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Few words about Natal...

 10 - 12 events every year
 
- Quantum Thermo (2019) 
- Quantum Correlations (2019)
- Quantum Info & Gravity (2020)
- Causality & Machine Learning (2020)



What is this talk about?



Machine Learning

Causality Quantum

● Generalizations of Bell’s theorem
    [Fritz NJP 2012], [Chaves PRL 2016]...
● Quantum advantages in causal problems
    [Ried et al NatPhys 2015], [Chaves et al NatPhys 2018]...
● Tools from one field applied in the other
    [Chaves et al UAI 2014], [Chaves & Budroni PRL 2016], [Lee & Spekkens arxiv 2017]
● Revisiting foundational problems
    [Rossi PRA 2018], [Chaves, Lemos, Pienaar PRL 2018]
● Machinery to derive physical principles/Quantum limits
    [Chaves, Majenz, Gross NatComm 2015],  [Chaves, Brask, Brunner PRL 2015]
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Causality Quantum

 Quantum machine learning algorithms
See for instance [Biamonte, Wittek, Pancotti, Rebentrost, Wiebe & Lloyd Nature 2017]   

        [Dunjko & Briegel arXIv 2017]
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See for instance [Carleo & Troyer Science 2017], [Carrasquila & Melko NatPhys 2017]
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Machine Learning

Causality Quantum

 Our aim here is to combine all 3 ingredients: use the mathematical theory 
of causality and machine learning to witness the classical or quantum 
(even post-quantum) behaviour of correlations.



 Causality and Bayesian Networks 
 

 Bell’s theorem
 

 Machine learning non-local correlations

Outline



 Bayesian Networks: The language of causality



Reichenbach‘s principle: no correlation without causation.
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 and/or a common cause.“
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Task: Infer causal relationships from observational (statistical) data.

“If an improbable coincidence has ocurred, there must exist direct influence
 and/or a common cause.“

Reichenbach‘s principle: no correlation without causation.



DAGs: Representing causal relations

 For n variables X1, ... ,Xn, the causal relationships are encoded in a causal 

structure, represented by a directed acyclic graph (DAG), with ith variable 

being a deterministic 

       xi=fi(pai,ui)

     of its parents pai and jointly independent noise variables ui

[See J. Pearl, Causality] 
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 For n variables X1, ... ,Xn, the causal relationships are encoded in a causal 

structure, represented by a directed acyclic graph (DAG), with ith variable 

being a deterministic 

       xi=fi(pai,ui)

     of its parents pai and jointly independent noise variables ui

 Causal relationships are encoded in the conditional 
independencies (CIs) implied by the DAG 

Conditional independencies hold information about causation! 

[See J. Pearl, Causality] 



Interventions: Uncovering causal relations Part 1

Intervention

Does A have some causal influence over B, or all the correlations between A and B are 
mediated via the common ancestor? 

For various reasons, interventions are often not an option. 

How to discover causal relations without interventions?
 

*For the quantum version of it see 
[Ried, Agnew, Vermeyden, Janzing, Spekkens & Resch, Nat Phys 2015] 

[Chaves, Carvacho, di Giulio, Agresti,Aolita, Giacomini, Sciarrino , Nat Phys 2018]



Conditional independencies: Uncovering causal relations Part 2



Bell Inequalities: Uncovering causal relations Part 3



The challenge: Uncovering causal relations Part 4

Can machine learning help us to characterize such complicated sets of correlations?



 Bell’s theorem: Beyond classical causal models



Bell´s theorem from a causal perspective
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• E.g., LHV model must respect the CHSH inequality:

 
The causal assumptions of a LHV model impose constraints on the possible observed distributions.
Those can be tested via Bell inequalities.

 
• Quantum mechanically we can violate this bound:

Bell´s theorem from a causal perspective



• Intuitively, the more we violate a Bell inequality the more non-local the correlation 
should be...

Quantifying Non-locality: The violation of a Bell inequality

 The number of Bell inequalities increases very quickly
 
Example: 2 parties, 2 outcomes, 5 measurements already more than half million 
inequalities (actually, no precise characterization is known)

Some issues...

What does it mean to violate more a given (very specific) Bell Inequality

 Maximally entangled states do not necessarily violate more a given Bell inequality...
 [Method & Scarani, QIC 2007]



• The simulation of nonlocal correlations by classical causal models must give up on 
the assumption of no fine-tuning (faithfulness).

[Wood & Spekkens, NJP 2015]

By how much we have to relax these causal assumptions?

Quantifying Non-locality: Causal approach



• The simulation of nonlocal correlations by classical causal models must give up on 
the assumption of no fine-tuning (faithfulness).

[Wood & Spekkens, NJP 2015]

By how much we have to relax these causal assumptions?

Quantifying Non-locality: Causal approach

Average causal effect: observable measure of causal influence

[Chaves, Kueng, Brask & Gross, PRL 2015]

[Ringbauer, Giarmatzi, Chaves, Costa, Fedrizzi & White, Science Advances 2016]

If this is the underlying model by intervening in A we should see changes in the prob of B.



• Trace distance to the set of local correlations
[Brito, Amaral & Chaves, PRA 2018]

Quantifying Non-locality: Geometric approach



• Trace distance to the set of local correlations
[Brito, Amaral & Chaves, PRA 2018]

Quantifying Non-locality: Geometric approach



 Machine Learning Nonlocal Correlations

Machine Learning Non-local Correlations,
 A. Canabarro, S. Brito, RC 

arXiv:1808.07069
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Training the machine
• Two scenarios have been considered: bipartite and tripartite (entanglement swapping)

Locality Bilocality 

• For each scenario we randomly 
sample over the NS distributions 
and compute its trace distance to 
the local or bilocal set

• Use this data to train the machine (75% training + cross-validation)

• We use a blending of multilayer perceptrons with different 
number of layers an neurons

• The rest of data is used as testing set (25% )

• Quantify the accuracy by the average trace distance error



Results: Part 1

 Good performance on NS and 
quantum correlations

 Learning plateau



Results: Part 2

 Good performance on NS and quantum correlations

 105 improve in time (in comparison with the best known method)

 New candidate correlations that cannot be detected by any known inequality



Results: Part 3

• Distinguishing classical, quantum and post-quantum correlations



Discussion/Future Investigations



What to remember (if anything): 
 

 i) Deep learning provide a very accurate (black box) description of high-
dimensional complicated sets of correlations. 
 

 ii) We can also learn from the machine (new candidate non-classical 
correlations that hardly could be found by other means).
 

 iii) this was only the first step
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 i) Deep learning provide a very accurate (black box) description of high-

dimensional complicated sets of correlations. 
 

 ii) We can also learn from the machine (new candidate non-classical 
correlations that hardly could be found by other means).
 

 iii) this was only the first step

What’s next? 

 Open the black box?

 
 Machine generated certificates? (Generative ML)

 
 

 Applications to other marginal problems?

 ML trained to other purposes (e.g. dog x cat)? (Transfer Learning)
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