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10 - 12 events every year

- Quantum Thermo (2019)

- Quantum Correlations (2019)

- Quantum Info & Gravity (2020)

- Causality & Machine Learning (2020)



What is this talk about?
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[

* Generalizations of Bell’'s theorem
[Fritz NJP 2012], [Chaves PRL 2016]...
* Quantum advantages in causal problems
[Ried et al NatPhys 2015], [Chaves et al NatPhys 2018]...
* Tools from one field applied in the other
[Chaves et al UAI 2014], [Chaves & Budroni PRL 2016], [Lee & Spekkens arxiv 2017]
Revisiting foundational problems
[Rossi PRA 2018], [Chaves, Lemos, Pienaar PRL 2018]
* Machinery to derive physical principles/Quantum limits
[Chaves, Majenz, Gross NatComm 2015], [Chaves, Brask, Brunner PRL 2015]
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—

e Causal inference as a ML problem

e Counterfactual reasoning (Al)
[Pearl “Causality” 2009]

e ML as a tool to discover causal relations from data (generative ML)
[Goudet et al arxiv 2017]
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* Generalizations of Bell’'s theorem
[Fritz NJP 2012], [Chaves PRL 2016]...
* Quantum advantages in causal problems
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* Tools from one field applied in the other
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—

Causal inference as a ML problem

Counterfactual reasoning (Al)

[Pearl “Causality” 2009]

ML as a tool to discover causal relations from data (generative ML)
[Goudet et al arxiv 2017]

A —

Quantum machine learning algorithms

See for instance [Biamonte, Wittek, Pancotti, Rebentrost, Wiebe & Lloyd Nature 2017]
[Dunjko & Briegel arXlv 2017]

Machine learning hard quantum problems

See for instance [Carleo & Troyer Science 2017], [Carrasquila & Melko NatPhys 2017]



Oy

Causality Quantum

e Our aim here is to combine all 3 ingredients: use the mathematical theory
of causality and machine learning to witness the classical or quantum

(even post-quantum) behaviour of correlations.
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Outline

* Causality and Bayesian Networks
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e Bell’s theorem
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e Machine learning non-local correlations




Bayesian Networks: The language of causality
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Reichenbach¢s principle: no correlation without causation.
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Reichenbach‘s principle: no correlation without causation.

“If an improbable coincidence has ocurred, there must exist direct influence
and/or a common cause.”

Task: Infer causal relationships from observational (statistical) data.



DAGs: Representing causal relations

e Fornvariables X,, ... ,X , the causal relationships are encoded in a causal

structure, represented by a directed acyclic graph (DAG), with ith variable
being a deterministic
x=f(pa,u;)

of its parents pa, and jointly independent noise variables u,

[See J. Pearl, Causality]



DAGs: Representing causal relations

e Fornvariables X,, ... ,X , the causal relationships are encoded in a causal

structure, represented by a directed acyclic graph (DAG), with ith variable
being a deterministic
x=f(pa,u;)

of its parents pa, and jointly independent noise variables u,

* Causal relationships are encoded in the conditional
independencies (Cls) implied by the DAG

Q@ p(A1, A2) = p(A1)p(Aa)
@ - p(A, B|A1) = p(A|A)p(B| A1)

Conditional independencies hold information about causation!

[See J. Pearl, Causality]



Interventions: Uncovering causal relations Part 1

Does A have some causal influence over B, or all the correlations between A and B are
mediated via the common ancestor?

Intervention

OB 0@

p(bla) = Zp bla, A)p(Ala) p(b|do(a) Zp bla,A)p(A)

p(bla) # p(bldo(a))

For various reasons, interventions are often not an option.

How to discover causal relations without interventions?

Ried, A , Vi den, Janzing, Spekk & Resch, Nat Phys 2015
*For the quantum version of it see [Rie gnew, Yermeyden, Janzing, Spexkens ese . ys ]

[Chaves, Carvacho, di Giulio, Agresti,Aolita, Giacomini, Sciarrino , Nat Phys 2018]



Conditional independencies: Uncovering causal relations Part 2

Is a given probability distribution compatible
with a presumed causal structure?

Example: Is a given p(A, A2, A3, A, B, C') compatible with

A

A Az

p(A1, A2) = p(A1)p(A2)
p(A, B|A1) ¥p(A[A)p(B[A)

» |f the the full probability distribution (of all nodes in a DAG) is available, Cls

hold all information required to solve the compatibility problem

However...



Bell Inequalities: Uncovering causal relations Part 3

~ Usually and for a variety of reasons not all variables in a DAG are observable, i.e., not

all Cls are available from empirical data

0 & m
A0 AN

p(a,blz,y) = pla,b Az, y)
A

p(x)p(y)p(A)
p(a\w, /\)
p(al\)p(b|A)

A

= D plalz, A)p(bly, A)p(A)
Z}; N

» Cls impose non-trivial constraints on the level of the

Pic from [Rev. Mod. Phys. 86, 419 (2014)]
observable variables, for example, Bell inequalities.

» In quantum mechanics non commuting observables cannot be jointly observed

Marginal scenario: subset of variables that are (jointly) observable



The challenge: Uncovering causal relations Part 4

» Describe marginals compatible with DAGs
» The observable probability dist. contains the full information required for that...
~ ..very difficult, non-convex sets (algebraic geometry methods required, see for

instance [Geiger & Meek, UAI 1999])
Picture from [Steeg & Galstyan, UAI 2011]

}Zﬁi{ p(A,B,C) = / dA1dA2dAsp( A1) p(A2)p(As3) O e R s
A \s p(A|A1, Ad2)p(B| A1, A3)p(C|Aa, A3) ' i
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Can machine learning help us to characterize such complicated sets of correlations?




Bell's theorem: Beyond classical causal models
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Bell ‘s theorem from a causal perspective

O—1A—®B

Alice and Bob measure two possible observables each: A, A,, B,, B,

After sufficiently many repetitions they can estimate statistical quantities.
The experiment can be described in terms of p(a,b|x, y).

There are two causal assumptions entering in Bell's theorem.

Measurement Independence: p(x, Y, )\) ~ p(:l:)p(y)p()\)
Locality: p(bla,x,y,A) = p(bly, A)



Bell ‘s theorem from a causal perspective

OB

The causal assumptions of a LHV model impose constraints on the possible observed distributions.
Those can be tested via Bell inequalities.

* E.g., LHV model must respect the CHSH inequality:

CHSH = <A.(_}B{)> —+ <A,(_}Bl> —+ <A1 B{_)> — <A1 Bl> < 2

(AxBy) = Zb(—l)“bzﬂ(a,b\x/y)



Bell ‘s theorem from a causal perspective

O—1A—®B

The causal assumptions of a LHV model impose constraints on the possible observed distributions.
Those can be tested via Bell inequalities.

* E.g., LHV model must respect the CHSH inequality:

CHSH = (ApBy) + (ApB1) + (A1Bg) — (A1B1) <2

(AxBy) = Zb(—l)“bzﬂ(a,b\x/y)

* Quantum mechanically we can violate this bound:

CHSHqy < 2V/2



Quantifying Non-locality: The violation of a Bell inequality

* Intuitively, the more we violate a Bell inequality the more non-local the correlation
should be...

Some issues...

e The number of Bell inequalities increases very quickly

Example: 2 parties, 2 outcomes, 5 measurements already more than half million
inequalities (actually, no precise characterization is known)

What does it mean to violate more a given (very specific) Bell Inequality

¢ Maximally entangled states do not necessarily violate more a given Bell inequality...
[Method & Scarani, QIC 2007]



Quantifying Non-locality: Causal approach

* The simulation of nonlocal correlations by classical causal models must give up on

the assumption of no fine-tuning (faithfulness).
[Wood & Spekkens, NJP 2015]

Rel. of meas. ind.
v

X &

@) A ®B) Ay— A(B

By how much we have to relax these causal assumptions?

Rel. of locality

5
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Average causal effect: observable measure of causal influence

!/
ACE4_p = supy,, , |p(bldo(a),y) — p(bldo(a’),y)]
If this is the underlying model by intervening in A we should see changes in the prob of B.
< CHSH = (AoBy) + (AgB1) + (A1By) — (A1By) <2

'min ACE,4 .3 = max [0, (CHSH — 2) /2] |

[Chaves, Kueng, Brask & Gross, PRL 2015]
[Ringbauer, Giarmatzi, Chaves, Costa, Fedrizzi & White, Science Advances 2016]




Quantifying Non-locality: Geometric approach

* Trace distance to the set of local correlations
[Brito, Amaral & Chaves, PRA 2018]

q
NL(q)= | min  D( )
V= Iyl pece. VP
1
= min a,blx,y) —v(a,blx, 1

a,b,x,y




Quantifying Non-locality: Geometric approach

* Trace distance to the set of local correlations
[Brito, Amaral & Chaves, PRA 2018]

q
NL(q)= | min  D( )
V= Iyl pece TP
1
- min a,blx,y) —p(a,b|x,1

a,b,x,y

00 ., 01 . 10 11 0 .0
CHSH =g, + 4945 + 948 — 948 94 — 93 =0

S

[ NL(q) = 5 max [0, TT(CHSH) J




Machine Learning Nonlocal Correlations

@ Blendings

Predictions
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New instance

Machine Learning Non-local Correlations,
A. Canabarro, S. Brito, RC
arXiv:1808.07069




Training the machine

* Two scenarios have been considered: bipartite and tripartite (entanglement swapping)
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For each scenario we randomly
sample over the NS distributions
and compute its trace distance to
the local or bilocal set
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)

a) X Yy b) (x (Y (Z
: b q b c * For each scenario we randomly
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* Use this data to train the machine (75% training + cross-validation)
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Training the machine

* Two scenarios have been considered: bipartite and tripartite (entanglement swapping)

)

a) X y b) ()( ( y ( z ine:ai
: b q b c * For each scenario we randomly

Locality Bilocality oL sample over the NS distributions
and compute its trace distance to
the local or bilocal set

* Use this data to train the machine (75% training + cross-validation)

Bias . . .

D * We use a blending of multilayer perceptrons with different

/7ib number of layers an neurons @

s;,‘. Blendings

3 3‘ @iﬂ' edictions
nput hidden o tput @ s Predict
aget a_gre&. yet

%nstance

* The rest of data is used as testing set (25% )

* Quantify the accuracy by the average trace distance error



Results: Part 1

Scenario
@ m=2m=3m=4m=>5

Typical MLP (x10-3) 046 220 7.75 850
Blending (x10-3) 005 154 678 731

0

0.20 -
- P m =«
(c) m=2>5 ) [\b} 1
(Err = 7343687 < 10°7) | i R SRR e Learning plateau
s | 010 " B ' x10~2
1 & ".][4 i []{'l:l' 'I 0.8_
—  Exact
]. 5000 w0 0 - 5000 10000 ¢ p L ;
5 ) -' | =S &, —t
a, 0.6 o N ; | test pn_d|
Good performance on NS and 0.41 o
: o
quantum correlations - ® o 6 0 0 o o
0.5 1.0 15 20 2.5 3.0
010 (a) "
_ 0.081 _
= 0.06 =]
“ 0.04- -
0.021




Results: Part 2

0.6 0.06
(a) <3: Efii(t o (b) . ({\)[]I:E] Function
QQQ- ¢ Exact
— 04 o 0.04; -
= QQQQ
— &
- e |
Z 0.2 0@,@0 0.021
chﬁg A 3 .:::‘-:"é_fi.'i ] .r. :r'
Rk 08 0.9 L0 0'DO’E’T/E‘*“'/6 /4 /B8
v 0

e Good performance on NS and quantum correlations
e 10° improve in time (in comparison with the best known method)

e New candidate correlations that cannot be detected by any known inequality



Results: Part 3

Distinguishing classical, quantum and post-quantum correlations

ineguali

BL
Predictions
True Class Local Quantum Post-quantum
Local 33436 + T 0
Quantum 41 33173 236

Post-quantum 0 136 32882



Discussion/Future Investigations




What to remember (if anything):

* i) Deep learning provide a very accurate (black box) description of high-
dimensional complicated sets of correlations.

* ii) We can also learn from the machine (new candidate non-classical
correlations that hardly could be found by other means).

* iii) this was only the first step



What to remember (if anything):

* i) Deep learning provide a very accurate (black box) description of high-
dimensional complicated sets of correlations.

* ii) We can also learn from the machine (new candidate non-classical
correlations that hardly could be found by other means).

* iii) this was only the first step
What’s next?

e Open the black box?

e Machine generated certificates? (Generative ML)

* Applications to other marginal problems?

e ML trained to other purposes (e.g. dog x cat)? (Transfer Learning)
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