Alpine research in the region of Obergurgl
Alpine research in the region of Obergurgl

The area around Obergurgl is one of the main regions of high alpine research in Tyrol and a perfect location for courses and excursions of the University of Innsbruck and other international institutions and organisations. Since the Alpine Research Centre Obergurgl was founded by Prof. Wolfgang Burger in 1951, numerous research projects of different disciplines have been carried out and several investigations are still in progress. The individual projects range from studies of weather conditions in the high alpine region, habitat characteristics of glaciers, glacier forelands, bogs and meadows to studies in cultural heritage and alpine history. The Alpine Research Centre compiled all of these data with the help of numerous experts and has published three books.

This booklet wants to give some basic information on the centre and the research performed in it and can also work as an overview for the book publications.

All three books are available through Innsbruck University Press (iup) and Amazon. They can also be purchased at the University Centre Obergurgl, the office of Ötztal Tourism in Obergurgl and at local shops. To this point the books have been written in German. However, all chapters include abstracts in English.

For further information on books, research, events or contacts please visit the homepage of the Alpine Research Centre Obergurgl:
http://wwwuibk.ac.at/afo/

Volume 1: Glazial und periglaziale Lebensräume im Raum Obergurgl
Eva-Maria Koch, Brigitta Erschbamer (eds.)
ISBN 978-3-9027819-50-8

Volume 2: An den Grenzen des Waldes und der menschlichen Siedlung
Eva-Maria Koch, Brigitta Erschbamer (eds.)
ISBN 978-3-902811-40-0

Volume 3: Klima, Wetter, Gletscher im Wandel
Eva-Maria Koch, Brigitta Erschbamer (eds.)
ISBN 978-3-902811-89-9

Contents

<table>
<thead>
<tr>
<th>History of Obergurgl</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>The beginning of mountaineering</td>
<td>7</td>
</tr>
<tr>
<td>Skiing tourism in Obergurgl</td>
<td>8</td>
</tr>
<tr>
<td>Geology and geomorphology of the area around Obergurgl</td>
<td>9</td>
</tr>
<tr>
<td>Long-term monitoring of the Tyrolean glaciers</td>
<td>10</td>
</tr>
<tr>
<td>Glaciers around Obergurgl</td>
<td>11</td>
</tr>
<tr>
<td>Reconstruction of the glacier retreat in the ‘Gurgler’ Valley</td>
<td>12</td>
</tr>
<tr>
<td>The history of the ‘Vernagtferner’ – Glacier advances and lake outbursts in the last millennium</td>
<td>13</td>
</tr>
<tr>
<td>Life on snow and ice</td>
<td>14</td>
</tr>
<tr>
<td>Faunal succession on glacier moraines</td>
<td>15</td>
</tr>
<tr>
<td>Plant succession in the glacier foreland</td>
<td>16</td>
</tr>
<tr>
<td>Lichens and mosses around Obergurgl</td>
<td>17</td>
</tr>
<tr>
<td>Stone pine forests and dwarf shrub heaths</td>
<td>18</td>
</tr>
<tr>
<td>Forest and treelime research</td>
<td>19</td>
</tr>
<tr>
<td>The actual vegetation of the agricultural landscape</td>
<td>20</td>
</tr>
<tr>
<td>The naming of landscapes and fields</td>
<td>21</td>
</tr>
<tr>
<td>Dendrochronological research around Obergurgl</td>
<td>22</td>
</tr>
<tr>
<td>Archaeological findings around Obergurgl</td>
<td>23</td>
</tr>
<tr>
<td>Temperature and precipitation at the weather station Obergurgl, 1953-2011</td>
<td>24</td>
</tr>
<tr>
<td>Microclimatic monitoring around Obergurgl</td>
<td>25</td>
</tr>
<tr>
<td>Microclimate and biotemperatures at the 1971 moraine of the ‘Rotmoosferner’ glacier foreland</td>
<td>26</td>
</tr>
<tr>
<td>High alpine river habitat ‘Rotmoos’</td>
<td>27</td>
</tr>
<tr>
<td>The hydrographic regime of the ‘Ötztaler Ache’</td>
<td>28</td>
</tr>
<tr>
<td>The fauna of the ‘Ötztaler Ache’</td>
<td>29</td>
</tr>
<tr>
<td>List of authors</td>
<td>30</td>
</tr>
</tbody>
</table>
Alpine research in the region of Obergurgl
History of Obergurgl

Obergurgl is a district of the municipality of Sölden in the inner Ötz Valley. It is situated at 1927 m a.s.l., which makes it the highest village with a church in Austria. The first documented reference of the toponym ‘Gurgl’ dates back to 1250 and can be traced to “Heberhardus von Gurgele”, a vassal of the South Tyrolean lords of ‘Montalban’.

Around 1760, Obergurgl was a community inhabited by about 200 people, most of which lived on livestock farming and weaving. An article in the ‘Tiroler Boten’ from 1821 states that almost all farmers of the Ötz Valley produced linen and loden and traded flax with the ‘Passeier’ Valley in South Tyrol. The demand on these local products decreased in the 19th century, leading to a dramatic emigration and leaving the community of Obergurgl with no more than 39 people in 1910. The population in the region started to increase when the Alps were discovered as a recreational space and the Ötz Valley was put on the map for tourists and mountaineers.

Mountaineering in the Ötz Valley is inseparably linked to personalities like Adolf Trientl and Franz Senn. The two priests were not only pioneers in alpine path construction but also figure heads of alpine tourism since they frequently accommodated mountaineers in their rectories in Gurgl (from 1857 to 1864) and Vent (from 1860 to 1872). With the first mountaineers travelling to the valley, many locals found work as mountain guides and burden bearers and it did not take long until the first mountain lodges and guest houses were built: the ‘Hochjochhospitz’ and the ‘Samoarhütte’ were established by Josef Gruner from Sölden in the years 1871/72 and 1877/78, and the building of the ‘Ramolhaus’ was initiated by Martin Scheiber from Gurgl in 1881/83.

In the summer of 1875, up to 400 travellers and mountaineers visited Obergurgl and the first guest houses were opened in the early 1880s. The number of guests steadily increased with more than 2000 visitors in 1904. The first hotel, the ‘Edelweiss’, was founded by Martin Scheiber, who developed it from an old farm house, which indicates the region’s transition from an agriculture- towards a tourism-based economy.

Excerpt from: “Glaziale und periglaziale Lebensräume im Raum Obergurgl”; Chapter 1: “Historisches zum Thema Gletscher, Gletschervorfeld und Obergurgl” by Wolfgang Meixner and Gerhard Siegl

The beginning of mountaineering

Photo from Obergurgl around 1928 (dated by the priest of Gurgl, Dr. Josef Hrbata in 1986); Nowadays, the houses on the upper left side are home of the University Centre and the Alpine Research Centre (Tyrolean State Museum Ferdinandeum, Postcard collection ‘Obergurgl’).

Excerpt from: “Glaziale und periglaziale Lebensräume im Raum Obergurgl”;
Chapter 1: “Historisches zum Thema Gletscher, Gletschervorfeld und Obergurgl” by Wolfgang Meixner and Gerhard Siegl

“Gasthaus zum Edelweis”. Guest house Edelweiss. Part of a drawing, around 1900, picture provided by Hotel Edelweiss & Gurgl
Skiing tourism in Obergurgl

Around 1900 the first skiers visited the Ötzt Valley and it did not take long until the ‘Ski-Club Gurgl’ was founded on 10th January, 1911. Its first chairman was Jakob Gstrein, commonly called ‘Krumpns Joggl’. The region received a boost in publicity after the crash landing of the Swiss scientist and balloonist Auguste Piccard at the ‘Gurgler Ferner’ on 27th August, 1931. This event considerably facilitated the prominence of Obergurgl as a ski resort, for it was only five months after the crash that the first international ‘Piccard’ ski race took place on the ‘Festkogel’ on 10th January, 1932. During World War II, tourism in Obergurgl almost completely stopped but tourism infrastructure was revived and expanded only a few months after the war and the first ski lift of the Ötztal opened in Obergurgl on 14th March, 1948. Six years later a skilift was built from the ‘Gaisberg’ (2,050 m a.s.l.) to the ‘Hohen Mut’ (2,669 m a.s.l.). It was the highest one in Austria at the time.

The boom of travelling that set in in the second half of the 20th century facilitated Obergurgl’s development from a small mountain village to a centre of mountaineering and skiing. In 2001, around 420 people lived in Obergurgl permanently. Currently about 4,500 guest beds are available in Obergurgl-Hochgurgl and more than 120,000 tourists visit the region per year.

Geology und geomorphology of the area around Obergurgl

The area of Obergurgl is highly diverse from a geological point of view because basement rocks of the Ötztal-Stubai Complex and the Schneeberg Complex are exposed. The Ötztal-Stubai Complex comprises paragneiss and mica schists. The Schneeberg Complex consists of coarse mica schists with centimeter-large phenocrysts of garnet and hornblende, amphibolite and marble can also be found. During the Ice Age, the landscape around Obergurgl was shaped morphologically by huge glaciers. Traces of the glacial activity such as U-shaped valleys, cirque lakes, rock drumlins, glacial striations and moraines are common.

Schist with garnet and hornblende with layers of marble (Schneeberg Complex, Rotmoos Valley)

The Rotmoos Valley is a good example for a glacial U-shaped valley. (all photos: K. Krainer)
Alpine research in the region of Obergurgl

Long-term monitoring of the Tyrolean glaciers

Currently approximately 3% of the Tyrolean territory is covered by glaciers. Around 1850, after the end of the Little Ice Age, the glaciers lost more than 50% of their area. The glacier changes are recorded by annual length monitoring on 54 glaciers and mass balance measurements on five glaciers. Between 1901 and 2008, the temperature during the ablation season (May to September) increased by 1.6 °C. In the same period, winter accumulation (October to April) showed no significant trends. The reaction of glaciers to changing climate conditions differs in timing and magnitude in relation to their topographic properties. The measurement of length changes shows a general glacier retreat, interrupted by advances in the 1920s and 1980s. The mass balance measurements show an increase in mass loss during the last decades.

Glaciers around Obergurgl

The Alpine Research Centre Obergurgl is located in the centre of one of the most glaciated areas in the Alps. The glaciers have been subject to scientific research for more than 100 years. The observed former and recent glacier changes visualize the corresponding changes of climate and allow an interpretation of the relationship between glacier and climate.

The glaciers surrounding Obergurgl reached their last maximum extension around 1850, at the end of the Little Ice Age. After 1850, the glacier continuously retreated and their maximum area of extension has been reduced by almost 50%. Since the beginning of climate measurements in Obergurgl in 1953, the annual mean of the air temperature increased by 1.2 °C, while precipitation and snow conditions do not display any significant trends in the same period.

Excerpt from: “Glaziale und periglaziale Lebensräume im Raum Obergurgl”; Chapter 3: “Klima und Gletscher in Obergurgl” by Andrea Fischer
Alpine research in the region of Obergurgl

Reconstruction of the glacier retreat in the ‘Gurgler’ Valley

Glacier boundaries and contour lines of several historical maps of the catchment ‘Pegel Obergurgl’ were digitised and analysed to obtain information about changes in ice thickness and glacial extension. By generating digital terrain models of the glacier surfaces using GIS, it was possible to determine the amount of ice lost during the observation period from 1991 to 1997. Other historical sources about the ‘Gurgler Ferner’ can be used to further increase the temporal and spatial precision of the data in the area of the glacial tongue. Except for short periods of glacial expansion, the results show a steady retreat of the glaciers in the area under study. These findings correspond with the worldwide trend (IPCC 2007) and are supported by numerous studies from the Alpine region.

The history of the ‘Vernagtferner’ – Glacier advances and lake outbursts in the last millennium

The advances and maximum extents of the ‘Vernagtferner’ (southwest of Obergurgl near Vent) have been traced historically over the last millennium and the retrieved material and conducted measurements have been brought together to form a state of knowledge on the glacial development of the ‘Vernagtferner’. Maximal extents of the glacier occurred in medieval times (around AD 1300) and in the historically well documented periods of AD 1600, 1680, 1772 and 1845. The dramatic advances of the ‘Vernagtferner’ happened synchronously with advances of other Alpine glaciers but were rather exceptional – not only regarding its advance speed and range but also in respect to repeated formation of an ice lake and its outbursts, which had severe consequences for the local community.

Excerpt from: “Klima, Wetter, Gletscher im Wandel”.
Chapter 4: “Zur Geschichte des Vernagtferners – Gletschervorstöße und Seeausbrüche” by Kurt Nicolussi
Glaciers are not mere chunks of ice but ecosystems providing habitats below, in and on the ice. Living conditions are harsh and characterised by repeated freeze–thaw cycles, high UV-radiation and low nutrient levels. During early summer, snow algae containing UV-protective pigments – known as ‘red snow’ – are flourishing on the surface of the snow. Once the snow pack melts so-called cryoconite holes (water filled cylindrical depressions which are formed by melting processes of dark matter) occur at the surface. These cryoconite holes harbour communities consisting mainly of viruses, bacteria, algae, fungi and – depending on the geographical position – also metazoans.

To find out how an ecosystem can develop on barren ground and how long this process takes, the glacier foreland of the Rotmoos valley has been investigated over years. The first colonisers are almost exclusively predatory beetles, spiders and harvestmen. Herbivores and decomposers appear later. On 30 years old moraines springtails, mites, pot worms and larvae of butterflies and beetles are present. Midges and millipedes follow later on. Other groups appear after 90 years of soil formation once an organic layer has developed. The major factors affecting faunal succession are soil formation and vegetation development along the chronosequence, temperature and moisture exert additional small-scale influences. Models show that the pioneer communities in the glacier foreland react strongly to climate change.
Plant succession in the glacier foreland

Glacial retreat induces the exposure of uncolonised bare ground, which allows for a study of the development of plant populations and communities from the very beginning. Colonisation processes are affected by abiotic factors – such as altitude, microtopography, grain size of substrate and humidity – and biotic factors – such as seed availability, germination ability, growth potential and interactions. With increasing distance from the glacier, vegetation diversity and vegetation cover increase: Pioneer stages close to the glacier can develop into early successional stages at 40 to 50 year old moraines and into initial grasslands at 150 years old moraines.

Excerpt from: “Glaziale und periglaziale Lebensräume im Raum Obergurgl”; Chapter 6: “Pflanzliche Sukzession im Gletschervorfeld” by Brigitta Erschbamer, Georg Gärtner, Roman Türk and Fabian Nagl

Lichens and mosses around Obergurgl

Lichens and mosses are prominent parts of the coniferous belt and the subalpine dwarf shrub zone around Obergurgl. More common and widely distributed species of terrestrial mosses and lichens can be found in the famous ‘Zirbenwald’ (stone pine forest, Pinus cembra), while specialists cover tree trunks (e.g. Ophioparma ventosa) or rock surfaces (e.g. Ophioparma ventosa). In acidic fens like the ‘Zirbenwaldmoor’ Sphagnum mosses and brown mosses (e.g. Warnstorfia, Strommernian) are dominant. The ‘Gurgler Heide’ is characterized by terrestrial fruticose lichens (e.g. Flavocetraria, Alectoria) and reindeer lichens (Cladonia species). Specific habitats for mosses are lumps of herbivore dung covered by Splachnaceae or snow beds where the arctic-alpine Polytrichastrum sexangulare can be found together with the foliose lichen Solorina crocea.

Alpine research in the region of Obergurgl

Stone pine forests and dwarf shrub heaths

Stone pine forests (Pinus cembra) and dwarf shrub heaths are characteristic plant communities in the subalpine zone of the inner Ötz valley. According to tree crown cover and altitude, two variants of the stone pine forest can be distinguished: one with Oxalis acetosella (higher tree crown cover, ≤2060 m a.s.l.) and the other one with Loiseleuria procumbens (lower tree crown cover, ≥2100 m a.s.l.). The dwarf shrub heaths can be differentiated by canopy height and microrelief: Loiseleuria procumbens-lichens communities are the most wind-exposed ones and Rhododendron-Vaccinium communities are frequently found on sites with snow protection in winter. With the exception of the wind-exposed Loiseleurio-Cetrarietum, significant changes were detected in the dwarf shrub communities from 2000 to 2008, probably caused by global climate change, atmospheric nitrogen deposition and skiing.

Research started when the protection function of forests was diminished in the first half of the 20th century due to earlier anthropogenic reductions of the forested area in the timberline ecotone. For afforestation projects in high elevation no suitable reference cases from comparable regions were available. Consequently the appropriate measurements had to be developed. One of the results of this work was the development of a Wind-Snow-Ecogram which supports practical forestry in the spatial and temporal organization of afforestation projects in the timberline ecotone. Later, research interests shifted and mainly addressed the sequestration of carbon in the soil and biomass of forests at the timber line. This is particularly relevant nowadays since carbon sequestration is directly related to greenhouse gas emissions.

Forest and treeline research

Proportions of different land use types in the Gurgler Valley around 1950 (source: Friedel 1961)

Obergurgl in 1920 (left) and 2007 (right); a greater extent of pine stone forests in 2007 can be observed (photo 1920: Alpine Research Centre Obergurgl, photo 2007: R. Jandl)

Excerpt from: “An den Grenzen des Waldes und der menschlichen Siedlung”; Chapter 4: “Lärchen-Zirbenwälder und Zwergstrauchheiden” by Roland Mayer and Brigitta Erschbamer

The actual vegetation of the agricultural landscape

The pastures and meadows in Ober- and Unterargl were investigated by means of 91 relevées, and a Sieversio-Nardetum strictae and a Trisetetum flavescentis could be distinguished. These associations were differentiated into several subassociations.

Due to the different management intensities the diversity of the Sieversio-Nardetum strictae is significantly higher compared to the Trisetetum flavescentis.

The Sieversio-Nardetum strictae would classically be grazed by cattle and horses but nowadays many of these grasslands are abandoned.

The Trisetetum flavescentis is fertilized and mown once or twice per year.

The Sieversio-Nardetum strictae vaccinietosum has a high proportion of dwarf shrubs such as ling (Calluna vulgaris, in the foreground) (photo: F. Nagl)

The Sieversio-Nardetum strictae trifolietosum pratensis grows in nutrient-rich habitats (photo: F. Nagl)

The Trisetetum flavescentis typicum is growing at the valley floor. It is an intensively farmed species-poor community (photo: F. Nagl)

The actual vegetation of the agricultural landscape

The naming of landscapes and fields

For centuries shepherds and farmers have used field names as an aid to orientation and as a code for communication. The richly structured alpine landscape as well as the century-old tradition of property partitioning have led to a high diversity of toponyms in Obergurgl and Vent. Some field names in the Ötzt Valley have their origin in (pre-)Romanic languages, the majority, however, is German-based.

Since the High Middle Ages people named conspicuous and agriculturally important places. Toponyms can refer to terrain shapes (e.g. ‘Rinne’ trough), locations (e.g. ‘Außere Wiese’ – ‘Innere Wiese’; outer meadow – inner meadow), sizes (e.g. ‘Winkle’; little corner) and can also shed light on ownership (e.g. ‘Jakoben Wald’ – Jacob’s forest).

Metonyms: The area is named via its position: Zwischen den Bächen (between the brooks) (photo: R. Kaufmann)

Pille (hay barn) at the Spitzigen Stein (peaked rock); this rock (at the upper right part in the picture) is a distinct feature in this area (photo: R. Kaufmann)

Some of the remote montane meadows are still manured and mowed by hand (photo: B. Erschbamer)

Field names with reference to the extent of the area: Striefele (small strip) is the name of a very narrow area (aerial photo: BEV, flight 2003)

Alpine research in the region of Obergurgl

Dendrochronological research around Obergurgl

The stone pine forest near Obergurgl was one of the first areas of dendrochronological research in Austria. Dendrochronological methods were used to analyze cores from living stone pine trees (Pinus cembra) from the ‘Obergurgler Zirbenwald’ and subfossil logs found in the peat of the ‘Zirbenwaldmoor’ and the small peat bogs below the ‘Gurgler Alm’.

The analysis of cores from living trees of the ‘Obergurgler Zirbenwald’ verifies the expected accordance of tree ring growth and summer temperature evolution (June-July-August average). Tree ring series established for 36 subfossil samples from the ‘Zirbenwaldmoor’ cover the time period between ca. 100 and ca. 1300 AD. In contrast to the subfossil samples of the ‘Zirbenwaldmoor’ the temporal distribution of 23 wood samples from the peat bogs below the ‘Gurgler Alm’ is to some extent related to the Holocene treeline evolution.

Archaeological findings around Obergurgl

There is proof for human presence in the area of Obergurgl and the surrounding valleys for the early Mesolithic – from the first half of the 10th millennium BP – onward, when the main focus of human activity was hunting. This kind of land use seems to continue throughout the Neolithic and until the Bronze Age. Agriculture was more and more established in the lowlands and greater alpine valleys. With the beginning of the Copper Age, around 6300 BP, alpine grasslands were gradually used as pastures. By means of pollen diagrams, a further intensification of this kind of land use can be confirmed for the Bronze Age. This is also proven by a number of sheeppots and shepherd huts, which are partly connected with radiocarbon dates starting in the middle Bronze Age. Findings from the Iron Ages and Roman times up to the first written records in the middle of the 13th century AD confirm a continuous agricultural use until the present day.

Temperature and precipitation at the weather station Obergurgl, 1953-2011

The weather station in Obergurgl has been operated since 1953. It is located at an altitude of 1938 m a.s.l. next to the Alpine Research Centre / University Centre (11° 01.5' E, 46° 52' N). The weather station is equipped with various devices of the Austrian meteorological service ZAMG (Zentralanstalt für Meteorologie und Geodynamik) and measures air and soil temperature, air pressure and humidity, precipitation, wind speed and direction and radiation.

Monthly means of temperature (above) and mean monthly sums of precipitation (below) in the period 1953-2011 and of 1953 in detail; The daily sums of precipitation are represented by green columns (left scale), the monthly sums and their addition over a year are represented by increments (right scale).

Microclimatic monitoring around Obergurgl

In July 2000, nine treeless monitoring sites were established and equipped with data loggers in the vicinity of Obergurgl from the sub-alpine zone (1964 m a.s.l.) to the alpine and the subnival zone (2793 m a.s.l.) as part of the ecological long-term monitoring project. Air temperature and relative air humidity 2 m above the ground as well as soil temperature and soil moisture in 10 cm depth are measured. At the highest altitude the absolute minimum of air temperature was at -30.0 °C. The absolute minimum of the soil temperature was monitored at the ‘Gurgler Heide’ at 2255 m a.s.l. (-11.2 °C). The lowest number of days with snow cover was also found at this site. During the timeframe of 11 years the snow melt date in spring has significantly shifted forwards by approximately 1.2 days per year.

Monthly mean air temperatures at the different sites, averaged over the period 2000-2011; Monitoring site 1 is the lowest situated site (1964 m a.s.l.), site 8 is the highest situated site (2793 m a.s.l.)

Smoothed data of soil temperature (blue graph) at site 1 of the whole measuring period; the red dots display periods with constant soil temperature, revealing isolating snow covers

Excerpt from: "Klima, Wetter, Gletscher im Wandel";
Chapter 1: "Temperatur und Niederschlag an der Wetterstation Obergurgl, 1953-2011" by Michael Kuhn, Ekkehard Dreiseitl and Markus Emprechtinger

Excerpt from: "Klima, Wetter, Gletscher im Wandel";
Chapter 7: "Das Mikroklima waldfreier Standorte in der subalpinen, alpinen und subnivalen Stufe in Obergurgl" by Lea Hartl, Rüdiger Kaufmann, Nikolaus Schallhart and Brigitta Erschbamer
Alpine research in the region of Obergurgl

Microclimate and biotemperatures

at the 1971 moraine of the ‘Rotmoosferner’ glacier foreland

Glacier forelands are often seen as inhospitable areas, since abiotic conditions are expected to hamper colonisation. One of these factors are low temperatures. However, biotemperatures in plant cushions can differ strongly from the ambient air temperatures.

The glacier foreland of the ‘Rotmoosferner’ is one of the long-term ecological research sites in Obergurgl where temperatures are recorded throughout the year. Since 1996 soil surface temperatures have been measured on bare ground moraines of the glacier stage 1971. Air and soil temperatures, air humidity and temperatures of plant cushions are recorded during the growing season. Furthermore, the duration of the growing season, temperature extremes and means are shown and possible effects on plants are discussed.

Temperatures on the surface of the 1971 moraine: annual mean (black), absolute maxima (orange) and minima (blue) in the period 1997-2011. Data are missing for 2007 since data loggers failed.

Excerpt from: “Klima, Wetter, Gletscher im Wandel”;
Chapter 8: “Mikroklima und Biotemperaturen auf der 1971er Moräne des Rotmoosferner-Gletschervorfeldes (Obergurgl, Ötztal)”
by Brigitta Erschbamer

High alpine river habitat ‘Rotmoos’

Alpine river systems are fed by glacial ice melt, snow melt and ground-water. They share common features (e.g. steep gradients, high flow velocities and dynamics) but each source and unique local conditions produce a characteristic discharge regime and physical and chemical environment. The distribution of snow, ice and groundwater springs varies spatially from stream to catchment scale, resulting in stream segments with characteristics, reflecting the different runoff sources. The alpine freshwater ecosystems – although species poorer compared to freshwaters at lower elevations – are rich in specialists which are strongly adapted to the extreme environmental parameters.

Chironomid larvae of the genus Diamesa are well known inhabitants of alpine rivers

Excerpt from: “Glaziale und periglaziale Lebensräume im Raum Obergurgl”;
Chapter 8, part 1: “Hochalpine Flusslandschaft Rotmoos” by Leopold Füreder

The mayfly *Baetis alpinus* is laterally flattened for a streamlined shape

Mayflies of the genus *Rhithrogena* have a flattened body and lateral gills forming some kind of sucker cup

Excerpt from: “Hochalpine Flusslandschaft Rotmoos” by Leopold Füreder
The ‘Ötztaler Ache’ (catchment area 894 km²) is one of the largest tributaries of the Inn River in Tyrol. The hydrological regime has been under observation since the foundation of the Hydrographical Service in Austria in 1893/94. The first water gauge was installed in 1897. Only few of the historical gauges are still being operated today. The monitoring includes parameters such as water level, discharge, and temperature, as well as the suspended load and bed load transport. The aim of this long-term study is to identify trends and variations that might be caused by climate change and other parameters. The data is also used for statistical analysis, planning of watershed management and flood forecasting. The latter is strongly based on the application of rainfall-runoff-models.

The ‘Ötztaler Ache’ is one of the last hydrologically intact glacial and mountain streams in Tyrol. The water quality is nearly untainted. The existing hydrological regime and the glacial influence lead to a specific biotic environment. The Ötztaler Ache is mainly colonised by organisms which are adapted to the special conditions of mountain streams such as different species of algae, fish and macrozoobenthos.

Low flow velocities and reduced turbidity and bedload mobility characterize the ‘Ötztaler Ache’ during winter. These conditions facilitate the growth of diatoms and other algae. The bottom of the water body is colonized by Turbellaria, insects and their larvae. The fish of the ‘Ötztaler Ache’ have to deal with an enormous selection pressure due to the extreme conditions. Therefore the number of species is quite low. Mostly there are river trouts (Salmo trutta fario) in the water body, at the mouth of the river even graylings (Thymallus thymallus) and some bullheads (Cottus gobio). Additionally, alien species such as rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) were released into some parts of the river.

The fauna of the ‘Ötztaler Ache’

Excerpt from: "Klima, Wetter, Gletscher im Wandel"; Chapter 6: "Die Ötztaler Ache – Die Lebewelt der Ötztaler Ache" by Daniel Erhart
Alpine research in the region of Obergurgl

List of authors

Baumeister André
University of Bochum
Institute of Geography
Universitätsstraße 150, D-44780 Bochum
Andre.Baumeister@rub.de

Dastych Hieronymus
Zoological Institute and
Zoological Museum Hamburg
Martin-Luther-King-Platz 3, D-20146 Hamburg
Dastych@zoologie.uni-hamburg.de

Dreiselli Elke
University of Innsbruck
Institute of Meteorology and Geophysics
Innrain 52, A-6020 Innsbruck
Elke.Dreiselli@uibk.ac.at

Emprechtlinger Markus
University of Innsbruck
Institute of Meteorology and Geophysics
Innrain 52, A-6020 Innsbruck
Markus.Emprechtlinger@uibk.ac.at

Erhard Daniel
Regional Government of Tyrol
Department of Water Management
Herrengasse 1-3, A-6020 Innsbruck
Daniel.Erhard@tirol.gv.at

Erschberger Brigitta
University of Innsbruck
Institute of Botany
Sternwartestraße 15, A-6020 Innsbruck
Brigitta.Erschberger@uibk.ac.at

Fischer Andrea
Austrian Academy of Sciences
Institute of Interdisciplinary Mountain Research
Technikerstraße 21a, 6020 Innsbruck
Andrea.Fischer@oeaw.ac.at

Füreder Leopold
University of Innsbruck
Institute of Ecology
Technikerstraße 25, A-6020 Innsbruck
Leopold.Fuereder@uibk.ac.at

Gärtner Georg
University of Innsbruck
Institute of Botany
Sternwartestraße 15, 6020 A-Innsbruck
Georg.Gaertner@uibk.ac.at

Gattendorf Mayr Wolfgang
Regional Government of Tyrol
Department of Water Management
Herrengasse 1-3, A-6020 Innsbruck
Wolfgang.Gattermayr@tirol.gv.at

Hart Lea
University of Innsbruck
Alpine Research Centre Obergurgl
Gaisbergweg 3, A-6456 Obergurgl
Lea.Hart@student.uibk.ac.at

Hofbauer Wolfgang
Fraunhofer Institute for Building Physics
Fraunhoferstraße 10, D-83624 Valley
Wolfgang.Hofbauer@ibp.fraunhofer.de

Jandl Robert
Federal Research and Training Centre for
Forests, Natural Hazards and Landscape (BFW)
Sekendorf-Gudent-Weg 8, A-1131 Wien
Robert.Jandl@bfw.gv.at

Kathrein Yvonne
University of Innsbruck
Institute of German Philology
Innrain 52, A-6020 Innsbruck
Yvonne.Kathrein@uibk.ac.at

Kaufmann Rüdiger
University of Innsbruck
Institute of Ecology
Technikerstraße 25, A-6020 Innsbruck
Rüdiger.Kaufmann@uibk.ac.at

Koch Eva-Maria
Erstea Grenoble - Ecosystèmes montagnards
Domaine Universitaire
2, rue de la Papeterie
F-38 400 Saint-Martin-d'Hères
Koch.EvaMaria@istea.fr

Krauser Karl
University of Innsbruck
Institute of Geology
Innrain 52, A-6020 Innsbruck
Karl.Krauser@uibk.ac.at

Kuhn Michael
University of Innsbruck
Institute of Meteorology and Geophysics
Innrain 52, A-6020 Innsbruck
Michael.Kuhn@uibk.ac.at

Lütz Cornelius
University of Innsbruck
Institute of Botany
Sternwartestraße 15, A-6020 Innsbruck
Cornelius.Lutz@uibk.ac.at

Mayer Roland
University of Innsbruck
Institute of Botany
Sternwartestraße 15, 6020 Innsbruck
Roland.Mayer@uibk.ac.at

Meixner Wolfgang
University of Innsbruck
Institute of History and European Ethnology
Innrain 52, A-6020 Innsbruck
Wolfgang.Meixner@uibk.ac.at

Nagel Fabian
Regional Government of Tyrol
Department of Environmental Protection
Eduard-Wallnöfer-Platz 3, A-6020 Innsbruck
Fabian.Nagel@tirol.gv.at

Nicollasi Kurt
University of Innsbruck
Institute of Geography
Innrain 52, A-6020 Innsbruck
Kurt.Nicollasi@uibk.ac.at

Orterlo Lorelies
University of Innsbruck
Institute of German Philology
Innrain 52, A-6020 Innsbruck
Lorelies.Orterlo@uibk.ac.at

Pfeffer Johannas
Université de Bourgogne
UFR Langues et Communication
Département d’allemand
2, Bd Gabriel, F-21000 Dijon
Johanna.Pfeffer@u-bourgogne.fr

Psenner Roland
University of Innsbruck
Institute of Ecology
Technikerstraße 25, A-6020 Innsbruck
Roland.Psenner@uibk.ac.at

Relius Daniel
University of Innsbruck
Institute of Pharmacy
Innrain 80-82, A-6020 Innsbruck
Daniel.Relius@uibk.ac.at

Sattler Birgit
University of Innsbruck
Institute of Ecology
Technikerstr. 25, A-6020 Innsbruck
Birgit.Sattler@uibk.ac.at

Schallhart Nikolaus
University of Innsbruck
Alpine Research Centre Obergurgl
Sternwartestraße 15, A-6020 Innsbruck
Klaus.Schallhart@uibk.ac.at

Schindelbach Andreas
Federal Research and Training Centre for
Forests, Natural Hazards and Landscape (BFW)
Sekendorf-Gudent-Weg 8, A-1131 Wien
Andreas.Schindelbach@bfw.gv.at

Schieder Silvio
Federal Research and Training Centre for
Forests, Natural Hazards and Landscape (BFW)
Sekendorf-Gudent-Weg 8, A-1131 Wien
Silvio.Schieder@bfw.gv.at

Sieg Gerhard
University of Innsbruck
Institute of History and European Ethnology
Innrain 52, A-6020 Innsbruck
Gerhard.Sieg@uibk.ac.at

Stöhr Dieter
Regional Government of Tyrol
State Forestry Service
Burggasse 36, A-6020 Innsbruck
Dieter.Stöhr@tirol.gv.at

Thurner Andrea
University of Innsbruck
Institute of Geography
Innrain 52, A-6020 Innsbruck
Andrea.Thurner@uibk.ac.at

Türk Roman
University of Salzburg
Department of Organismic Biology
Research group: Ecology, Biodiversity and
Evolution of plants
Hellbrunnerstraße 34, A-5020 Salzburg
Roman.Tucci@bg.ac.at

Zanesco Alexander
University of Innsbruck
Institute of Archeology
Langer Weg 11, A-6020 Innsbruck
Alexander.Zanesco@uibk.ac.at
Alpine research in the region of Obergurgl

Thanks to

Ötztal tourism (branch Obergurgl-Hochgurgl)
Tyrolean State Museums
Federal State of Tyrol
(division "Landesentwicklung und Zukunftsforschung")
Photo Lohmann GmbH
Arge Limnologie
Hotel Edelweiss and Gurgl
Wolfgang Mark, University of Innsbruck, Institute of Zoology

Contact

University of Innsbruck
Innrain 52, A-6020 Innsbruck

Alpine Research Centre Obergurgl
Sternwartestraße 15, A-6020 Innsbruck
Gaisbergweg 3, A-6456 Obergurgl

Concept & Coordination
Alpine Research Centre Obergurgl
Nikolaus Schallhart

Proofreading
Eva-Maria Müller
University of Giessen
Ludwigsplatz 11, D-35390 Giessen

Graphic & Design
University of Innsbruck, Public relations office
Walli Catharina