Mathematics for Economists: linear algebra, matrixalgebra, stochastic matrices

Stefan Lang, Janette Walde

Department of Statistics, University of Innsbruck

October 2014

Chapter 1

Real valued vectors

• The set of all n—tupels

$$x = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right)$$

of real valued numbers x_1, \ldots, x_n equipped with a vector addition and scalar multiplication (see below) is called the n-dimensional vector space over \mathbb{R} , short \mathbb{R}^n .

• The numbers x_1, \ldots, x_n are also called scalars.

• The null vector

 $\left(\begin{array}{c} 0 \\ 0 \\ \vdots \\ 0 \end{array}\right)$

is denoted by $\mathbf{0}$.

• The one vector

 $\left(\begin{array}{c}1\\1\\\vdots\\1\end{array}\right)$

is denoted by 1.

Vector addition

$$x + y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

• Scalar multiplication

$$\lambda \cdot x = \lambda \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad y = \begin{pmatrix} -1 \\ 2 \\ -3 \end{pmatrix}$$

Geometrical properties of real valued vectors

Figure 1: Geometrical visualization of a vector in \mathbb{R}^2 .

Geometrical properties of real valued vectors

Figure 2: vector addition in \mathbb{R}^2 .

Geometrical properties of real valued vectors

Figure 3: Scalar multiplication.

Properties of real valued vectors

For arbitrary vectors $x, y, z \in \mathbb{R}^n$ and scalars $\lambda, \mu \in \mathbb{R}$ the following properties hold:

- 1. Associative law: x + (y + z) = (x + y) + z
- 2. Commutative law: x + y = y + x
- 3. x + 0 = x
- 4. x + (-x) = 0
- 5. Distributive law for scalar multiplication: $(\lambda + \mu)x = \lambda x + \mu x$ respectively $\lambda(x+y) = \lambda x + \lambda y$
- 6. Associative law for scalar multiplication : $(\lambda \mu)x = \lambda(\mu x)$
- 7. $1 \cdot x = x$

Scalar product

• The scalar product (or inner product or dot product) $\langle x,y\rangle$ of the vectors $x,y\in {\rm I\!R}^n$ is defined as

$$\langle x, y \rangle = x_1 \cdot y_1 + x_2 \cdot y_2 + \dots + x_n \cdot y_n.$$

Tow vectors are called orthogonal, if

$$\langle x, y \rangle = 0$$

holds.

• The space \mathbb{R}^n equipped with a vector addition, scalar multiplication and the scalar product is called Euclidian space.

Scalar product

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad y = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \qquad z = \begin{pmatrix} -1 \\ 0 \\ \frac{1}{3} \end{pmatrix}$$

Scalar product

Figure 4: Two orthogonal vectors x and y.

• The (euclidian) distance d(x,y) between the vectors x and y is defined as

$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$
$$= \sqrt{\langle x - y, x - y \rangle}.$$

• The (euclidian) length ||x|| of a vector $x \in \mathbb{R}^n$ is defined as

$$||x|| = \sqrt{x_1^2 + \dots + x_n^2} = \sqrt{\langle x, x \rangle}.$$

Figure 5: Euclidian distance in \mathbb{R}^2

Figure 6: Length ||x|| in \mathbb{R}^2 .

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad y = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

Chapter 2

Real valued matrices

Real valued matrices

• A in m rows and n columns ordered scheme ${\bf A}$ of mn elements $a_{ij} \in {\mathbb R}$

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

is called real valued matrix of order $m \times n$ or short $m \times n$ matrix. Short: $\mathbf{A} = (a_{ij}), i = 1, \dots, m, j = 1, \dots, n$.

- The rows of \mathbf{A} can be seen as vectors in \mathbb{R}^n (so called row vectors) and the columns as vectors in \mathbb{R}^m (so called column vectors). The j-th row vector of \mathbf{A} is denoted by $a^j = (a_{j1}, \ldots, a_{jn})$ and the j-th column vector by $a_j = (a_{1j}, \ldots, a_{nj})'$.
- Two $m \times n$ matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$ are equal, if and only if for all $i, j \ a_{ij} = b_{ij}$ holds.

Some special matrices

- Quadratic matrix: A matrix A of order $n \times n$ is called quadratic. The diagonal consisting of the elements a_{11}, \ldots, a_{nn} is called main diagonal.
- Identity matrix:

$$\mathbf{I}_n = \left(\begin{array}{cccc} 1 & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & 1 \end{array}\right).$$

• Diagonal matrix:

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \dots & 0 \\ \vdots & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & d_n \end{pmatrix}$$

Short: $\mathbf{D} = diag(d_1, \dots, d_n)$

• Symmetric matrix: A quadratic matrix A is called symmetric, if A = A'.

Submatrices

ullet Partition a matrix ${f A}$ in submatrices ${f A}_{ij}$ to obtain:

$$\mathbf{A} = \left(egin{array}{cccc} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1c} \ dots & & dots \ dots & & dots \ \mathbf{A}_{r1} & \mathbf{A}_{r2} & \cdots & \mathbf{A}_{rc} \end{array}
ight) = (\mathbf{A}_{ij})$$

• The submatrices A_{i1}, \ldots, A_{ic} , $i = 1, \ldots, r$ have the same number of rows, the submatrices A_{1j}, \ldots, A_{rj} , $j = 1, \ldots, c$ the same number of columns.

Transpose of a matrix

• The transpose A' of a matrix A is defined as the $n \times m$ matrix, that is obtained by exchanging the rows and columns of A, i.e.

$$\mathbf{A}' = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ \vdots & & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

• The transpose of a partitioned matrix is given as the transpose of the transposed submatrices, i.e.

$$\mathbf{A}' = \left(egin{array}{cccc} \mathbf{A}'_{11} & \mathbf{A}'_{21} & \cdots & \mathbf{A}'_{r1} \ dots & & dots \ dots & & dots \ \mathbf{A}'_{1c} & \mathbf{A}'_{2c} & \cdots & \mathbf{A}'_{rc} \end{array}
ight).$$

Transpose of a matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 1 & 6 \\ 1 & 0 & 3 & 2 \\ 9 & 3 & 4 & 3 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 1 & 2 & | & -1 & 3 \\ 2 & -2 & | & 1 & 0 \\ ------ & | & ----- \\ 1 & -2 & | & 3 & 4 \\ -2 & 4 & | & 5 & 1 \end{pmatrix}$$

Matrix addition and scalar multiplication

• The sum $\mathbf{A} + \mathbf{B}$ of two $m \times n$ matrices $\mathbf{A} = (a_{ij})$ and $\mathbf{B} = (b_{ij})$ ist defined as

$$\mathbf{A} + \mathbf{B} := (a_{ij} + b_{ij}).$$

ullet The scalar multiplication of ${\bf A}$ with a scalar $\lambda \in {\mathbb R}$ is defined as

$$\lambda \mathbf{A} := (\lambda a_{ij}).$$

Matrix addition and scalar multiplication

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 5 & 2 \\ 1 & 2 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 1 & 4 & 2 \\ 3 & 1 & 0 \\ -1 & 2 & -4 \end{pmatrix}$$

Matrix multiplication

The product between the $m \times n$ matrix $\mathbf{A} = (a_{ij})$ and the $n \times p$ matrix $\mathbf{B} = (b_{ij})$ is the $m \times p$ matrix

$$\mathbf{AB} = \mathbf{C} = (c_{ik}) \quad \text{with} \quad c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}.$$

We have

$$\mathbf{A} \cdot \mathbf{B} = \begin{pmatrix} \sum_{j=1}^{n} a_{1j}b_{j1} & \sum_{j=1}^{n} a_{1j}b_{j2} & \cdots & \sum_{j=1}^{n} a_{1j}b_{jp} \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{j=1}^{n} a_{mj}b_{j1} & \sum_{j=1}^{n} a_{mj}b_{j2} & \cdots & \sum_{j=1}^{n} a_{mj}b_{jp} \end{pmatrix}.$$

Matrix multiplication

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right) \qquad \mathbf{B} = \left(\begin{array}{cc} -1 & 2 \\ 1 & 2 \end{array}\right)$$

Matrix multiplication

$$\mathbf{A} = \begin{pmatrix} 2 & 4 & 16 \\ 1 & -3 & -7 \\ -2 & 2 & 2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} -2 & -4 & -8 \\ -3 & -6 & -12 \\ 1 & 2 & 4 \end{pmatrix}$$

Multiplication of partitioned matrices

• For partitioned matrices A and B with submatrices A_{ij} , $i=1,\ldots,r$, $j=1,\ldots,c$, and B_{lk} , $l=1,\ldots,c$, $k=1,\ldots,d$, we obtain

$$\mathbf{AB} = \left(egin{array}{cccc} \mathbf{C}_{11} & \mathbf{C}_{12} & \cdots & \mathbf{C}_{1d} \ dots & & dots \ \mathbf{C}_{r1} & \mathbf{C}_{r2} & \cdots & \mathbf{C}_{rd} \end{array}
ight),$$

mit

$$\mathbf{C}_{ik} = \sum_{j=1}^{c} \mathbf{A}_{ij} \mathbf{B}_{jk} \qquad i = 1, \dots, r \qquad k = 1, \dots, d.$$

• Partitioned matrices can only be multiplied in partitioned form, if the corresponding submatrices have proper order for matrix multiplication.

Multiplication of partitioned matrices

Example

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 3 \\ -2 & -2 & -2 & -1 & 0 \\ -1 & -2 & -3 & 4 & 5 & 1 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix}$$

with

$$\mathbf{B}_{11} = \begin{pmatrix} 2 & 3 \\ -1 & 4 \end{pmatrix}, \quad \mathbf{B}_{12} = \begin{pmatrix} 2 & 4 \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{B}_{21} = \begin{pmatrix} -1 & -2 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{B}_{22} = \begin{pmatrix} 1 & 2 \\ 0 & -2 \end{pmatrix}.$$

Properties matrix addition and multiplication

1.
$$A + (B + C) = (A + B) + C$$

2.
$$A + B = B + A$$

3.
$$A + 0 = A$$

4.
$$A + (-A) = 0$$

5.
$$(k+r)\mathbf{A} = k\mathbf{A} + r\mathbf{A}$$
 respectively $k(\mathbf{A} + \mathbf{B}) = k\mathbf{A} + k\mathbf{B}$

6.
$$(kr)\mathbf{A} = k(r\mathbf{A})$$

7.
$$1 \cdot \mathbf{A} = \mathbf{A}$$

8.
$$0 \cdot \mathbf{A} = \mathbf{0}$$
.

9.
$$(kA)' = kA'$$

10.
$$(A + B)' = A' + B'$$

11.
$$A(B+C) = AB + AC$$

12.
$$(AB)C = A(BC)$$

13.
$$(AB)' = B'A'$$

14.
$$AI_n = A$$
 respectively $I_nA = A$

Matrices and linear operators

Consider a function $f: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$f(x) = f\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11}x_1 & + & a_{12}x_2 & + & \cdots & + & a_{1n}x_n \\ a_{21}x_1 & + & a_{22}x_2 & + & \cdots & + & a_{2n}x_n \\ \vdots & & \vdots & & \vdots & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + & \cdots & + & a_{mn}x_n \end{pmatrix}$$

f is called a linear operator or linear mapping.

Defining the $m \times n$ matrix

$$\mathbf{A} = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & & a_{mn} \end{array} \right)$$

the linear operator can be expressed as

$$f(x) = \mathbf{A}x.$$

Matrices and linear operators

Sum of two linear operators

Consider the linear operators $f(x) = \mathbf{A}x$ and $g(x) = \mathbf{B}x$ where \mathbf{A} and \mathbf{B} are of order $m \times n$. Then

$$(f+g)(x) = (\mathbf{A} + \mathbf{B})x.$$

Composition of two linear operators

Consider the linear operators $f(x) = \mathbf{A}x$ and $g(y) = \mathbf{B}y$ where \mathbf{A} and \mathbf{B} are of order $m \times n$ and $n \times p$, respectively. The vectors x and y are $n \times 1$ and $p \times 1$ dimensional. Then

$$f(g(y)) = \mathbf{AB}y.$$

Matrices and linear operators

Example

$$f(x) = \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right) x$$

defines a rotation by 90 degrees.

Chapter 3

Vector Spaces

Definition vector space

A vector space over the field of real numbers ${\bf I\!R}$ is a set of elements $v \in V$ equipped with a vector addition

$$\begin{array}{ccc} +: & V \times V & \mapsto V \\ & (x,y) & \mapsto x+y \end{array}$$

and a scalar multiplication

$$\begin{array}{ccc} \cdot : & \mathbb{R} \times V & \mapsto V \\ & (a, x) & \mapsto a \cdot x \end{array}$$

such that the following properties hold:

- I. vector addition
- 1. Associative law: x + (y + z) = (x + y) + z for all $x, y, z \in V$.

- 2. Commutative law: x + y = y + x for all $x, y \in V$.
- 3. There is a vector $0 \in V$, called the zero vector such that x + 0 = x for all $x \in V$.
- 4. For each $x \in V$ there exists a vector $-x \in V$ such that x + (-x) = 0.
- II. Scalar multiplication
- 1. Distributive law (a+b)x=ax+bx respectively a(x+y)=ax+ay for all $x,y\in V$, $a,b\in {\rm I\!R}.$
- 2. Associative law: (ab)x = a(bx) for all $x \in V$, $a, b \in \mathbb{R}$.
- 3. There exists an element $1 \in \mathbb{R}$ called the unit element such that $1 \cdot x = x$ for all $x \in V$.

Examples of vector spaces

• Vector space \mathbb{R}^n

V is the set of all vectors in \mathbb{R}^n equipped with the vector addition and scalar multiplication defined in chapter 1.

• Vector space of all $m \times n$ matrices

V is the set of all $m \times n$ matrices equipped with matrix addition and scalar multiplication defined in chapter 2.

Examples of vector spaces

• Vector space of polynomials of degree n

V is the set of all polynomials of degree n, i.e.

$$P(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n.$$

Define for

$$P_1(t) = a_0 + a_1t + a_2t^2 + \dots + a_nt^n$$

and

$$P_2(t) = b_0 + b_1 t + b_2 t^2 + \dots + b_n t^n$$

the polynomial addition through

$$P_1(t) + P_2(t) = (a_0 + b_0) + (a_1 + b_1)t + (a_2 + b_2)t^2 + \dots + (a_n + b_n)t^n.$$

Multiplication with a Scalar $b \in \mathbb{R}$ is defined through

$$bP(t) = ba_0 + ba_1t + ba_2t^2 + \dots + ba_nt^n.$$

Subspaces

Let U be a subset of V. U is called a subspace of V if U itself is a vector space.

Theorem

 $U \subseteq V$ is a subspace, if and only if

- 1. U is not empty,
- 2. U is closed with respect to vector addition, i.e. for $u_1, u_2 \in U$ we have $u_1 + u_2 \in U$,
- 3. U is closed with respect to scalar multiplication, i.e. for $u \in U$ we have $k \cdot u \in U$ for $k \in \mathbb{R}$.

Subspaces

The theorem provides us with a recipe to show that U is a subspace:

- Show $0 \in U$.
- Show, that for arbitrary $k \in \mathbb{R}$ and $u, u_1, u_2 \in U$ the vectors ku and $u_1 + u_2$ are contained in U.

Remark:

Let V be an arbitrary vector space. Then the set $\{0\}$ and V are subspaces.

Subspaces

Examples

- $V = \mathbb{R}^3, U := \{(0, a, b) : a, b \in \mathbb{R}\}$
- $V = \mathbb{R}^2, U := \{(y, x) : y = a + bx, \ a, b \in \mathbb{R}\}.$
- Let V be the vector space of polynomials of degree n. U is the subset of polynomials of degree p with $p \leq n$.
- $V = \mathbb{R}^n, U := \{(x_1, \dots, x_n)' : x_1 = 0\}.$
- $V = \mathbb{R}^n, U := \{(x_1, \dots, x_n)' : \sum_{i=1}^n x_i = 0\}.$

Linear dependence

A set of n vectors $x_1, x_2, \ldots, x_n \in V$ is called linear independent, if the equation

$$a_1x_1 + \dots + a_nx_n = 0$$

with $a_i \in \mathbb{R}$ is true only for

$$a_1 = a_2 = \dots = a_n = 0.$$

Otherwise x_1, \ldots, x_n are called linear dependent.

Linear dependence

Example

$$\left(\begin{array}{c}1\\0\end{array}\right)$$
 and $\left(\begin{array}{c}0\\1\end{array}\right)$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$

Basis and dimension

• A vector space V is finite dimensional or n-dimensional, short dim(V) = n, if linear independent vectors b_1, \ldots, b_n exist, such that every vector $x \in V$ can be written as a linear combination of the b_i , i.e.

$$x = a_1b_1 + \dots + a_nb_n.$$

• The set $B := \{b_1, \dots, b_n\}$ is called basis of V.

Basis and dimension

Examples

• Basis of \mathbb{R}^n The canonical basis is given by

$$E := \{ e_i \in \mathbb{R}^n : e_i = (\delta_{i1}, \dots, \delta_{in})', \quad i = 1, \dots, n \}$$

where

$$\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Basis of polynomials of degree n

$$f(x) = a_0 \cdot 1 + a_1 \cdot x + \dots + a_n \cdot x^n,$$

i.e.
$$B_0(x) = 1, B_1(x) = x, \dots, B_n(x) = x^n$$
.

ullet Vector space of m times continuously differentiable functions.

Basis and dimension

Some facts

Let V be a n-dimensional vector space.

- The basis of a vector space is not unique.
- For a given basis the representation of a vector through the basis is unique.
- ullet Every basis of V has the same number of elements.
- An arbitrary set of n+1 vectors is linear dependent.
- ullet An arbitrary set of linear independent vectors can be expanded to a basis of V.
- ullet A set of n linear independent vectors forms a basis.

Chapter 4

Rank and determinant

Rank of a matrix

Column and row rank

- The maximum number of linear independent column vectors of a $m \times n$ matrix is called column rank of **A**.
- ullet The maximum number of linear independent row vectors of ${f A}$ is called row rank.
- It can be shown that the row and column rank of a matrix is equal.

Rank

The rank of a $m \times n$ matrix \mathbf{A} , short $rank(\mathbf{A})$ or $rk(\mathbf{A})$, is defined as the maximum number of linear independent columns or rows of \mathbf{A} .

Rank of a matrix

Example

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 3 \\ 2 & 5 \end{array}\right) \qquad \mathbf{B} = \left(\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right)$$

Properties of the rank of a matrix

1.
$$rk(\mathbf{A}) = rk(-\mathbf{A})$$

2.
$$rk(\mathbf{A}') = rk(\mathbf{A})$$

3.
$$rk(\mathbf{A}) - rk(\mathbf{B}) \le rk(\mathbf{A} + \mathbf{B}) \le rk(\mathbf{A}) + rk(\mathbf{B})$$

4.
$$rk(\mathbf{AB}) \le \min \{rk(\mathbf{A}), rk(\mathbf{B})\}$$

5.
$$rk(\mathbf{I}_n) = n$$

Inverse of a matrix

Definition

Let A be a $n \times n$ matrix. The matrix A^{-1} is called the inverse of A if

$$\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbf{A}^{-1} \cdot \mathbf{A} = \mathbf{I}.$$

Existence

The inverse of a $n \times n$ matrix \mathbf{A} exists if and only if $rk(\mathbf{A}) = n$. In this case \mathbf{A} is called regular. In case of existence \mathbf{A}^{-1} is unique.

Inverse of a matrix

Example

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 0 & 1 \\ 3 & 5 & 1 \end{pmatrix} \qquad \mathbf{A}^{-1} = \begin{pmatrix} -5 & 2 & 3 \\ 2 & -1 & -1 \\ 5 & -1 & -3 \end{pmatrix}$$

Properties of the matrix inverse

1.
$$(\mathbf{A}^{-1})^{-1} = \mathbf{A}$$

2.
$$(k\mathbf{A})^{-1} = k^{-1}\mathbf{A}^{-1} = \frac{1}{k}\mathbf{A}^{-1}$$

3.
$$(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$$

4.
$$(AB)^{-1} = B^{-1}A^{-1}$$

5.
$$(\mathbf{ABC})^{-1} = \mathbf{C}^{-1}\mathbf{B}^{-1}\mathbf{A}^{-1}$$

- 6. A symmetric $\Longrightarrow \mathbf{A}^{-1}$ symmetric.
- 7. For $\mathbf{A} = diag(a_1, \dots, a_n)$ the inverse is given by $\mathbf{A}^{-1} = diag(a_1^{-1}, \dots, a_n^{-1})$.
- 8. If **A** is orthogonal, then $\mathbf{A}^{-1} = \mathbf{A}'$.

The determinant of a matrix

Consider the matrix

$$\mathbf{A} = \left(\begin{array}{cc} 4 & 2 \\ 1 & 3 \end{array} \right).$$

The columns a_1 and a_2 of A form a parallelogram The determinant of A is defined as the area under the parallelogram

$$det(\mathbf{A}) = 4 \cdot 3 - 2 \cdot 1.$$

Figure 7: Geometrical visualization of the determinant of a 2×2 matrix.

The determinant of a matrix

The following properties are obvious:

- ullet If the columns of $oldsymbol{A}$ are linearly dependent the parallelogram would collapse to a line and would have zero area.
- ullet Hence, if the columns of ${\bf A}$ are linearly dependent the determinant of ${\bf A}$ is zero.
- The determinant of A is nonzero if it has full rank.

General definition of the determinant

The determinant $det(\mathbf{A})$ of a $n \times n$ matrix \mathbf{A} is the volume of the hyperparallelogram spanned by the columns of \mathbf{A} .

The determinant of a matrix

Example

The columns of the diagonal matrix

$$\mathbf{D} = \mathsf{diag}(d_1, \dots, d_n)$$

define a box in \mathbb{R}^n . Its volume is the product of the length of the sides, i.e.

$$det(\mathbf{D}) = d_1 \cdot d_2 \cdots d_n.$$

Properties of the determinant

1.
$$det(k\mathbf{A}) = k^n det(\mathbf{A})$$

2.
$$det(\mathbf{A}) \neq 0 \iff rg(\mathbf{A}) = n$$

3.
$$det(\mathbf{AB}) = det(\mathbf{A})det(\mathbf{B})$$

4.
$$det(A^{-1}) = \frac{1}{det(\mathbf{A})}$$

5. A orthogonal
$$\Longrightarrow det(\mathbf{A}) = \pm 1$$

6.
$$det(\mathbf{A}) = det(\mathbf{A}')$$

Computation of the determinant

 2×2 matrix

For a 2×2 matrix

$$\mathbf{A} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

we have $det(\mathbf{A}) = a \cdot d - b \cdot c$.

Diagonal matrix

For a diagonal matrix $\mathbf{D} = diag(d_1, \dots, d_n)$ we have $det(\mathbf{D}) = d_1 \cdot d_2 \cdots d_n$.

Computation of the determinant

General $n \times n$ matrix

The determinant $det(\mathbf{A})$ of a $n \times n$ matrix is given by $det(\mathbf{A}) = a_{11}$ for n = 1 and

$$det(\mathbf{A}) = (-1)^{i+1} a_{i1} det(\mathbf{A}_{i1}) + \dots + (-1)^{i+n} a_{in} det(\mathbf{A}_{in})$$
$$= (-1)^{1+j} a_{1j} det(\mathbf{A}_{1j}) + \dots + (-1)^{n+j} a_{nj} det(\mathbf{A}_{nj})$$

for n > 1 where \mathbf{A}_{ij} is obtained from \mathbf{A} by deleting the i-th row and j-th column.

Computation of the determinant

Example

$$\mathbf{A} = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{array}\right)$$

Chapter 5

Eigenvalues and eigenvectors

- A complex number x is an ordered pair $x = (x_1, x_2)$ of real numbers x_1 and x_2 .
- Two complex numbers x and y are equal if $x_1 = y_1$ and $x_2 = y_2$.
- For complex numbers the following addition and multiplication is defined:

$$x + y = (x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

 $x \cdot y = (x_1, x_2) \cdot (y_1, y_2) = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1)$

ullet The set of complex numbers is denoted by the symbol ${\Bbb C}.$

Some remarks

• Because of

$$(x_1,0) + (y_1,0) = (x_1 + y_1,0)$$

and

$$(x_1,0)(y_1,0) = (x_1y_1,0)$$

the real number x can be identified with the complex number (x,0), i.e. $\mathbb R$ is a subset of $\mathbb C$.

ullet The complex number i=(0,1) is of particular importance. We have:

$$i^2 = i \cdot i = (0,1)(0,1) = (-1,0) = -1$$

and the representation of $x = (x_1, x_2)$ as

$$x = (x_1, x_2) = (x_1, 0) + (x_2, 0) \cdot (0, 1) = x_1 + x_2 \cdot i.$$

Using this representation complex numbers can be handled just like real numbers

• The complex number

$$\bar{x} = x_1 - x_2 \cdot i$$

is called the complex conjugate to

$$x = x_1 + x_2 \cdot i$$

We have

$$x \cdot \bar{x} = x_1^2 + x_2^2.$$

Example

$$(3,2) = 3 + 2i$$
 $(2,1) = 2 + 1i$ $\frac{1}{3+2i}$

Example

Quadrat equation

$$x^2 + p = 0.$$

Absolute value

The absolute value of the complex number

$$x = (x_1, x_2) = x_1 + x_2 \cdot i$$

is defined as

$$|x| = \sqrt{x_1^2 + x_2^2}.$$

Example

$$x = 4 + 3i$$

Eigenvalues

Let A be a quadratic $n \times n$ matrix.

• The (possibly) complex number $\lambda \in \mathbb{C}$ is called eigenvalue of \mathbf{A} , if a vector $x \in \mathbb{C}^n$ with $x \neq 0$ exists, such that:

$$\mathbf{A}x = \lambda x \text{ resp. } (\mathbf{A} - \lambda \mathbf{I})x = 0$$

- The vector x is called the eigenvector with respect to the eigenvalue λ .
- ullet The eigenvalues of a square matrix ${f A}$ are the roots of the characteristic polynomial

$$q(\lambda) := det(\mathbf{A} - \lambda \mathbf{I}).$$

Eigenvalues

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 2 & -2 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 2 & -1 \\ 8 & -2 \end{pmatrix}$$

Properties of the eigenvalues of a matrix

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the square matrix **A**.

1.
$$det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

$$2. tr(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- 3. A is regular if and only if $\lambda_i \neq 0$ for all i=1,...,n.
- 4. The matrices A und A' share the same characteristic polynomial. Therefore the eigenvalues of the two matrices are identical.
- 5. If λ is an eigenvalue of the regular matrix \mathbf{A} , then $\frac{1}{\lambda}$ is an eigenvalue of \mathbf{A}^{-1} .

- 6. The eigenvalues of a diagonal matrix ${f D}$ are given by the elements of the main diagonal.
- 7. The eigenvalues λ_i of an orthogonal matrix **A** are either 1 or -1, i.e. $\lambda_i = \pm 1$.
- 8. The eigenvalues of an idempotent matrix A are either 1 or 0.
- 9. The eigenvalues of a symmetric matrix are real valued.

Chapter 6

Quadratic forms and definite matrices

Quadratic forms

Let $\mathbf A$ be a symmetric $n \times n$ matrix. A quadratic Form in $x \in {\rm I\!R}^n$ is defined as definiert as:

$$Q(x) = x' \mathbf{A} x = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j =$$

$$= \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \cdot \sum_{i=1}^{n} \sum_{j>i} a_{ij} x_i x_j$$

Quadratic forms

The quadratic form $x'\mathbf{A}x$ and the matrix \mathbf{A} are called

- 1. positive definite, if $x'\mathbf{A}x > 0$ for all $x \neq 0$. Short: $\mathbf{A} > 0$.
- 2. positive semidefinite, if $x'\mathbf{A}x \geq 0$ and $x'\mathbf{A}x = 0$ for at least one $x \neq 0$.
- 3. nonnegative definite, if $x'\mathbf{A}x$ respectively \mathbf{A} are either positive or positive semidefinite. Short: $\mathbf{A} \geq 0$.
- 4. negative definite, if $-\mathbf{A}$ is positive definite.
- 5. negativ semidefinite, if $-\mathbf{A}$ positive semidefinite.
- 6. indefinite in all other cases.

Eigenvalues and definite matrices

Let **A** be a symmetric matrix with (real valued) eigenvalues $\lambda_1, \ldots, \lambda_n$. Then **A**

- 1. is positive definite, if and only if $\lambda_i > 0$ for $i = 1, \ldots, n$,
- 2. positive semi definite if and only if $\lambda_i \geq 0$ for $i=1,\ldots,n$ and $\lambda_i=0$ for some λ_i ,
- 3. negative definite, if and only if $\lambda_i < 0$ for alle $i = 1 \dots, n$,
- 4. negative semi definite, if and only if $\lambda_i \leq 0$ for $i = 1, \ldots, n$ and $\lambda_i = 0$ for some λ_i ,
- 5. indefinite, if and only if the matrix A has positive and negative eigenvalues.

Properties of positive definite matrices

Let A be positive definite.

- 1. A is regular.
- 2. The diagonal elements a_{ii} are positive, i.e. $a_{ii} > 0$ for $i = 1, \ldots, n$.
- 3. $tr(\mathbf{A}) > 0$
- 4. Let ${\bf B}$ be positive semi definite. Then ${\bf A}+{\bf B}$ is positive definite.

Chapter 7

Linear equation systems

Linear equations

A linear equation system with unknowns $x_1, \ldots, x_n \in \mathbb{R}$ is a system of m equations of the form

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = c_1$$

 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = c_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad = \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = c_m$

where the scalars $a_{ij}, c_i \in \mathbb{R}$ are known coefficients.

Combining the scalars a_{ij} , $i=1,\ldots,m$, $j=1,\ldots,n$, to the $m\times n$ matrix $\mathbf A$ and x_i and c_i to the $n\times 1$ respectively $m\times 1$ column vectors x and x, the equation system can be written in matrix notation as

$$\mathbf{A}x = c$$
.

Linear equations

Some facts

- The system $\mathbf{A}x = c$ is solvable if and only if $rk(\mathbf{A}c) = rk(\mathbf{A})$.
- The set of solutions is of the general form

$$L = x_0 + L_0,$$

where x_0 is a particular solution of $\mathbf{A}x = c$ and L_0 is the set of solutions of the homogenous system $\mathbf{A}x = \mathbf{0}$.

• The set of solutions of Ax = 0 is called the nullspace of A:

$$N(\mathbf{A}) = \{ x \in \mathbb{R}^n : \mathbf{A}x = \mathbf{0} \}$$

The nullspace is a subspace of A.

Cholesky decomposition

A symmetric and positive definite $n \times n$ matrix A can be uniquely represented as

$$\mathbf{A} = \mathbf{L}\mathbf{L}',$$

where ${f L}$ is a lower triangular matrix with positive diagonal elements.

For $j = 1, \ldots, n$ and $i = j + 1, \ldots, n$ we have

$$l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2\right)^{\frac{1}{2}}$$

$$l_{ij} = \frac{1}{l_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} l_{jk} \right).$$

Cholesky decomposition

$$\mathbf{A} = \begin{pmatrix} 4 & 6 & 6 \\ 6 & 13 & 11 \\ 6 & 11 & 14 \end{pmatrix}$$

Cholesky decomposition

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 4 & 4 \\ 2 & 10 & 17 & 11 \\ 4 & 17 & 33 & 29 \\ 4 & 11 & 29 & 39 \end{pmatrix}$$

Computing the determinant

Using the Cholesky decomposition the determinant of a matrix ${\bf A}$ can be computed as

$$det(\mathbf{A}) = det(\mathbf{L}\mathbf{L}') = det(\mathbf{L})det(\mathbf{L}') = (l_{11} \cdot l_{22} \cdots l_{nn})^2.$$

Solving linear equation systems

To solve the linear equation system $\mathbf{A}x = b$ with $\mathbf{A} > 0$ we proceed as follows:

- 1. Compute the Cholesky decomposition A = LL'.
- 2. Solve recursively the linear equation system Ly = b starting with y_1, y_2, \ldots
- 3. Solve recursively the linear equation system $\mathbf{L}'x=y$ starting with x_n . Proceed with x_{n-1},x_{n-2},\ldots

Solving linear equation systems

$$\begin{pmatrix} 4 & 2 & 4 & 4 \\ 2 & 10 & 17 & 11 \\ 4 & 17 & 33 & 29 \\ 4 & 11 & 29 & 39 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 44 \\ 133 \\ 269 \\ 257 \end{pmatrix}$$

Chapter 8

Matrix calculus

Differentiation with respect to a vector

Let $x = (x_1, \dots, x_n)'$ be a $(n \times 1)$ -vector and f(x) a real function differentiable with respect to the elements x_i of x.

The $(n \times 1)$ -vector

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{pmatrix}$$

is then called differential of f with respect to x. We denote by

$$\frac{\partial f}{\partial x'} = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

the transpose of $\frac{\partial f}{\partial x}$.

Differentiation with respect to a vector

Example

$$f(\mathbf{x}) = \mathbf{y}'\mathbf{x} = \sum_{i=1}^{n} y_i x_i,$$

where $\mathbf{y} = (y_1, \dots, y_n)'$ is constant.

Differentiation of a Vector Function with Respect to a Vector

Let $x = (x_1, \ldots, x_n)'$ be a $(n \times 1)$ -vector and $f(x) = (f_1(x), \ldots, f_m(x))'$ a $(m \times 1)$ vector function differentiable with respect to the elements x_i of x. The $(n \times m)$ -matrix

$$\frac{\partial f}{\partial x} = \begin{pmatrix} \frac{\partial f_j}{\partial x_i} \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \vdots & & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

is then called differential of f with respect to x. We denote by

$$\frac{\partial f}{\partial x'} = \left(\frac{\partial f}{\partial x}\right)' = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

the transpose of $\frac{\partial f}{\partial x}$.

Differentiation of a Vector Function with Respect to a Vector

$$\frac{\partial \mathbf{A}x}{\partial x} = \mathbf{A}'$$

Differentiation Rules

Assume that A is a matrix and a, x and y are vectors.

$$1. \ \frac{\partial y'x}{\partial x} = y$$

2.
$$\frac{\partial x' \mathbf{A} x}{\partial x} = (\mathbf{A} + \mathbf{A}') x$$

3. If **A** is symmetric, then

$$\frac{\partial x' \mathbf{A} x}{\partial x} = 2\mathbf{A} x = 2\mathbf{A}' x.$$

4.
$$\frac{\partial \mathbf{A}x}{\partial x} = \mathbf{A}'$$

5.
$$\frac{\partial \mathbf{A}x}{\partial x'} = \mathbf{A}$$

Local Extremes

Let $x = (x_1, \dots, x_n)'$ be a $(n \times 1)$ -vector and f(x) a real function differentiable with respect to the elements x_i of x. Define the vector

$$s(x) = \frac{\partial f(x)}{\partial x}$$

of first derivatives and the matrix

$$\mathbf{H}(x) = \frac{\partial s(x)}{\partial x'} = \begin{pmatrix} \frac{\partial s_1(x)}{\partial x_1} & \cdots & \frac{\partial s_1(x)}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial s_n(x)}{\partial x_1} & \cdots & \frac{\partial s_n(x)}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(x)}{\partial x_n \partial x_n} \end{pmatrix}$$

of second derivatives. $\mathbf{H}(x)$ is also called *Hessian matrix* or simply the *Hessian*.

A necessary condition for $x=x_0$ being a local extreme of f is

$$s(x_0) = \mathbf{0}.\tag{1}$$

If (1) is true, the following sufficient condition holds:

- If $\mathbf{H}(x_0)$ is positive definite x_0 is a local minimum.
- If $\mathbf{H}(x_0)$ is negative definite x_0 is a local maximum.

Local Extremes

Example

$$f(x) = (y - \mathbf{Z}x)'(y - \mathbf{Z}x)$$

where the $n \times p$ matrix ${\bf Z}$ has full column rank, x and y are $p \times 1$ and $n \times 1$ vectors.

Chapter 9

Stochastic vectors and matrices

- The vector $X = (X_1, \ldots, X_p)'$ is called a random vector or p-dimensional random variable, if the components X_1, \ldots, X_p are one dimensional random variables.
- The vector X is called continuous if there is a function $f(x) = f(x_1, \dots, x_p) \ge 0$ such that

$$P(a_1 \le X_1 \le b_1, \dots, a_p \le X_p \le b_p) = \int_{a_p}^{b_p} \dots \int_{a_1}^{b_1} f(x_1, \dots, x_p) \, dx_1 \dots dx_p.$$

The function f is called (joint) probability density function (p.d.f.) of X.

• The random vector X is called discrete, if X has only values in a finite or countable set $\{x_1, x_2, \ldots\} \subset \mathbb{R}^p$. The function f with

$$f(x) = \begin{cases} P(X = x) & x \in \{x_1, x_2, \ldots\} \\ 0 & \text{else} \end{cases}$$

is called probability function or discrete p.d.f. of X.

Example

Consider the 2-dimensional continuous random vector $x = (x_1, x_2)'$ with pdf

$$f(x_1, x_2) = \begin{cases} 0.8(x_1 + x_2 + x_1 x_2) & 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \\ 0 & \text{else.} \end{cases}$$

Example

Consider the zwo dimensional random vector (X,Y)' with

$$X=$$
 proseminar grade $Y=$ final exam grade

We have the following distribution:

Y/X	1	2	3	4
1	$\frac{50}{1007}$	$\frac{40}{1007}$	$\frac{12}{1007}$	$\frac{6}{1007}$
2	$\frac{55}{1007}$	$\frac{97}{1007}$	$\frac{54}{1007}$	$\frac{10}{1007}$
3	$\frac{28}{1007}$	$\frac{100}{1007}$	$\frac{68}{1007}$	$\frac{33}{1007}$
4	$\frac{13}{1007}$	$\frac{79}{1007}$	$\frac{75}{1007}$	$\frac{36}{1007}$
5	$\frac{9}{1007}$	$\frac{44}{1007}$	$\frac{119}{1007}$	$\frac{79}{1007}$

- Let the p-dimensional random vector $X = (X_1, \ldots, X_p)'$ be partitioned into the p_1 -dimensional vector X_1 and the p_2 -dimensional Vector X_2 , i.e. $X = (X_1', X_2')'$.
- The p_1 -dimensional p.d.f. or probability function $f_{X_1}(x_1)$ of X_1 is then called marginal p.d.f. or marginal probability function of X. It is given by

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, x_2) dx_{p_1+1} \dots dx_p$$

for continuous random vectors, and

$$f_{X_1}(x_1) = \sum_{x_2} f(x_1, x_2)$$

for discrete random vectors.

• The conditional p.d.f. or probability function of X_1 given $X_2 = x_2$ is defined as

$$f(x_1|x_2) = \begin{cases} \frac{f(x_1, x_2)}{f_{X_2}(x_2)} & \text{for } f_{X_2}(x_2) > 0\\ 0 & \text{else.} \end{cases}$$

The marginal and conditional p.d.f.'s or probability functions for X_2 are defined in complete analogy.

Example

Consider the 2-dimensional continuous random vector $x = (x_1, x_2)'$ with pdf

$$f(x_1, x_2) = \begin{cases} 0.8(x_1 + x_2 + x_1 x_2) & 0 \le x_1 \le 1 \\ 0 \le x_2 \le 1 \\ 0 & \text{else.} \end{cases}$$

Y/X	1	2	3	4
1	$\frac{50}{1007}$	$\frac{40}{1007}$	$\frac{12}{1007}$	$\frac{6}{1007}$
2	$\frac{55}{1007}$	$\frac{97}{1007}$	$\frac{54}{1007}$	$\frac{10}{1007}$
3	$\frac{28}{1007}$	$\frac{100}{1007}$	$\frac{68}{1007}$	$\frac{33}{1007}$
4	$\frac{13}{1007}$	$\frac{79}{1007}$	$\frac{75}{1007}$	$\frac{36}{1007}$
5	$\frac{9}{1007}$	$\frac{44}{1007}$	$\frac{119}{1007}$	$\frac{79}{1007}$

Expectation or mean vector

Let $X = (X_1, \dots, X_p)'$ be a p-dimensional random vector. Then

$$E(X) = \mu = (\mu_1, \dots, \mu_p)' = (E(X_1), \dots, E(X_p))'$$

is called mean vector of X.

Covariance and correlation matrix

The covariance matrix $Cov(X) = \Sigma$ of a p-dimensional random vector X is defined as

$$Cov(X) = \Sigma = E(X - \mu)(X - \mu)' = \begin{pmatrix} \sigma_{11} & \dots & \sigma_{1p} \\ \vdots & & \vdots \\ \sigma_{p1} & \dots & \sigma_{pp} \end{pmatrix},$$

where $\sigma_{ij} = Cov(X_i, X_j)$, $i \neq j$, is the covariance between X_i and X_j , and $\sigma_{ii} = \sigma_i^2 = Var(X_i)$ is the variance of X_i .

Covariance and correlation matrix

The correlation matrix \mathbf{R} of X is defined as

$$\mathbf{R} = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1p} \\ \vdots & & & \vdots \\ \rho_{p1} & \rho_{p2} & \dots & 1 \end{pmatrix},$$

where

$$\rho_{ij} = \frac{\mathsf{Cov}(X_i, X_j)}{\sqrt{\mathsf{Var}(X_i) \cdot \mathsf{Var}(X_j)}}.$$

Covariance and correlation matrix

Example

Properties of expectations and covariance matrices

Let X and Y be random vectors and A, B, a, b matrices and vectors.

1.
$$E(X + Y) = E(X) + E(Y)$$

2.
$$E(\mathbf{A}X + b) = \mathbf{A} \cdot E(X) + b$$

3.
$$Cov(X) = E(XX') - \mu \mu'$$

4.
$$Var(a'X) = a'Cov(X)a = \sum_{i=1}^{k} \sum_{j=1}^{k} a_i a_j \sigma_{ij}$$

5. The covariance matrix is symmetric and positive semi definite.

6.
$$Cov(\mathbf{A}X + b) = \mathbf{A}Cov(X)\mathbf{A}'$$

Multivariate Normal Distribution

• A continuous p-dimensional random vector $X = (X_1, X_2, \dots, X_p)'$ is said to have a multivariate normal (or Gaussian) distribution if it has p.d.f.

$$f(x) = (2\pi)^{-\frac{p}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}(x-\mu)'\mathbf{\Sigma}^{-1}(x-\mu)\right]$$

with $\mu \in \mathbb{R}^p$ and positive definite $(p \times p)$ -matrix Σ .

- It can be shown that $E(X) = \mu$ and $Cov(X) = \Sigma$.
- We write

$$X \sim N_p(\mu, \Sigma),$$

The special case $\mu = \mathbf{0}$ and $\mathbf{\Sigma} = \mathbf{I}$ is called the (multivariate) standard normal distribution.

Multivariate Normal Distribution

Example

$$X = (X_1, X_2, X_3, X_4)' \sim N(\mu, \Sigma)$$
 with

$$\mu = (1, 2, 3, 4)' \qquad \mathbf{\Sigma} = \begin{pmatrix} 3 & 1 & 0 & 1 \\ 1 & 4 & 2 & 0 \\ 0 & 2 & 5 & 2 \\ 1 & 0 & 2 & 4 \end{pmatrix}$$

Marginal and conditional distributions

• Let the multivariate normal random variable $X \sim N(\mu, \Sigma)$ be partitioned into the subvectors $Y = (X_1, \dots, X_r)'$ and $Z = (X_{r+1}, \dots, X_p)'$, i.e.

$$X = \begin{pmatrix} Y \\ Z \end{pmatrix}, \quad \mu = \begin{pmatrix} \mu_Y \\ \mu_Z \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \Sigma_Y & \Sigma_{YZ} \\ \Sigma_{ZY} & \Sigma_Z \end{pmatrix}.$$

- Then Y has an r-dimensional normal distribution $Y \sim N(\mu_Y, \Sigma_Y)$.
- ullet The conditional distribution of Y given Z is again multivariate normal with mean

$$\mu_{Y|Z} = \mu_Y + \Sigma_{YZ} \cdot \Sigma_Z^{-1}(Z - \mu_Z)$$

and covariance matrix

$$\Sigma_{Y|Z} = \Sigma_Y - \Sigma_{YZ} \Sigma_Z^{-1} \Sigma_{ZY}.$$

Marginal and conditional distributions

- Furthermore, \mathbf{Y} and \mathbf{Z} are independent if and only if \mathbf{Y} and \mathbf{Z} are uncorrelated, i.e. if $\Sigma_{YZ} = \Sigma_{ZY} = \mathbf{0}$.
- The equivalence is generally not true for non-normal random vectors: If Y and Z are independent they are also uncorrelated, but in general $\Sigma_{ZY}=0$ does not imply independence.

Marginal and conditional distributions

Example

$$Y = (X_1, X_2)', Z = (Z_1, Z_2)'$$

Linear transformations

Assume $X \sim N_p(\mu, \Sigma)$ is multivariate normal. Then the linear transformation

$$Y = \mathbf{D}X + d$$

with the $m \times p$ matrix ${\bf D}$ and the $m \times 1$ vector d is again multivariate normal

$$Y \sim N_m(\mathbf{D}\mu + d, \mathbf{D}\Sigma\mathbf{D}').$$

Example (simulation)

Chapter 10

Convergence of random variables

Random variables as mappings

- Consider a random experiment with possible outcome in the space Ω and a corresponding probability measure P.
- A random variable X is a mapping that assigns every $\omega \in \Omega$ a real value X, i.e. $X(\omega)=x$. More specifically

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega) = x.$$

Random variables as mappings

Example (rolling a device twice)

Tschebyschov inequality

Let X be a random variable with expected value μ and variance σ^2 . For $\epsilon>0$ the inequality

$$P(|X - \mu| \ge \epsilon) \le \frac{\sigma^2}{\epsilon^2}$$

or equivalently

$$P(|X - \mu| < \epsilon) \ge 1 - \frac{\sigma^2}{\epsilon^2}$$

holds.

Example

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with finite expected value μ and finite variance σ^2 .

Tschebyschov inequality

Proof of the inequality:

Convergence of random variables

- We consider in the following a sequence of random variables X_1, X_2, X_3, \dots and investigate the limit behavior for $n \to \infty$.
- Consider e.g. the estimator $\hat{\mu} = \bar{X}$ for the expected value μ of a distribution in dependence of n:

$$\bar{X}_1 = \frac{1}{1}X_1$$

$$\bar{X}_2 = \frac{1}{2}(X_1 + X_2)$$

$$\bar{X}_3 = \frac{1}{3}(X_1 + X_2 + X_3)$$

$$\vdots$$

$$\bar{X}_n = \frac{1}{n}(X_1 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i$$

Almost sure convergence

• A sequence X_n of random variables converges almost surely to a random variable X if, for every $\epsilon > 0$

$$P(\lim_{n\to 0} |X_n - X| < \epsilon) = 1.$$

- The definition stats that $X_n(\omega)$ converges to $X(\omega)$ for all $\omega \in \Omega$, except perhaps for $\omega \in N$ where $N \subset \Omega$ and P(N)=0.
- Notation: $X_n \xrightarrow{\text{a.s.}} X$

Almost sure convergence

Example

 Ω =[0,1] and P the uniform distribution. Define

$$X_n(\omega) = \omega + \omega^n$$
$$X(\omega) = \omega.$$

$$X(\omega) = \omega$$

• X_n converges to X in probability, if for $\epsilon > 0$

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$$

or

$$\lim_{n \to \infty} P(|X_n - X| < \epsilon) = 1$$

• Notation: $X_n \stackrel{\mathsf{p}}{\longrightarrow} X$.

Example (weak law of large numbers)

• Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with finite expected value μ and finite variance σ^2 . Then

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{\mathsf{p}}{\longrightarrow} \mu \quad \text{for} \quad n \to \infty$$

- $\bar{X_n} \xrightarrow{\text{a.s.}} \mu$ can be established as well. Then we speak of the strong law of large numbers.
- The law says, that for large *n*

$$\left| \bar{X}_n - \mu \right| < \epsilon$$

with high probability.

Proof of the weak law of large numbers:

Example (convergence in probability, not almost sure)

Let $\Omega = [0,1]$ and P is the uniform distribution. Define X_1, X_2, \ldots as follows:

$$X_{1}(\omega) = \omega + I_{[0,1]}(\omega)$$

$$X_{2}(\omega) = \omega + I_{[0,\frac{1}{2}]}(\omega)$$

$$X_{3}(\omega) = \omega + I_{[\frac{1}{2},1]}(\omega)$$

$$X_{4}(\omega) = \omega + I_{[0,\frac{1}{3}]}(\omega)$$

$$X_{5}(\omega) = \omega + I_{[\frac{1}{3},\frac{2}{3}]}(\omega)$$

$$X_{6}(\omega) = \omega + I_{[\frac{2}{3},1]}(\omega)$$

$$\vdots$$

Define $X(\omega) = \omega$.

Example (convergence in probability, not almost sure)

Convergence in the r-th mean

• X_n converges to X in the r-th mean, if

$$E(|X_n^r|) < \infty$$
 for all n

and

$$\lim_{n \to \infty} E(|X_n - X|^r) = 0.$$

- Notation: $X_n \stackrel{\mathsf{r}}{\longrightarrow} X$.
- For r=2 we say that X_n converges in mean square to X.

Convergence in the r-th mean

Example (arbitrary distribution)

Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with finite expected value μ and finite variance σ^2 .

• X_n converges to X in distribution, if

$$\lim_{n \to \infty} P(X_n \le x) = P(X \le x)$$

or

$$\lim_{n \to \infty} F_{X_n}(x) = F_x(x)$$

at all points x where $F_x(x)$ is continuous.

• Notation: $X_n \stackrel{\mathsf{d}}{\longrightarrow} X$.

Note that if

$$f_n \to f$$
 $n \to \infty$,

where f_n , f are the probability functions (or densities), then the distributions defined through f_n converge to the distribution defined through f.

• The reverse is not correct in general: Convergence in distribution does not imply that the densities converge.

Example (convergence of the Binomial to the Poisson distribution)

• Let $X_n \sim B(n,\pi)$ with probability function

$$f(x) = P(X = x) = \binom{n}{x} \pi^x (1 - \pi)^{n-x}$$

• For $n \to \infty$, $n\pi = \lambda$ or $\frac{\lambda}{n} = \pi$ the probability function f(x) converges to the probability function of the Poisson distribution, i.e.

$$\lim_{n \to \infty} f(x) = \frac{\lambda^x \exp(-\lambda)}{x!}$$

Proof:

Application of the limit theorem

- If $X \sim B(n,\pi)$, n large, π small, i.e. $\lambda = n\pi$ moderate (rule of thump n>30, $\pi \leq 0.05$) then X can be approximated by the Poisson distribution with parameter $\lambda = n\pi$.
- E.g. $X \sim B(40, 0.01)$, then $\lambda = 40 \cdot 0.01 = 0.4$ and

$$P(X=2) \approx \frac{0.4^2}{2!} \exp(-0.4) = 0.0536$$

Exact: P(Y = 2) = 0.0532

Example

The sentence "at all x for which $F_X(x)$ is continuous" matters! Let

$$X_n \sim N\left(0, \frac{1}{n}\right)$$

and X a degenerated distribution at 0, i.e. P(X=0)=1.

Relationships among modes of convergence