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Chapter 1

Real valued vectors




1. Real valued vectors

Real valued vectors

e The set of all n—tupels

L1
xr = :
Ln,
of real valued numbers x4, ..., x, equipped with a vector addition and scalar

multiplication (see below) is called the n—dimensional vector space over R,
short R".

e The numbers x1,...,x, are also called scalars.




1. Real valued vectors

Real valued vectors

e [he null vector

is denoted by O.

e [ he one vector

is denoted by 1.




1. Real valued vectors

Real valued vectors

e Vector addition

1 Y1 1+ Y1
x To +
T4y = :2 4 y:z _ 2 | Y2
e Scalar multiplication
I A - I
)\ D — )\ L9 _ )\ - L9

.an A'xn




1. Real valued vectors

Real valued vectors

Example




1. Real valued vectors

Geometrical properties of real valued vectors

L2

L1

Figure 1: Geometrical visualization of a vector in R?.




1. Real valued vectors

Geometrical properties of real valued vectors

(x1 + y1, 22 + y2)’

Figure 2: vector addition in R?.




1. Real valued vectors

Geometrical properties of real valued vectors

1.5-(3,2)
3 i
2 ] rd
(3,2)
1 |
| | | - | | | |
-4 -3 -2 =i 1 2 3 4
”/’ _1 _
/” —2 —
» _3 |
—1.5-(3,2)

Figure 3: Scalar multiplication.




1. Real valued vectors

Properties of real valued vectors

For arbitrary vectors x, vy, z € R" and scalars A\, u € R the following properties
hold:

1. Associative law: z+ (y +2) = (z +y) + 2
2. Commutative law: z4+y =y +

3. x+0==x

4. v+ (—x)=0

5. Distributive law for scalar multiplication: (A + p)x = Ax + px respectively
AMx+y) = x+ \y

6. Associative law for scalar multiplication : (Ap)x = A(px)

(.1 -x==x




1. Real valued vectors

Scalar product

e The scalar product (or inner product or dot product) (z,y) of the vectors
x,y € R" is defined as

(X, y) =21 Y1+ T2 Y2+ -+ T - Yn-

e Tow vectors are called orthogonal, if
(x,y) =0
holds.

e The space R" equipped with a vector addition, scalar multiplication and the
scalar product is called Euclidian space.
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1. Real valued vectors

Scalar product

Example
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1. Real valued vectors

Scalar product

(y1,y2)’

(z1,z2)

0

Figure 4: Two orthogonal vectors = and .
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1. Real valued vectors

Distance between vectors, length of a vector

e The (euclidian) distance d(x,y) between the vectors = and y is defined as

d(z,y) = V(w1 —y)?+ (@2 —y2)>+ - + (@n — Yn)?
= V{z—yz—y)

e The (euclidian) length ||x|| of a vector x € R" is defined as

ol = /a2 + -+ a2 = iz 2).
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1. Real valued vectors

Distance between vectors, length of a vector

y = (y1,92)
d(z,y)

-
--—
-
-
-

Figure 5: Euclidian distance in R?
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1. Real valued vectors

Distance between vectors, length of a vector

r = (v1,72)

]|

Figure 6: Length ||z|| in R®.
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1. Real valued vectors

Distance between vectors, length of a vector

Example
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Chapter 2

Real valued matrices




2. Real valued matrices

Real valued matrices

e Ain m rows and n columns ordered scheme A of mn elements a;; € R

aijp  Qi2 -0 Qin

Am1l am2 -  Amn

is called real valued matrix of order m X n or short m x n matrix. Short:
A =(a;),i=1,...,m,j=1,...,n.

e The rows of A can be seen as vectors in R" (so called row vectors) and the
columns as vectors in R™ (so called column vectors). The j—th row vector of
A is denoted by a’ = (a1, ..., a;,) and the j—th column vector by

a; = (alj, NP ,anj)’.

e Two m x n matrices A = (a;;) and B = (b;;) are equal, if and only if for all
i,j A5 = bz'j holds.
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2. Real valued matrices

Some special matrices

Quadratic matrix: A matrix A of order n x n is called quadratic. The

diagonal consisting of the elements a4, ..

Identity matrix:

Diagonal matrix:

Short: D = diag(dy, . ..

., Gnp 1S called main diagonal.

1 0 0
L,=|
0 I
di 0 0
D: : -’ - :
0 ... ... d,
dy,)

Symmetric matrix: A quadratic matrix A is called symmetric, if A = A’

19



2. Real valued matrices

Submatrices

e Partition a matrix A in submatrices A;; to obtain:

A Ay A
A=l | = Ay
Arl A—T2 Arc
e The submatrices A;1,...,A,;., 2 =1,...,7r have the same number of rows, the

submatrices Aj;,...,A,;, 7 =1,...,c the same number of columns.
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2. Real valued matrices

Transpose of a matrix

e The transpose A’ of a matrix A is defined as the n x m matrix, that is
obtained by exchanging the rows and columns of A, i.e.

ailp a1 -+ ami
A : .

A1n A2n - Amn

e The transpose of a partitioned matrix is given as the transpose of the
transposed submatrices, i.e.

/ / /
11 21 rl

A=

/ / /
1c 2¢ 7 Arc

21



2. Real valued matrices

Transpose of a matrix

Example
( 1 2 -1 3 )
2 4 16 2 -2 1 0
A=|1 0 3 2 B=| ——— |- __
9 3 4 3 1 =2 3 4
\—24 51)

22



2. Real valued matrices

Matrix addition and scalar multiplication

e The sum A + B of two m x n matrices A = (a;;) and B = (b;;) ist defined as

A + B := (CLz'j + b@J)

e The scalar multiplication of A with a scalar A € R is defined as

ANA = ()\a,z])
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2. Real valued matrices

Matrix addition and scalar multiplication

Example

1 2 3 1 4 2
A= 3 5 2 B = 3 1 0
1 2 2 -1 2 —4
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2. Real valued matrices

Matrix multiplication

The product between the m x n matrix A = (a;;) and the n x p matrix B = (b;;)
Is the m X p matrix

AB =C = (Czk:) with Cik = Z aijbjk.

We have

(Zaljbjl Zaljbﬂ Zaljbjp\
j=1

j=1 j=1
A-B-= '

mn n mn
> amibii Y amibjz - Y amsbjy
\ = j=1 j=1 /
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2. Real valued matrices

Matrix multiplication

Example
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2. Real valued matrices

Matrix multiplication

Example

2 4 16 -2 -4 =8
1 -3 =7 B -3 -6 —12
—2 2 2 1 2 4

>
|
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2. Real valued matrices

Multiplication of partitioned matrices

e For partitioned matrices A and B with submatrices A;;, i =1,...,r,
j=1...,c,and By, l=1,...,c, k=1,...,d, we obtain
Cii Ci2 -+ Cyy
AB=| |
Crl CT2 T Crd
mit

Czk:ZAijkz ’1,:1,,7“ kzl,,d
7=1

e Partitioned matrices can only be multiplied in partitioned form, if the
corresponding submatrices have proper order for matrix multiplication.
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2. Real valued matrices

Multiplication of partitioned matrices

Example
[ 1 2 -1 3 )
A = __2___3_ __E_O__ B:(Bll 312)
1 -2 3 4 B2; Boo
\ 2 4 51
with
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2. Real valued matrices

Properties matrix addition and multiplication

L A+B+C)=(A+B)+C

. A+B=B+A

. A+0=A

A+ (-A)=0

. (k4+1)A = kA 4 rA respectively k(A + B) = kA + kB
. (kr)A = k(rA)

. 1-A=A

.0-A=0.

30



2. Real valued matrices

10.

11.

12,

13.

14,

(kA = kA’

(A+B)=A"+B
AB+C)=AB+ AC
(AB)C = A(BC)
(AB)' = B'A’

Al,, = A respectively I, A = A

31



2. Real valued matrices

Matrices and linear operators

Consider a function f : R" — R" of the form

- ailry + aiex2 + -+ A1pTp

flz) = f B a21r1 + Q22 + -+ 4+ G2pTy
Ln

Ami1L1 + Am2T2 + tee + AmnLn

f is called a linear operator or linear mapping.

Defining the m X n matrix

(0 A1n

A =

Am1 Qmn,
the linear operator can be expressed as

f(x) = Ax.
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2. Real valued matrices

Matrices and linear operators

Sum of two linear operators

Consider the linear operators f(x) = Az and g(x) = Bx where A and B are of
order m X n. Then

(f +9)(z) = (A+B)z.

Composition of two linear operators

Consider the linear operators f(z) = Az and g(y) = By where A and B are of
order m X n and n X p, respectively. The vectors z and y are n X 1 and p X 1
dimensional. Then

f(g(y)) = ABy.
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2. Real valued matrices

Matrices and linear operators

Example

defines a rotation by 90 degrees.
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Chapter 3

Vector Spaces




3. Vector spaces

Definition vector space

A vector space over the field of real numbers R is a set of elements v € V
equipped with a vector addition

+: VxV =V
(z,y) —x+y

and a scalar multiplication

RxV =V
(a,x) wa-x

such that the following properties hold:

|. vector addition

1. Associative law: z+ (y+ 2) = (x +y) + z for all z,y,z € V.
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3. Vector spaces

. Commutative law: z4+y =y + x for all x,y € V.

There is a vector 0 € V', called the zero vector such that z + 0 = x for all
relV.

For each x € V there exists a vector —x € V such that z + (—x) = 0.

. Scalar multiplication

. Distributive law (a + b)x = ax + bx respectively a(x + y) = ax + ay for all

x,yeV,abeR.

. Associative law: (ab)x = a(bx) for all x € V, a,b € R.

. There exists an element 1 € R called the unit element such that 1 -2 = x for

all z € V.
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3. Vector spaces

Examples of vector spaces

e Vector space R"

V is the set of all vectors in R" equipped with the vector addition and scalar
multiplication defined in chapter 1.

e Vector space of all m x n matrices

V' is the set of all m x n matrices equipped with matrix addition and scalar
multiplication defined in chapter 2.
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3. Vector spaces

Examples of vector spaces

e Vector space of polynomials of degree n

V' is the set of all polynomials of degree n, i.e.
P(t) = ag + ait + ast® + - + a,t™

Define for

Pi(t) = ap + a1t + ast® + - - - + ant"
and

Py(t) = bg + byt + bat® + - -+ + bt
the polynomial addition through

Pi(t) + Po(t) = (ap + bo) + (a1 + b1)t + (az + ba)t” + -+ + (an + bp )"
Multiplication with a Scalar b € R is defined through

bP(t) = bag + bait + bast® + - - - + ba,t™.
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3. Vector spaces

Subspaces

Let U be a subset of V. U is called a subspace of V' if U itself is a vector space.

Theorem

U C V is a subspace, if and only if

1. U is not empty,

2. U is closed with respect to vector addition, i.e. for u;,us € U we have
u1 + us € U,

3. U is closed with respect to scalar multiplication, i.e. for u € U we have
k-ueU for k € R.
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3. Vector spaces

Subspaces

The theorem provides us with a recipe to show that U is a subspace:

e Show 0 € U.

e Show, that for arbitrary £ € R and u, u1,us € U the vectors ku and uq + us
are contained in U.

Remark:

Let V' be an arbitrary vector space. Then the set {0} and V' are subspaces.

41



3. Vector spaces

Subspaces

Examples

e V=R>’U:={(0,a,b):a,beR}
e V=R*U:={(y,2):y=a+bx, a,bc R}.

e Let VV be the vector space of polynomials of degree n. U is the subset of
polynomials of degree p with p < n.

o V=R"U:={(x1,...,25) : x1 = 0}.

o V=R"U:={(z1,...,2,) : >, 2; =0}

1=

42



3. Vector spaces

Linear dependence

A set of n vectors x1,Zo,...,x, € V is called linear independent, if the equation
air1+---+apxr, =0

with a; € R is true only for
a1 =as=---=a, = 0.

Otherwise x4, ..., x, are called linear dependent.
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3. Vector spaces

Linear dependence

Example

)

(o) ()
(1) (3)

—_
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3. Vector spaces

Basis and dimension

e A vector space V is finite dimensional or n—dimensional, short dim (V') = n, if

linear independent vectors b4, ..., b, exist, such that every vector x € V' can
be written as a linear combination of the b;, i.e.

r=ab+- -+ a,b,.

e The set B :={by,...,b,} is called basis of V.
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3. Vector spaces

Basis and dimension

Examples

e Basis of R"
The canonical basis is given by

E:={e; e R":¢; = (6;1,...,0in), i=1,...,n}
where Lo
5”:{ 0 i;ﬁ
e Basis of polynomials of degree n
flx)=a9-1+a1-x4+---+a,- z",

l.e. Bo(x) =1,B1(x) =x,--- ,B,(x) = a™.

e Vector space of m times continuously differentiable functions.
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3. Vector spaces

Basis and dimension

Some facts

Let V' be a n-dimensional vector space.

e The basis of a vector space is not unique.

e For a given basis the representation of a vector through the basis is unique.

e Every basis of V' has the same number of elements.

e An arbitrary set of n + 1 vectors is linear dependent.

e An arbitrary set of linear independent vectors can be expanded to a basis of V.

e A set of n linear independent vectors forms a basis.
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Chapter 4

Rank and determinant




4. Rank and determinant

Rank of a matrix

Column and row rank

e The maximum number of linear independent column vectors of a m X n matrix
is called column rank of A.

e The maximum number of linear independent row vectors of A is called row
rank.

e |t can be shown that the row and column rank of a matrix is equal.

Rank

The rank of a m x n matrix A, short rank(A) or rk(A), is defined as the
maximum number of linear independent columns or rows of A.
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4. Rank and determinant

Rank of a matrix

Example

—

(NI \V)
N
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4. Rank and determinant

Properties of the rank of a matrix

Crk(A) = rk(—A)
Crk(A’) = rk(A)

rk(A) — rk(B) < k(A + B) < rk(A) + rk(B)
- rk(AB) < min {rk(A), rk(B)}

. rk(I,) =n

51



4. Rank and determinant

Inverse of a matrix

Definition

Let A be a n X n matrix. The matrix A1 is called the inverse of A if

A A=A A=1

Existence

The inverse of a n x n matrix A exists if and only if 7k(A) = n. In this case A is
called regular. In case of existence A~1! is unique.
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4. Rank and determinant

Inverse of a matrix

Example
2 3 1 -5 2 3
A=|1 0 1 Al = 2 —1 -1
3 5 1 5 —1 -3
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4. Rank and determinant

Properties of the matrix inverse
(A=A

(kAT =F AT = %A‘l

(A) = (A

(AB)~!=B-1A-!

(ABC)"!=C 'B~A"!

. A symmetric = A~! symmetric.

. For A = diag(ay,...,a,) the inverse is given by A~! = diag(a;’,...,a;').

. If A is orthogonal, then A=! = A/,
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4. Rank and determinant

The determinant of a matrix

4 2
(1)
The columns a; and as of A form a parallelogram The determinant of A is
defined as the area under the parallelogram

Consider the matrix

det(A)=4-3—-2-1.

az

Figure 7: Geometrical visualization of the determinant of a 2 X 2 matrix.
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4. Rank and determinant

The determinant of a matrix

The following properties are obvious:

e |f the columns of A are linearly dependent the parallelogram would collapse to
a line and would have zero area.

e Hence, if the columns of A are linearly dependent the determinant of A is zero.

e [he determinant of A is nonzero if it has full rank.

General definition of the determinant

The determinant det(A) of a n X n matrix A is the volume of the
hyperparallelogram spanned by the columns of A.
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4. Rank and determinant

The determinant of a matrix

Example

The columns of the diagonal matrix
D = diag(dy,...,d,)
define a box in R". Its volume is the product of the length of the sides, i.e.

d@t(D) = dl . dg s dn

57



4. Rank and determinant

Properties of the determinant

. det(kA) = k™det(A)
. det(A) #0 <= rg(A) =n
. det(AB) = det(A)det(B)

1
 det(A)

det(A™h)

. A orthogonal = det(A) = +1

. det(A) = det(A’)
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4. Rank and determinant

Computation of the determinant

2 X 2 matrix

For a 2 X 2 matrix

S, o
N~

we have det(A)=a-d—b-c.

Diagonal matrix

For a diagonal matrix D = diag(dy,...,d,) we have det(D) =d; - dy- - - d,.
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4. Rank and determinant

Computation of the determinant
General n X n matrix
The determinant det(A) of a n x n matrix is given by det(A) = a1; forn = 1 and
det(A) = (—1)i+1ai1det(Ai1) + -4 (—1)Z+”azndet(Azn)
= (=1)'"aydet(Aqj) + -+ (=1)"Vanidet(Ay;)

for n > 1 where A;; is obtained from A by deleting the ¢-th row and j-th column.

60



4. Rank and determinant

Computation of the determinant

Example

I
—_O W
N — DO
—_ O =
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Chapter 5

Eigenvalues and eigenvectors

62



5. Eigenvalues and eigenvectors

Complex numbers

A complex number x is an ordered pair x = (1, x2) of real numbers x; and zs.

Two complex numbers x and y are equal if x1 = 1 and x5 = ys.

For complex numbers the following addition and multiplication is defined:

r+y = (x1,22)+ (y1,92) = (v1+y1, 22+ y2)
r-y = (T1,72) (Y1, Y2) = (21y1 — T2y2, T1Y2 + x2Y1)

The set of complex numbers is denoted by the symbol C.
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5. Eigenvalues and eigenvectors

Complex numbers

Some remarks

e Because of
(21,0) + (¥1,0) = (21 + 41, 0)
and
(1,0)(y1,0) = (2191,0)
the real number x can be identified with the complex number (x,0), i.e. R is a

subset of C.
e The complex number ¢ = (0,1) is of particular importance. We have:
i*=1i-i=(0,1)(0,1) = (=1,0) = —1

and the representation of x = (x1,x3) as

L = (:617:62) — (331,0) + ('CC27O) | (07 1) =T+ To 1.
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5. Eigenvalues and eigenvectors

Using this representation complex numbers can be handled just like real
numbers

e [he complex number
xr = r1 — X9 - 1
is called the complex conjugate to

=1+ x9-1

We have

8
8I
I
8
— N
+
8
N DN
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5. Eigenvalues and eigenvectors

Complex numbers

Example

2) =3+ 2 2,1) =24+ 1t
(37) —|_Z (7) —|_Z —|_2Z
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5. Eigenvalues and eigenvectors

Complex numbers

Example

Quadrat equation
z? 4+ p=0.
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5. Eigenvalues and eigenvectors

Complex numbers

Absolute value

The absolute value of the complex number

= (r1,T2) =1+ X2 1

2| = /2] + 23.

Is defined as

Example

r=4-+ 3
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5. Eigenvalues and eigenvectors

Eigenvalues

Let A be a quadratic n X n matrix.

e The (possibly) complex number A\ €C is called eigenvalue of A, if a vector
x €C" with z # 0 exists, such that:

Ax =X x resp. (A— M)z =0

e The vector x is called the eigenvector with respect to the eigenvalue .

e The eigenvalues of a square matrix A are the roots of the characteristic
polynomial
q(\) :=det(A — ).
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5. Eigenvalues and eigenvectors

Eigenvalues

|
N —
N—
vy
I

2
8

—1
—2
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5. Eigenvalues and eigenvectors

Properties of the eigenvalues of a matrix

Let \q,..., )\, be the eigenvalues of the square matrix A.
1. det(A) =] A\
i=1

2. t’l“(A) = zn: )\z
1=1

3. A is regular if and only if A\; # 0 for all i=1,. .. ,n.

4. The matrices A und A’ share the same characteristic polynomial. Therefore
the eigenvalues of the two matrices are identical.

1
5. If X is an eigenvalue of the regular matrix A, then \ is an eigenvalue of A™1.
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5. Eigenvalues and eigenvectors

. The eigenvalues of a diagonal matrix D are given by the elements of the main
diagonal.

. The eigenvalues \; of an orthogonal matrix A are either 1 or -1, i.e. \; = %1.
. The eigenvalues of an idempotent matrix A are either 1 or 0.

. The eigenvalues of a symmetric matrix are real valued.
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Chapter 6

Quadratic forms and definite
matrices




6. Quadratic forms and definite matrices

Quadratic forms

Let A be a symmetric n X n matrix. A quadratic Form in x € R" is defined as
definiert as:

Q(x) =2'Ax = z”: z”: Qi jTiTj =

i=1 j=1

= Zaux + 2 - ZZawx X j

1=1 7>
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6. Quadratic forms and definite matrices

Quadratic forms

The quadratic form 2’ Ax and the matrix A are called

1.

positive definite, if Az > 0 for all x % 0. Short: A > 0.

. positive semidefinite, if ’Ax > 0 and 2’Ax = 0 for at least one x # 0.

nonnegative definite, if 2/ Az respectively A are either positive or positive
semidefinite. Short: A > 0.

negative definite, if —A is positive definite.

. negativ semidefinite, if —A positive semidefinite.

. indefinite in all other cases.
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6. Quadratic forms and definite matrices

Eigenvalues and definite matrices

Let A be a symmetric matrix with (real valued) eigenvalues Ay,..., A\,. Then A

1. is positive definite , if and only if \; >0 forz=1,...,n,

2. positive semi definite if and only if \; >0 fori=1,...,n and \; = 0 for some
Ai’

3. negative definite, if and only if \; <O forallei=1...,n,

4. negative semi definite, if and only if \; <0 forz=1,...,n and \; =0 for
some \;,

5. indefinite, if and only if the matrix A has positive and negative eigenvalues.
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6. Quadratic forms and definite matrices

Properties of positive definite matrices

Let A be positive definite.

1. A is regular.
2. The diagonal elements a;; are positive, i.e. a;; > 0fori=1,...,n.
3. tr(A) >0

4. Let B be positive semi definite. Then A + B is positive definite.
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Chapter 7

Linear equation systems




7. Linear equation systems

Linear equations

A linear equation system with unknowns x1,...,z, € R is a system of m
equations of the form

a111  + a12Tr2  + -+ A1pTp, = C]
a21T1 + QT2 + -+ ApTn =  C2
Am1T1 + Qm2T2 + - + AmnTn = Cm
where the scalars a;;,c; € R are known coefficients.
Combining the scalars a;;, ¢t = 1,...,m, 5 =1,...,n, to the m x n matrix A and

x; and ¢; to the n X 1 respectively m X 1 column vectors x and ¢, the equation
system can be written in matrix notation as

Az = c.
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7. Linear equation systems

Linear equations

Some facts

e The system Az = c is solvable if and only if rk(A c) = rk(A).
e The set of solutions is of the general form
L = To -+ L07

where x is a particular solution of Ax = ¢ and Lg is the set of solutions of the
homogenous system Ax = 0.

e The set of solutions of Ax = 0 is called the nullspace of A:
N(A)={rzeR": Ax =0}

The nullspace is a subspace of A.
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7. Linear equation systems

Cholesky decomposition

A symmetric and positive definite n X n matrix A can be uniquely represented as
A =LL/,
where L is a lower triangular matrix with positive diagonal elements.

Forj=1,...,.nandt=35+1,...,n we have

1
2

j—1
— o o PR 2
lij = | aj; E :ljk
k=1

1 —
lij = | %ij — Zlikljk
Lig
k=1

81



7. Linear equation systems

Cholesky decomposition

Example

4 6 6
A=1 6 13 11
6 11 14
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7. Linear equation systems

Cholesky decomposition

Example

2 4 A4
10 17 11
17 33 29
11 29 39

> s DN >
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7. Linear equation systems

Computing the determinant

Using the Cholesky decomposition the determinant of a matrix A can be
computed as

det(A) = det(LL') = det(L)det(L') = (I11 - lag - - - Lyn)*.

Example
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7. Linear equation systems

Solving linear equation systems

To solve the linear equation system Ax = b with A > 0 we proceed as follows:

1. Compute the Cholesky decomposition A = LL/.

2. Solve recursively the linear equation system Ly = b starting with y;. Proceed
with y1, 92, . ...

3. Solve recursively the linear equation system L’z = y starting with x,,. Proceed
with ,,_1,Z,_9,...
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7. Linear equation systems

Solving linear equation systems

Example

4 2 4 4 T1 44
2 10 17 11 e | | 133
4 17 33 29 | | =3 | | 269
4 11 29 39 T4 257
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Chapter 8

Matrix calculus




8. Matrix calculus

Differentiation with respect to a vector

Let x = (x1,...,%,)" be a (n x 1)-vector and f(x) a real function differentiable
with respect to the elements x; of .

The (n x 1)-vector

o

%:E
or | L
or :62

af

e,

is then called differential of f with respect to x. We denote by

3f_(5’f 0f>

or'  \0x," " Oz,

of
the transpose of 5 .
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8. Matrix calculus

Differentiation with respect to a vector

Example

n
f(x)=yx= Z Yili,
i=1

where y = (y1,...,Yn)’ is constant.

89



8. Matrix calculus

Differentiation of a Vector Function with Respect to a Vector

Let 2 = (z1,...,2,) be a (n x 1)-vector and f(z) = (fi(z),..., fm(z)) a
(m x 1) vector function differentiable with respect to the elements x; of x. The
(n x m)-matrix

[(Of 0w
of (6’1‘}-) fre - On
\ ox, Oz, )
is then called differential of f with respect to x. We denote by
(Oh 0
of (af>’ Ore - Om
ox’ ox % éfm
\ oxr1 Oz, )

of
the transpose of 5 .

90



8. Matrix calculus

Differentiation of a Vector Function with Respect to a Vector

Example

OAx

— A’
ox
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8. Matrix calculus

Differentiation Rules

Assume that A is a matrix and a, x and y are vectors.

oy'x
C Ox J
ox' Ax
. = (A + A’
5 (A+A')z
. If A is symmetric, then
/
O Ax — 2Ax = 2A 1.
ox
OAx
. = A’
ox
A
OAzx A

ox’
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8. Matrix calculus

Local Extremes

Let x = (x1,...,%,)" be a (n x 1)-vector and f(x) a real function differentiable
with respect to the elements x; of . Define the vector

~ Of(x)
s(x) = 5
of first derivatives and the matrix
( Os1(z)  Os1(z) \ ( 0% f(x) 92 f (z) \
0x1 oz, 0x10x1 0x10x,
H(x) = a;(if) = i i = : :
" s osa@ Pf@) W
Oxq ox,, ) K 0x,011 02, 0%,

of second derivatives. H(x) is also called Hessian matrix or simply the Hessian.
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8. Matrix calculus

A necessary condition for x = x( being a local extreme of f is

s(xg) = 0. (1)

If (1) is true, the following sufficient condition holds:

o If H(z() is positive definite zq is a local minimum.

o If H(x) is negative definite x is a local maximum.
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8. Matrix calculus

Local Extremes

Example

f(z) = (y — Zz)'(y — Zx)
where the n X p matrix Z has full column rank, x and y are p x 1 and n x 1
vectors.
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Chapter 9

Stochastic vectors and matrices
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9. Stochastic vectors and matrices

Random vectors

e The vector X = (X4,...,X,) is called a random vector or p-dimensional
random variable, if the components X, ..., X, are one dimensional random
variables.

e [he vector X is called continuous if there is a function
f(x) = f(x1,...,2p) > 0 such that

P(a1§X1§b1,...,ap< / fiCl,... p)dibl...dﬂfp.

The function f is called (joint) probability density function (p.d.f.) of X.
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9. Stochastic vectors and matrices

Random vectors

e The random vector X is called discrete, if X has only values in a finite or
countable set {x1,zo,...} C RP. The function f with

o= { g gt

is called probability function or discrete p.d.f. of X.
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9. Stochastic vectors and matrices

Example

Random vectors

Consider the 2-dimensional continuous random vector x = (x1, x2)" with pdf

f(xla ZCQ)

\

i

08(£61 -+ X9 —I—CC;[ZCQ) 0 S L1 S 1
0 S Lo S 1

0 else.
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9. Stochastic vectors and matrices

Random vectors

Example

Consider the zwo dimensional random vector (X, YY)’ with

X = proseminar grade

We have the following distribution:

Y = final exam grade

Y/X| 1] 2 | 3 | 4
1 o0 40 12 §]
1007 1007 1007 1007
2 535! 97 o4 10
1007 1007 1007 1007
3 23 100 03 393
1007 1007 1007 1007
4 15 9 (O 30
1007 1007 1007 1007
5 9 44 119 (Y
1007 1007 1007 1007
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9. Stochastic vectors and matrices

Marginal and conditional distribution

e Let the p-dimensional random vector X = (X1,...,X,)" be partitioned into
the p;-dimensional vector X7 and the ps-dimensional Vector X5, i.e.
X = (X1, X))

e The pi-dimensional p.d.f. or probability function fx,(z1) of X; is then called
marginal p.d.f. or marginal probability function of X. It is given by

O O
fx,(x1) = / / fx1,22) dxp 41 ... dxy
— O — O
for continuous random vectors, and

Ix, (1) =32, f(z1, 22)

for discrete random vectors.
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9. Stochastic vectors and matrices

Marginal and conditional distribution

e The conditional p.d.f. or probability function of X; given X5 = x5 is defined as

f(wla 332)
f(zi|xa) = fXQ(iUQ) for fXQ(xz) =0
0 else.

The marginal and conditional p.d.f.’s or probability functions for X5 are
defined in complete analogy.
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9. Stochastic vectors and matrices

Marginal and conditional distribution

Example

Consider the 2-dimensional continuous random vector x = (x1, x2)" with pdf

f(wla CCQ)

\

i

08(£61 -+ X9 —I—.CClZCQ) 0 S L1 S 1
0 S Lo S 1

0 else.
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9. Stochastic vectors and matrices

Example

Marginal and conditional distribution

Y/X| 1| 2| 3 | 4
1 510) 40 12 §]
1007 1007 1007 1007
2 5%5) 97 o4 10
1007 1007 1007 1007
3 23 100 03 33
1007 1007 1007 1007
4 1o ) (O 30
1007 1007 1007 1007
5 9 44 119 9
1007 1007 1007 1007
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9. Stochastic vectors and matrices

Expectation or mean vector

Let X = (X4,...,X,)" be a p-dimensional random vector. Then

E(X)=p=(u1,....pp) = (E(X1),..., E(X}))

is called mean vector of X.

Example
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9. Stochastic vectors and matrices

Covariance and correlation matrix

The covariance matrix Cov(X) = X of a p-dimensional random vector X is
defined as

011 --- O1p
Cou(X)=% = BEX-p)X-p'=| : f 7

O-pl o o o O-pp

where o;; = Cov X,L-,Xj), i # 7, is the covariance between X; and X, and
oy = 02 = Var(X;) is the variance of X;.
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9. Stochastic vectors and matrices

Covariance and correlation matrix

The correlation matrix R of X is defined as

1 P12 ... Plp
R = : : :
pp1 Pz e 1
where
COV()(?;7 Xj)

P Nar(X,) Var(X,)
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9. Stochastic vectors and matrices

Covariance and correlation matrix

Example
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9. Stochastic vectors and matrices

Properties of expectations and covariance matrices

Let X and Y be random vectors and A, B, a, b matrices and vectors.
1. B(X+Y)=FEX)+ E(Y)
2. E(AX+b)=A-E(X)+b

3. Cov(X) = E(XX') — up/

k
4. Var(a'X) =ad'Cov(X)a = > ) a;a;04;

1=17=1

5. The covariance matrix is symmetric and positive semi definite.

6. Cov(AX +b) = ACov(X)A’
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9. Stochastic vectors and matrices

Multivariate Normal Distribution

e A continuous p-dimensional random vector X = (X1, Xo,...,X,)" is said to
have a multivariate normal (or Gaussian) distribution if it has p.d.f.

| _
F(2) = @m)H S exp [~(@ — u)S N — )]
with © € R? and positive definite (p x p)-matrix X.
e It can be shown that F(X) = p and Cov(X) = 3.

e \We write
X ~ NP(M) 2)7

The special case 4 =0 and ¥ =1 is called the (multivariate) standard normal
distribution.
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9. Stochastic vectors and matrices

Multivariate Normal Distribution

Example

X = (X1, X2, X3, X4)' ~ N(u, =) with

—

_ O = W

——

n=(1,2,3,4) by

O Ot O

O B~ =
_ N O =

~
N—
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9. Stochastic vectors and matrices

Marginal and conditional distributions

e Let the multivariate normal random variable X ~ N(u, 3) be partitioned into
the subvectors Y = (X4,...,X,) and Z = (X, 11,...,X}), i.e

Y Ly Xy ygz
(2) =) == (2 5

e Then Y has an r-dimensional normal distribution Y ~ N (uy, Xy ).

e The conditional distribution of Y given Z is again multivariate normal with
mean
byiz =ty +Eyz-3,(Z — uz)
and covariance matrix

Yyiz =3y — ZyzE, 'Sy
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9. Stochastic vectors and matrices

Marginal and conditional distributions

e Furthermore, Y and Z are independent if and only if Y and Z are
uncorrelated, i.e. if Xy 7z =37y = 0.

e The equivalence is generally not true for non-normal random vectors: If Y and
Z: are independent they are also uncorrelated, but in general X7y = 0 does
not imply independence.
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9. Stochastic vectors and matrices

Marginal and conditional distributions

Example

Y = (X1, X)), Z=(Z1,25)
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9. Stochastic vectors and matrices

Linear transformations

Assume X ~ N,(u,X) is multivariate normal. Then the linear transformation
Y =DX +d
with the m x p matrix D and the m x 1 vector d is again multivariate normal

Y ~ N,,(Dpu+d,DED).

Example (simulation)
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Chapter 10

Convergence of random variables




10. Convergence of random variables

Random variables as mappings

e Consider a random experiment with possible outcome in the space € and a
corresponding probability measure P.

e A random variable X is a mapping that assigns every w € () a real value X,

i.e. X(w)=x. More specifically

X:O0—=R

w— X(w) =u.
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10. Convergence of random variables

Random variables as mappings

Example (rolling a device twice)
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10. Convergence of random variables

Tschebyschov inequality

Let X be a random variable with expected value 1 and variance 0. For € > 0 the
inequality

52
P(IX —plze) <=
or equivalently
52
P(|X — pf <€)21—€—2
holds.
Example
Let X1,X5,...be asequence of i.i.d. random variables with finite expected value

1 and finite variance o2
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10. Convergence of random variables

Tschebyschov inequality

Proof of the inequality:
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10. Convergence of random variables

Convergence of random variables

e We consider in the following a sequence of random variables X7, X5, X3,. ..
and investigate the limit behavior for n—oc.

e Consider e.g. the estimator 1=X for the expected value 1 of a distribution in
dependence of n:

1

Xl — IXl
_ 1
Xo = §(X1 + X5)
_ 1
X3 = g(X1 + Xo + X3)
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10. Convergence of random variables

Almost sure convergence

e A sequence X,, of random variables converges almost surely to a random
variable X if, for every ¢ > 0

hm‘X X’<e 1.

n—0

e The definition stats that X,,(w) converges to X (w) for all wef?, except
perhaps for w€N where N C 2 and P(N)=

e Notation: X, —3 X
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10. Convergence of random variables

Almost sure convergence

Example

(2=[0,1] and P the uniform distribution. Define

Xp(w) =w+w"
X(w) =w.
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10. Convergence of random variables

Convergence in probability

e X, converges to X in probability, if for ¢ > 0

lim P(|X,—X|>¢) =0

n—oo

or
lim P(|X, - X|<e¢) =1

n—oo

e Notation: X, — X.

124



10. Convergence of random variables

Convergence in probability

Example (weak law of large numbers)

e Let X;,X5,. .. be asequence of i.i.d. random variables with finite expected
value 1 and finite variance 0. Then

_ 1 <& 0
Xn:— XZ% fo —
n; 7 r n o0

e X, =2 1 can be established as well. Then we speak of the strong law of large
numbers.

e The law says, that for large n
X, — p| <e

with high probability.
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10. Convergence of random variables

Convergence in probability

Proof of the weak law of large numbers:
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10. Convergence of random variables

Convergence in probability

Example (convergence in probability, not almost sure)

Let 2=[0,1] and P is the uniform distribution. Define X1, X5,. . . as follows:

Xi(w) = w+Ipw)
Xo(w) = w+ ][0,%] (w)
Xslw) = wtIyy()
Xalw) = wt )
X5(w) = w+ I[%’%](w)
Xow) = wit I )

Define X (w)=w.
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10. Convergence of random variables

Convergence in probability

Example (convergence in probability, not almost sure)
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10. Convergence of random variables

Convergence in the r-th mean

e X, converges to X in the r-th mean, if

E(|X]]) < o0 for all n

and
lim F(|X, — X|") =0.

n—oo

e Notation: X,, — X.

e For r=2 we say that X,, converges in mean square to X.
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10. Convergence of random variables

Convergence in the r-th mean

Example (arbitrary distribution)

Let X1,X5,...be asequence of i.i.d. random variables with finite expected value

1 and finite variance o2
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10. Convergence of random variables

Convergence in distribution

e X, converges to X in distribution, if

lim P(X, <z)=P(X <)

n—oo

or

lim Fy, (x) = F.(x)

n—oo

at all points x where F,(x) is continuous.

. d
e Notation: X,, — X.
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10. Convergence of random variables

Convergence in distribution

e Note that if
fn—f n — oo,

where f,,, f are the probability functions (or densities), then the distributions
defined through f, converge to the distribution defined through f.

e The reverse is not correct in general: Convergence in distribution does not
imply that the densities converge.
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10. Convergence of random variables

Convergence in distribution

Example (convergence of the Binomial to the Poisson distribution)

o Let X,, ~ B(n,m) with probability function

e Forn — oo, nm = A or % = 7 the probability function f(z) converges to the
probability function of the Poisson distribution, i.e.

lim f(z) = A" exp(=))
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10. Convergence of random variables

Convergence in distribution

Proof:
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10. Convergence of random variables

Convergence in distribution

Application of the limit theorem

o If X ~ B(n,m), n large, w small, i.e. A = nm moderate (rule of thump n > 30,
m < 0.05) then X can be approximated by the Poisson distribution with
parameter A\ = nm.

e Eg. X ~ B(40,0.01), then A =40-0.01 = 0.4 and

P(X =2) ~ —— exp(—0.4) = 0.0536

Exact: P(Y = 2) = 0.0532
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10. Convergence of random variables

Convergence in distribution

Example

The sentence “at all « for which Fx(x) is continuous” matters! Let

1
X, ~ N (o,—)
n

and X a degenerated distribution at 0, i.e. P(X=0)=1.
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10. Convergence of random variables

Relationships among modes of convergence
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