an error arises is when the randomly fluctuating variable
accidentally takes values that are compatible with an in-
vertible function, so that the outcome of the test gives
no ground to discriminate between the two hypotheses.
The probability of such inconclusive scenario is equal to
P (d, v)/dN , where v is the number of distinct values of
A probed in the experiment and P (d, v) = d!/(d� v)! is
the number of injective functions from a v-element set to

a d-element set. The probability of confusion is minimal
for v = 1, leading to the overall error probability

p
C
err =

1

2dN�1
(4)

(here the factor 1/2 results from the random choice be-
tween the two alternative hypotheses). The rate at which
the two causal hypotheses can be distinguished from each
other is then equal to

RC = log d . (5)

Quantum strategies. The quantum setting involves
three quantum variables, A, B, and C, corresponding
to quantum systems of dimension d. The fact that
X 2 {B,C} is a causal intermediary for A means that
the map from A to X is a unitary channel. The first
(second) causal hypothesis is that the state of B (C) is
obtained from the state of A through unitary evolution,
while the state of C (B) is maximally mixed.
As it turns out, finding the optimal quantum strat-

egy is much trickier than in the classical case. The gen-
eral setting for the problem is provided in Supplementary
Note 1. Heuristically, one might be tempted to adopt
the straightforward generalization of the classical strat-
egy: initialize system A in a pure state | i, collect the
output state of systems B and C, repeat the experiment
for N times, and measure the output systems in order
to identify the correct causal hypothesis. Unfortunately,
the performance of this strategy is much worse than the
performance of the classical strategy it tries to repro-
duce: when the number of experiments is large, the ratio
between the quantum error probability and the classi-
cal error probability grows as Nd�1 (see Supplementary
Note 2). The reason for the larger error is that in quan-
tum theory the functional dependency between cause and
e↵ect can be any unitary channel, while in classical the-
ory only permutations are allowed. In spite of this, we
will show that genuinely quantum strategies can identify
the correct hypothesis exponentially faster than the best
classical strategy.
Quantum strategies can take advantage of three key

features. The first feature is entanglement among the
input systems: when the causal structure is probed for
N � 2 times, the N copies of the quantum variable A

can be initialized in an entangled state [21, 22]. The
second feature is entanglement with a reference variable
R, which does not take part directly in the process, but
helps distinguishing among the di↵erent alternatives [23–
25]. The third feature is coherence in time: the unknown
causal relation could be probed through a sequence of
interventions, maintaining coherence from one time step
to the next [26–29]. The three type of strategies corre-
sponding to the above three features are illustrated in
Figure 3. In the following we will see how these three
features play out in our problem.

Entanglement across the input variables: quantum
strategies catch up with classical strategies. Let us con-
sider the scenario where only entanglement across the
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With this assumption, Hypotheses (1) and (2) become:

Assume that the quantum systems A, B, and C have all  
the same dimension d.  

Hypothesis (2):    

for some unknown unitary V

for some unknown unitary U
Hypothesis (1):      
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Initialize the input system A  
in a fixed state, 
repeat for N times,
measure the output state.

A B

C

A
B

C

A
B

C

…

A
B

C

Error probability:

Worse than the classical  
error probability.
But at least, same rate: log d 
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OPTIMAL STRATEGY WITHOUT REFERENCE

For simplicity, assume d = 2 and N even, say N=2p. 

Divide the N input variables in p pairs.
Prepare each group in the singlet state 

Key intuition: invariance of the singlet

we can test the causal structure without extracting
any information about the functional dependence between
cause and effect.  



ERROR PROBABILITY

For general dimension d,
divide the N input variables in groups of d
and prepare each group in the SU(d) singlet

Perform the Helstrom measurement on the output.

4

(a)

(b)

FIG. 3. Parallel strategies, with and without reference
system. The N input systems A1, . . . , AN can be prepared

in a correlated state  sys, which is then used to probe the

channel Cx for N times (figure (a)). More generally, the input

systems can be correlated with an reference system R. The

resulting state  sa is then input to the channels Cx, while

the reference remains untouched. This scenario is depicted in

figure (b).

input systems is allowed. For simplicity, we take N to
be a multiple of d. In this case, it turns out that the
best strategy is to divide the N inputs into N/d groups
of d systems each and, within each group, to initialize
the input variables in the singlet state

|Sdi =
1

p
d!

X

k1,k2,··· ,kd

✏k1k2...kd |k1i|k2i · · · |kdi (6)

where ✏k1k2...kd is the totally antisymmetric tensor and
the sum ranges over all vectors in the computational ba-
sis. The resulting output state is then measured with
Helstrom’s minimum error measurement [30], which re-
duces the probability of error to

p
QC
err =

1

2dN
(7)

(see Supplementary Note 3). Note that the quantum
error probability is d times smaller than the classical er-
ror probability. The origin of this reduction is the com-
plementarity between the information about the causal
structure and the information about the functional de-
pendence between cause and e↵ect: since the singlet
state is invariant under unitary transformations, the
quantum strategy only extracts information about the

causal structure, without learning which particular uni-
tary channel relates the cause with the e↵ect. Still, the
decay rate for the error probability (7) is equal to the
classical rate RC = log d: when no reference system is
used, quantum and classical strategies lead to the same
asymptotic performance in the discrimination of alterna-
tive causal hypotheses.

Entanglement with an external reference system: ex-
ponential quantum advantage. Let us see what happens
when the input variables are entangled with a reference
system. In this case, we find out a strategy with exponen-
tially smaller error probability than the classical strategy.
The key to this advantage is a quantum superposition of
equivalent experimental setups. We know that the opti-
mal reference-free input is the product of N/d singlets,
each of them involving d particles. Clearly, all the dif-
ferent ways of dividing the N inputs into groups of d are
equally optimal: it does not matter which particle is en-
tangled with which, as long as all each particle is part of
a singlet state. But quite counterintuitively, a coherent
superposition of equivalent configurations can reduce the
error probability. Specifically, the optimal joint state of
the N inputs and the reference is

| i =
1p
GN,d

GN,dX

i=1

⇣
|Sdi

⌦N/d
⌘

i
⌦ |ii , (8)

where i labels the di↵erent ways to divide N identical
objects into groups of d elements, GN,d is the number
of such ways,

�
|Sdi

⌦N/d
�
i
is the product of N/d singlet

states arranged according to the i-th configuration, and
{|ii , i = 1, . . . , GN,d} are orthogonal states of the refer-
ence system, chosen to be of dimension equal to or larger
than GN,d.
Classically, there would be no point in randomizing op-

timal configurations, because mixtures cannot reduce the
error probability. But in the quantum case, the coherent
superposition of r linearly independent inputs brings the
error probability down to

p
Q
err(r) =

r

2dN

⇣
1�

p
1� r�2

⌘
r�1
���!

1

4rdN
, (9)

as shown in Supplementary Note 3. To determine how
much the error probability can be reduced, we only need
to evaluate the number of linearly independent states of
the form (|Sdi

⌦N )i. It turns out that this number grows
as dN , up to a polynomial factor. Taking the logarithm,
we obtain that the error probability decays at the rate

RQ = � lim
N!1

log pQerr
N

= 2 log d . (10)

The details are provided in Supplementary Note 4. By
comparison with Eq. (5) we can see that the quantum
discrimination rate is twice the classical discrimination
rate. Note that the rapid decay of the error probabil-
ity implies that the asymptotic regime is already reached
with a small number of interrogations, of the order of

Error probability:

Better than classical value

but rate is still log d
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EQUIVALENT STRATEGIES

d=2, N even. Many ways to partition the inputs into pairs:

etc, 
etc…



IDEA: EQUIVALENT STRATEGIES IN 
SUPERPOSITION

13245

In dimension d:

where i labels the way to group the systems
and L is the number of groupings  
in the superposition



ERROR PROBABILITY

When there are r linearly independent groupings, 
the error probability is
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FIG. 3. Parallel strategies, with and without reference
system. The N input systems A1, . . . , AN can be prepared

in a correlated state  sys, which is then used to probe the

channel Cx for N times (figure (a)). More generally, the input

systems can be correlated with an reference system R. The

resulting state  sa is then input to the channels Cx, while

the reference remains untouched. This scenario is depicted in

figure (b).

input systems is allowed. For simplicity, we take N to
be a multiple of d. In this case, it turns out that the
best strategy is to divide the N inputs into N/d groups
of d systems each and, within each group, to initialize
the input variables in the singlet state

|Sdi =
1

p
d!

X

k1,k2,··· ,kd

✏k1k2...kd |k1i|k2i · · · |kdi (6)

where ✏k1k2...kd is the totally antisymmetric tensor and
the sum ranges over all vectors in the computational ba-
sis. The resulting output state is then measured with
Helstrom’s minimum error measurement [30], which re-
duces the probability of error to

p
QC
err =

1

2dN
(7)

(see Supplementary Note 3). Note that the quantum
error probability is d times smaller than the classical er-
ror probability. The origin of this reduction is the com-
plementarity between the information about the causal
structure and the information about the functional de-
pendence between cause and e↵ect: since the singlet
state is invariant under unitary transformations, the
quantum strategy only extracts information about the

causal structure, without learning which particular uni-
tary channel relates the cause with the e↵ect. Still, the
decay rate for the error probability (7) is equal to the
classical rate RC = log d: when no reference system is
used, quantum and classical strategies lead to the same
asymptotic performance in the discrimination of alterna-
tive causal hypotheses.

Entanglement with an external reference system: ex-
ponential quantum advantage. Let us see what happens
when the input variables are entangled with a reference
system. In this case, we find out a strategy with exponen-
tially smaller error probability than the classical strategy.
The key to this advantage is a quantum superposition of
equivalent experimental setups. We know that the opti-
mal reference-free input is the product of N/d singlets,
each of them involving d particles. Clearly, all the dif-
ferent ways of dividing the N inputs into groups of d are
equally optimal: it does not matter which particle is en-
tangled with which, as long as all each particle is part of
a singlet state. But quite counterintuitively, a coherent
superposition of equivalent configurations can reduce the
error probability. Specifically, the optimal joint state of
the N inputs and the reference is

| i =
1p
GN,d

GN,dX

i=1

⇣
|Sdi

⌦N/d
⌘

i
⌦ |ii , (8)

where i labels the di↵erent ways to divide N identical
objects into groups of d elements, GN,d is the number
of such ways,

�
|Sdi

⌦N/d
�
i
is the product of N/d singlet

states arranged according to the i-th configuration, and
{|ii , i = 1, . . . , GN,d} are orthogonal states of the refer-
ence system, chosen to be of dimension equal to or larger
than GN,d.
Classically, there would be no point in randomizing op-

timal configurations, because mixtures cannot reduce the
error probability. But in the quantum case, the coherent
superposition of r linearly independent inputs brings the
error probability down to

p
Q
err(r) =

r

2dN
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1� r�2
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1

4rdN
, (9)

as shown in Supplementary Note 3. To determine how
much the error probability can be reduced, we only need
to evaluate the number of linearly independent states of
the form (|Sdi

⌦N )i. It turns out that this number grows
as dN , up to a polynomial factor. Taking the logarithm,
we obtain that the error probability decays at the rate

RQ = � lim
N!1

log pQerr
N

= 2 log d . (10)

The details are provided in Supplementary Note 4. By
comparison with Eq. (5) we can see that the quantum
discrimination rate is twice the classical discrimination
rate. Note that the rapid decay of the error probabil-
ity implies that the asymptotic regime is already reached
with a small number of interrogations, of the order of

Picking the maximum r, we obtain the rate
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FIG. 3. Parallel strategies, with and without reference
system. The N input systems A1, . . . , AN can be prepared

in a correlated state  sys, which is then used to probe the

channel Cx for N times (figure (a)). More generally, the input

systems can be correlated with an reference system R. The

resulting state  sa is then input to the channels Cx, while

the reference remains untouched. This scenario is depicted in

figure (b).

input systems is allowed. For simplicity, we take N to
be a multiple of d. In this case, it turns out that the
best strategy is to divide the N inputs into N/d groups
of d systems each and, within each group, to initialize
the input variables in the singlet state

|Sdi =
1

p
d!

X

k1,k2,··· ,kd

✏k1k2...kd |k1i|k2i · · · |kdi (6)

where ✏k1k2...kd is the totally antisymmetric tensor and
the sum ranges over all vectors in the computational ba-
sis. The resulting output state is then measured with
Helstrom’s minimum error measurement [30], which re-
duces the probability of error to

p
QC
err =

1

2dN
(7)

(see Supplementary Note 3). Note that the quantum
error probability is d times smaller than the classical er-
ror probability. The origin of this reduction is the com-
plementarity between the information about the causal
structure and the information about the functional de-
pendence between cause and e↵ect: since the singlet
state is invariant under unitary transformations, the
quantum strategy only extracts information about the

causal structure, without learning which particular uni-
tary channel relates the cause with the e↵ect. Still, the
decay rate for the error probability (7) is equal to the
classical rate RC = log d: when no reference system is
used, quantum and classical strategies lead to the same
asymptotic performance in the discrimination of alterna-
tive causal hypotheses.

Entanglement with an external reference system: ex-
ponential quantum advantage. Let us see what happens
when the input variables are entangled with a reference
system. In this case, we find out a strategy with exponen-
tially smaller error probability than the classical strategy.
The key to this advantage is a quantum superposition of
equivalent experimental setups. We know that the opti-
mal reference-free input is the product of N/d singlets,
each of them involving d particles. Clearly, all the dif-
ferent ways of dividing the N inputs into groups of d are
equally optimal: it does not matter which particle is en-
tangled with which, as long as all each particle is part of
a singlet state. But quite counterintuitively, a coherent
superposition of equivalent configurations can reduce the
error probability. Specifically, the optimal joint state of
the N inputs and the reference is

| i =
1p
GN,d

GN,dX

i=1

⇣
|Sdi

⌦N/d
⌘

i
⌦ |ii , (8)

where i labels the di↵erent ways to divide N identical
objects into groups of d elements, GN,d is the number
of such ways,

�
|Sdi

⌦N/d
�
i
is the product of N/d singlet

states arranged according to the i-th configuration, and
{|ii , i = 1, . . . , GN,d} are orthogonal states of the refer-
ence system, chosen to be of dimension equal to or larger
than GN,d.
Classically, there would be no point in randomizing op-

timal configurations, because mixtures cannot reduce the
error probability. But in the quantum case, the coherent
superposition of r linearly independent inputs brings the
error probability down to

p
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err(r) =

r

2dN
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1� r�2
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1

4rdN
, (9)

as shown in Supplementary Note 3. To determine how
much the error probability can be reduced, we only need
to evaluate the number of linearly independent states of
the form (|Sdi

⌦N )i. It turns out that this number grows
as dN , up to a polynomial factor. Taking the logarithm,
we obtain that the error probability decays at the rate

RQ = � lim
N!1

log pQerr
N

= 2 log d . (10)

The details are provided in Supplementary Note 4. By
comparison with Eq. (5) we can see that the quantum
discrimination rate is twice the classical discrimination
rate. Note that the rapid decay of the error probabil-
ity implies that the asymptotic regime is already reached
with a small number of interrogations, of the order of

Twice the classical rate!



IN SUMMARY

For quantum variables of dimension d, 
the optimal parallel strategy identifies  
the complete causal intermediary with rate

twice the classical rate. 

The quantum rate is attained by preparing  
singlets in a superposition of different groupings. 
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We have found the rate of the best parallel strategies. 
What about general strategies?  

In principle, we should optimize over all quantum testers
GC-D’Ariano-Perinotti, PRL 101, 180501 (2008)
Gutoski-Watrous, Proc. STOC, p. 565-574 (2007).

However, the optimization is hard.



A TRICK

Define the fidelity divergence of two channels

5

a few tens. For example, the causal relation between
two quantum bits can be determined with an error prob-
ability smaller than 10�6 using with 12 interrogations,
whereas 20 interrogations are necessary for classical bi-
nary variables.

Sequential strategies: the ultimate quantum limit. So
far, we examined strategies where the unknown process is
applied in parallel to an entangled state. Could it be that
a general sequence of interventions achieves an even bet-
ter rate? Finding the optimal sequential strategy is gen-
erally a hard problem, involving an optimization over an
exponentially large space of matrices. Unlike in the clas-
sical case, in the quantum case it is not known whether
sequential strategies time can improve the discrimination
rate [20]. Nevertheless, for the problem of identifying
causal intermediaries we will show that sequential strate-
gies cannot improve the discrimination rate beyond the
value RQ = 2 log d. To this purpose, we introduce the
fidelity divergence of two quantum channels C1 and C2,
defined as

@F (C1, C2) = inf
R

inf
⇢1,⇢2

F

h
(C1 ⌦ IR)(⇢1) , (C2 ⌦ IR)(⇢2)

i

F (⇢1, ⇢2)
,

(11)

where ⇢1 and ⇢2 are joint states of the channel’s input
and of the reference system R. It is understood that
the infimum in the right hand side is taken over pairs of
states (⇢1, ⇢2) for which the fidelity F (⇢1, ⇢2) is non-zero,
so that the expression on the right hand side of Equation
(11) is well-defined.

The fidelity divergence quantifies how much the two
channels C1 and C2 can move two states apart from each
other. In the Methods section, we show that the error
probability in distinguishing between the two channels
with N queries is lower bounded as

p
seq
err (C1, C2;N) �

@F (C1, C2)N

4
. (12)

This means that the decay rate of the probability of error
is upper bounded as

R
seq
Q (C1, C2)  � log @F (C1, C2) . (13)

For the two channels in our problem, it turns out that the
fidelity divergence is 1/d2, leading to the upper bound
R  2 log d, valid for every quantum strategy (see the
Methods section for the details). In conclusion, the rate
RQ = 2 log d, attainable with parallel strategies, is the
ultimate limit set by quantum mechanics to the discrim-
ination of our two causal hypotheses.

Classical and quantum strategies for k � 2 hypothe-
ses. Suppose that there are k candidate variables for
the causal intermediary of A. Also in this case, the best
classical strategy consists in initializing all variables to
the same value. Errors arise when the values for two or
more output variables are compatible with an invertible

function. In the limit of many repetitions, the classical
error probability is

p
C
err,k =

k � 1

2dN�1
+O

✓
1

d2N

◆
(14)

(Supplementary Note 5). For quantum strategies with-
out reference system, the best option is still to divide
the input particles into N/d groups of d particles and to
initialize each group in the singlet state. In Supplemen-
tary Note 6, we show that this strategy reduces the error
probability to

p
QC
err,k =

k � 1

2dN
+O

✓
1

d2N

◆
. (15)

An exponentially smaller error probability can be
achieved using an ancillary system and the input state
(8). The evaluation of the error probability is more com-
plex than in the two-hypothesis case, but the end result
is the same: when the causal dependency is probed N

times, the quantum error probability decays at the ex-
ponential rate RQ = 2 log d, twice the rate of the best
classical strategy. The full derivation of this result is
presented in Supplementary Note 7.

III. OUTLOOK

We have seen that quantum theory o↵ers advantages
in the task of identifying the causal intermediary of a
given input variable. This finding suggests that quan-
tum physics may be always better (or at least, never
worse) than classical physics at identifying causal struc-
tures. Determining whether this is the case is, however,
a non-trivial problem. Indeed, quantum physics intro-
duces both new challenges (viz. the infinitely many ways
a quantum cause can influence its e↵ect) and new op-
portunities (viz. the ability to probe the causal struc-
ture without extracting information about the functional
dependence between cause and e↵ect). Our work moti-
vates the exploration of new scenarios, including causal
relations beyond the simple cause-e↵ect relation studied
in this paper. By exploring di↵erent scenarios, one may
hope to get further insight into the mechanism that leads
to quantum advantages.
Another important question regards the maximum ad-

vantage o↵ered by quantum theory. Here we have shown
that quantum entanglement doubles the rate at which
the correct hypothesis is identified. But can one find
even larger advantages? Or is the doubling observed in
our work the maximum advantage attainable in quan-
tum theory? At an even deeper level, it is tempting to
ask whether quantum theory is the optimal physical the-
ory for inferring causal relations. Tackling this question
requires studying the discrimination of causal hypothe-
ses in general theories beyond quantum theory. Partic-
ularly interesting are theories that admit more powerful
dense coding protocols than quantum theory [31], as one

Fact: if we try to distinguish between two channels with N queries, 
          the error probability satisfies

5

a few tens. For example, the causal relation between
two quantum bits can be determined with an error prob-
ability smaller than 10�6 using with 12 interrogations,
whereas 20 interrogations are necessary for classical bi-
nary variables.

Sequential strategies: the ultimate quantum limit. So
far, we examined strategies where the unknown process is
applied in parallel to an entangled state. Could it be that
a general sequence of interventions achieves an even bet-
ter rate? Finding the optimal sequential strategy is gen-
erally a hard problem, involving an optimization over an
exponentially large space of matrices. Unlike in the clas-
sical case, in the quantum case it is not known whether
sequential strategies time can improve the discrimination
rate [20]. Nevertheless, for the problem of identifying
causal intermediaries we will show that sequential strate-
gies cannot improve the discrimination rate beyond the
value RQ = 2 log d. To this purpose, we introduce the
fidelity divergence of two quantum channels C1 and C2,
defined as

@F (C1, C2) = inf
R

inf
⇢1,⇢2

F

h
(C1 ⌦ IR)(⇢1) , (C2 ⌦ IR)(⇢2)

i
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where ⇢1 and ⇢2 are joint states of the channel’s input
and of the reference system R. It is understood that
the infimum in the right hand side is taken over pairs of
states (⇢1, ⇢2) for which the fidelity F (⇢1, ⇢2) is non-zero,
so that the expression on the right hand side of Equation
(11) is well-defined.

The fidelity divergence quantifies how much the two
channels C1 and C2 can move two states apart from each
other. In the Methods section, we show that the error
probability in distinguishing between the two channels
with N queries is lower bounded as
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This means that the decay rate of the probability of error
is upper bounded as

R
seq
Q (C1, C2)  � log @F (C1, C2) . (13)

For the two channels in our problem, it turns out that the
fidelity divergence is 1/d2, leading to the upper bound
R  2 log d, valid for every quantum strategy (see the
Methods section for the details). In conclusion, the rate
RQ = 2 log d, attainable with parallel strategies, is the
ultimate limit set by quantum mechanics to the discrim-
ination of our two causal hypotheses.

Classical and quantum strategies for k � 2 hypothe-
ses. Suppose that there are k candidate variables for
the causal intermediary of A. Also in this case, the best
classical strategy consists in initializing all variables to
the same value. Errors arise when the values for two or
more output variables are compatible with an invertible

function. In the limit of many repetitions, the classical
error probability is
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(Supplementary Note 5). For quantum strategies with-
out reference system, the best option is still to divide
the input particles into N/d groups of d particles and to
initialize each group in the singlet state. In Supplemen-
tary Note 6, we show that this strategy reduces the error
probability to
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An exponentially smaller error probability can be
achieved using an ancillary system and the input state
(8). The evaluation of the error probability is more com-
plex than in the two-hypothesis case, but the end result
is the same: when the causal dependency is probed N

times, the quantum error probability decays at the ex-
ponential rate RQ = 2 log d, twice the rate of the best
classical strategy. The full derivation of this result is
presented in Supplementary Note 7.

III. OUTLOOK

We have seen that quantum theory o↵ers advantages
in the task of identifying the causal intermediary of a
given input variable. This finding suggests that quan-
tum physics may be always better (or at least, never
worse) than classical physics at identifying causal struc-
tures. Determining whether this is the case is, however,
a non-trivial problem. Indeed, quantum physics intro-
duces both new challenges (viz. the infinitely many ways
a quantum cause can influence its e↵ect) and new op-
portunities (viz. the ability to probe the causal struc-
ture without extracting information about the functional
dependence between cause and e↵ect). Our work moti-
vates the exploration of new scenarios, including causal
relations beyond the simple cause-e↵ect relation studied
in this paper. By exploring di↵erent scenarios, one may
hope to get further insight into the mechanism that leads
to quantum advantages.
Another important question regards the maximum ad-

vantage o↵ered by quantum theory. Here we have shown
that quantum entanglement doubles the rate at which
the correct hypothesis is identified. But can one find
even larger advantages? Or is the doubling observed in
our work the maximum advantage attainable in quan-
tum theory? At an even deeper level, it is tempting to
ask whether quantum theory is the optimal physical the-
ory for inferring causal relations. Tackling this question
requires studying the discrimination of causal hypothe-
ses in general theories beyond quantum theory. Partic-
ularly interesting are theories that admit more powerful
dense coding protocols than quantum theory [31], as one
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The fidelity divergence between the channels

and 
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Hence, we have the bound 



IN SUMMARY

For quantum variables of dimension d, 
the rate

is optimal,  and it is attained by preparing  
singlets in a superposition of different groupings. 
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CAUSAL INTERMEDIARY: K CANDIDATES 

Hypothesis (i):   Bi is a causal intermediary of A,  
i=1, …, k               and all the other variables fluctuate  
                              uniformly at random.

Variables:    A, B1, B2 … Bk

Problem:    decide which hypothesis is correct.



OPTIMAL RATES

Quantum without reference:   log d
                           (attained with singlets)

Classical:   log d

Quantum with reference:    2 log d
                      (attained with superposition of singlets, 
                      optimal among all quantum strategies)

Note: rates are independent of the number of hypotheses k



SUMMARY 
AND

OUTLOOK



CONCLUSIONS

• Theory-independent framework  
    for testing causal hypotheses

• Instance of the problem:  
    identifying the causal intermediary.

• Classical solution: rate log d

• Quantum solution: rate  2 log d, 
    achieved by superposition of singlet states  
    in equivalent configurations



OUTLOOK

•  Is it always true that quantum theory does better 
    (or at least, not worse) than classical theory 
     in the task of causal hypothesis testing?
• Is quantum theory optimal for causal hypothesis testing?

• If not, which physical principles determine the power
    in identifying causal hypotheses?

• What about indefinite causal order? 
    How well can we test non-standard hypotheses on the  
    causal structure?

Reference for this work: https://arxiv.org/abs/1806.06459
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The University of Hong Kong. 

Target areas include (but are not limited to) 
quantum complexity theory
quantum simulations
quantum machine learning 
quantum Shannon theory
quantum cryptography

Deadline for applications: 31 October 2018

More information @
https://www.cs.hku.hk/people/vacancies.jsp
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