Paul KÖNIG

Railway traffic induced vibration: Measurements and empirical prognosis (in German)

The increasing expansion of rail traffic routes and rising urban densities mean that there is a growing need for protective measures to reduce the impact of vibrations and noise on residents. For this reason, a realistic prognosis and an assessment of the effects before the start of construction work is of great importance. For this purpose, approaches using numerical methods as well as procedures based on measurements are possible in the project planning phase. The results of these approaches allow a statement on expected vibrations to be made in the early stages of planning and emission-reducing measures to be integrated directly into the planning process in order to avoid additional costs later on.

The present master thesis deals with the preparation of an empirical procedure based on metrological surveys for the prognosis of the effects of planned rail traffic routes on the neighbouring population. The aim is to develop a universally applicable forecasting method that allows a standardised approach to the prediction of vibrations, especially in view of the lack of regulations for forecasting.

The work includes a summary of the necessary basics regarding measurement technology and signal processing as well as the Austrian standardisation for the assessment of vibration effects of rail traffic. Following these basics, the force-based as well as the velocity-based procedure for vibration prediction is presented and the evaluation of a corresponding measurement set-up is carried out. Both methods have in common that the detection of vibration propagation is approximated by a number of point sources according to the track-bound line source.

Any measurement recordings are critically examined and influences on the forecast are shown. In the course of this metrological investigation, improvements with regard to the measuring setup as well as the method used for vibration excitation are also shown, paving the way for future applications and further validation of the methodology.


back

Nach oben scrollen