
Bayesian Inference

Chapter 1

Introduction
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Bayes theorem for two events

Suppose there are two events A and B, then Bayes theorem says

P(A|B) =
P(B|A) · P(A)

P(B|A) · P(A) + P(B|Ā) · P(Ā)

=
P(B|A) · P(A)

P(B)
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Bayes theorem for two events

Taxicab example

85% of the taxicabs in a city are blue, 15% are green.

A hit and run accident occured involving a taxi.

A witness claims a green taxi was responsible.

A test with the witness revealed that there is a 80% chance that the
true color is recognized.

What is the probability that the taxi was indeed green?
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Bayes theorem for two events

Taxicab example

Define the events

A = taxi blue

B = witness recognizes blue taxi.

We have the following probabilitities

P(taxi blue) = P(A) = 0.85

P(witness blue taxi | taxi blue) = P(B |A) = 0.8

P(witness green taxi | taxi green) = P(B̄ | Ā) = 0.8.
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Bayes theorem for two events

Taxicab example

Moreover we have

P(taxi green) = P(Ā) = 0.15

P(witness green taxi | taxi blue) = P(B̄ |A) = 0.2

P(witness blue taxi | taxi green) = P(B | Ā) = 0.2.

We are interested in the probability

P(taxi green |witness green taxi) = P(Ā | B̄).
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Bayes theorem for two events

Taxicab example

Using Bayes theorem we obtain

P(Ā|B̄) =
P(B̄ | Ā) · P(Ā)

P(B̄|Ā) · P(Ā) + P(B̄|A) · P(A)

=
0.8 · 0.15

0.8 · 0.15 + 0.2 · 0.85

= 0.41.
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Bayes theorem for more than two events

Assume A1, . . . ,Ak is a disjunct decomposition of Ω and P(Ai) > 0,
P(B) > 0. Then we have:

P(Aj |B) =
P(B|Aj) · P(Aj)

k∑
i=1

P(B|Ai) · P(Ai)

=
P(B|Aj) · P(Aj)

P(B)
, j = 1, . . . , k .
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Bayes theorem for more than two events

Monty hall problem

Suppose you are attending a game show and you can choose one
of three doors.

Behind one of the three doors there is a brandnew car, behind the
other doors you find a goat.

After deciding for a door, the show master opens one of the two
remaining doors with a goat behind it.

The show master offers you now to rethink your choice and change
the door. Will you accept his offer?

In the following we assume you chose door one.
Assumptions:

Show master opens only doors with goats behind them.
If there are only goats behind the two remaining goats, the show
master chooses with equal probability one of the doors.
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Bayes theorem for more than two events

Monty hall problem

Define the following events:
T1=̂ car behind door 1
T2=̂ car behind door 2
T3=̂ car behind door 3
M2=̂ show master opens door 2
M3=̂ show master opens door 3

We have:

P(T1) = P(T2) = P(T3) =
1
3

P(M2 | T1) =
1
2

, P(M3 | T1) =
1
2

P(M2 | T2) = 0 , P(M3 | T2) = 1

P(M2 | T3) = 1 , P(M3 | T3) = 0
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Bayes theorem for more than two events

Monty hall problem

We would like to compute P(T1|M2) and P(T3|M2), respectively
P(T1|M3) and P(T2|M3)

According to Bayes Theorem we have

P(T1|M2) =
P(M2|T1) · P(T1)

P(M2|T1) · P(T1) + P(M2|T2) · P(T2) + P(M2|T3) · P(T3)

=
1
2 · 1

3
1
2 · 1

3 + 0 · 1
3 + 1 · 1

3

=
1
6
3
6

=
1
3

P(T3|M2) =
P(M2|T3) · P(T3)

P(M2|T1) · P(T1) + P(M2|T2) · P(T2) + P(M2|T3) · P(T3)

=
1 · 1

3
3
6

=
2
3
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Bayes theorem in everyday life

Bayes theorem relevant e.g. in courtroom (famous O.J. simpson
process), cancer screening, medical testing for disease (AIDS test,
corona rapid tests), etc.

Use natural frequencies to figure out relevant probabilities rather
than Bayes theorem directly
Reference:

Gerd Gigerenzer, 2015: Das Einmaleins der Skepsis. Uber den
richtigen Umgang mit Zahlen
Gerd Gigerenzer, 2015: Reckoning with Risk. Learning to live with
uncertainty
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Possible topics for presentations

Review of the Guardian article The obscure maths theorem that
governs the reliability of Covid testing

Bayes theorem in everyday life

Analyzing (possibly yor own) data using Bayesian linear models
(including variable selection).

Bayesian LASSO versus the original LASSO.

Deriving some properties of the lecture.

Bayesian P-splines (and their applications in recent Covid-19
research)
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Bayesian Inference

Chapter 2

Review - Likelihood based
inference
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Situation

Let X1,...,Xn be a random sample with probability function or density
fi (xi ,θ).

The Xi ’s are independent but not identically distributed.

Our goal is to estimate θ.
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Situation

Normal distribution

The random sample X1, ...,Xn is assumed to be i.i.d. with Xi ∼ N(µ, σ2),
i.e.

θ =

(
µ

σ2

)
.
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Situation

Linear Model

Y1,...,Yn independent with Yi∼ N(µi ,σ2) and

µi = β0 + β1xi1 + · · ·+ βk xik .

Define θ =
(
β0, β1, . . . , βk , σ

2
)′
.

We assume Xi1,...,Xik non stochastic.
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Situation

Binary regression models

We assume an independent random sample Y1, ...,Yn with
Yi ∼ B(1, πi) being Bernoulli distributed, i.e. P(Yi = 1) = πi and
P(Yi = 0) = 1 − πi .

Logit model:

πi =
exp(β0 + β1xi1 + · · ·+ βk xik)

1 + exp(β0 + β1xi1 + · · ·+ βk xik)

=
exp(x ′

iβ)

1 + exp(x ′
iβ)

=
exp(ηi)

1 + exp(ηi)
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Situation

Binary regression models

Probit model

πi = Φ(β0 + · · ·+ βk xik) = Φ(x ′
iβ) = Φ(ηi),

where x i = (1, xi1, . . . , xik)
′, β = (β0, β1, . . . , βk)

′ and ηi = x ′
iβ.

Here θ = (β0, . . . , βk)
′.

For the logit model we further obtain

g(πi) = log

(
πi

1 − πi

)
= β0 + β1xi1 + · · ·+ βk xik ,

where g is called link function (here the logit-link).
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Situation

Binary regression models

The ratio log πi
1−πi

is called log-odds, which can be regarded as a
linear combination of the covariates.

For the odds ratio πi
1−πi

we have a multiplicative model, i.e.

πi

1 − πi
= exp(β0) exp(β1xi1) · · · exp(βk xik).
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Likelihood

The likelihood of the sample X1,...,Xn is given by

L(θ) =
n∏

i=1

fi(Xi ,θ) =
n∏

i=1

Li(θ)

with
Li(θ) = fi(Xi ,θ).

The log-likelihood is given by

ℓ(θ) =
n∑

i=1

ℓi(θ) =
n∑

i=1

log
(
fi(Xi ,θ)

)
,

where
ℓi(θ) = log

(
fi(Xi ,θ)

)
.
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Likelihood

Normal distribution

Li(µ, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2

(
xi − µ

)2
)

∝ 1√
σ2

exp

(
− 1

2σ2

(
xi − µ

)2
)

ℓi(µ, σ
2) = log(1)− 1

2
log(σ2)− 1

2σ2

(
xi − µ

)2

= −1
2
log(σ2)− 1

2σ2

(
xi − µ

)2

ℓ(µ, σ2) =
n∑

i=1

ℓi(µ, σ
2)
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Likelihood

Linear regression

Li(β, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2

(
yi − x ′

iβ
)2
)

∝ 1√
σ2

exp

(
− 1

2σ2

(
yi − x ′

iβ
)2
)

ℓi(β, σ
2) = −1

2
log(σ2)− 1

2σ2

(
yi − x ′

iβ
)2

ℓ(β, σ2) = −1
2

n log(σ2)− 1
2σ2

n∑
i=1

(
yi − x ′

iβ
)2

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 2 – Review - Likelihood based inference – 9 / 19



Likelihood

Binary regression

We obtain

ℓi(β) = πyi
i

(
1 − πi)

1−yi

ℓi(β) = yi log(πi) + (1 − yi) log(1 − πi)

for the likelihood and log-likelihood.
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Likelihood

Binary regression

Because of

πi =
exp(x ′

iβ)

1 + exp(x ′
iβ)

, 1 − πi =
1

1 + exp(x ′
iβ)

and

log

(
πi

1 − πi

)
= x ′

iβ.

we further obtain

ℓi(β) = yix ′
iβ + log

(
1

1 + exp(x ′
iβ)

)
= yix ′

iβ − log
(
1 + exp(x ′

iβ)
)

in case of the logit model.
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Score function and ML-estimator

The score function is the vector of first derivatives of the log likelihood, i.e.

Si(θ) =

(
∂ℓi(θ)

∂θ1
, . . . ,

∂ℓi(θ)

∂θp

)′

S(θ) =
n∑

i=1

Si(θ).

The ML-estimator is the solution to the following system of equations

S(θ) = 0.
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Score function and ML-estimator

Normal distribution

ℓi(µ, σ
2) = −1

2
log(σ2)− 1

2σ2

(
xi − µ

)2

∂ℓi(µ, σ
2)

∂µ
= − 1

2σ2 2(−1)(xi − µ) =
1
σ2 (xi − µ)

∂ℓi(µ, σ
2)

∂σ2 = − 1
2σ2 +

1
2(σ2)2 (xi − µ)2

S

(
µ

σ2

)
=


1
σ2

n∑
i=1

(
xi − µ

)
− n

2σ2 +
1

2(σ2)2

n∑
i=1

(
xi − µ

)2


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Score function and ML-estimator

Normal distribution
The ML-estimator is given as the solution to

I :
1
σ2

n∑
i=1

(xi − µ) =
1
σ2

( n∑
i=1

xi − nµ

)
= 0

II : − n
2σ2 +

1
2(σ2)2

n∑
i=1

(
xi − µ

)2
= 0
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Score function and ML-estimator

Normal distribution

From I we have µ̂ = x̄ .

Inserting µ̂=x̄ in II yields

− n
σ2 +

1
(σ2)2

n∑
i=1

(
xi − x̄

)2
= 0

We obtain

σ̂2 =
1
n

n∑
i=1

(
xi − x̄

)2
.
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REML estimator

The ML-estimator for σ2 in the previous example is biased.

Alternatively to the ML-estimator for variance parameters, the so
called Restricted ML-estimator (REML) is often used.

It maximizes the marginal likelihood

RL(σ2) =

∫ ∞

−∞
L(µ, σ2) dµ

=

∫ ∞

−∞

n∏
i=1

(
1√

2πσ2
exp
(
− 1

2σ2

(
xi − µ

)2))
dµ.

REML estimators are used regularly for variance parameters, e.g. in
linear models or linear mixed models, in the context of likelihood
based inference.
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Score function and ML-estimator

Linear regression

ℓi(β, σ
2) = −1

2
log(σ2)− 1

2σ2

(
yi − x ′

iβ
)2

ℓ(β, σ2) = −1
2

n log(σ2)− 1
2σ2

(
Y − Xβ

)′(
Y − Xβ

)
= −1

2
n log(σ2)− 1

2σ2

(
Y ′Y − 2Y ′Xβ + β′(X ′X)β

)
∂ℓ(β, σ2)

∂β
= − 1

2σ2

(
−2X ′Y + 2X ′Xβ

)
= − 1

σ2

(
X ′Xβ − X ′Y

)
∂ℓ(β, σ2)

∂σ2 = −n
2

1
σ2 +

1
2(σ2)2

(
Y − Xβ

)′(
Y − Xβ

)
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Score function and ML-estimator

Linear regression

Hence the score function is given by

S

(
β

σ2

)
=

(
− 1

σ2

(
X ′Xβ − X ′Y

)
− n

2σ2 +
1

2(σ2)2

(
X − Xβ)′

(
Y − Xβ

))

To obtain the ML-estimator we solve

S

(
β

σ2

)
=

(
0

0

)
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Score function and ML-estimator

Linear regression

We immediately obtain

β̂ML =
(
X ′X

)−1
X ′Y

σ̂2
ML =

1
n

(
Y − X β̂

)′(
Y − X β̂

)
.

Again σ̂2
ML is biased. The REML estimator

σ̂2
REML =

1
n − k − 1

(
Y − X β̂

)′(
Y − X β̂

)
is unbiased and maximizes the marginal likelihood

RL(σ2) =

∫
L

(
β

σ2

)
dβ.
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Bayesian Inference

Chapter 3

Basic concepts
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Prior and posterior distribution

The fundamental difference to likelihood-based inference is that the
unknown parameters θ = (θ1, . . . , θp)

′ are not considered as fixed,
deterministic quantities but as random variables with a prior
distribution.

Prior distribution: Any (subjective) information about the unknown
parameter θ is expressed by specifying a probability distribution
p(θ) for θ. The prior describes the degree of uncertainty about the
unknown parameters prior to the statistical analysis.

Observation model: The observation model specifies the conditional
distribution of observable quantities, that is the random sample
variables Y = (Y1, . . . ,Yn)

′, given the parameters. The p.d.f. or
probability function of this conditional distribution is proportional to
the likelihood L(θ) and will be denoted by p(y |θ).
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Prior and posterior distribution

Based on the prior and the observation model, Bayes’ theorem
determines the distribution of θ after the data are known through the
statistical experiment, that is the conditional distribution of θ given
the observations y = (y1, . . . , yn)

′.

We obtain

p(θ | y) =
p(y |θ) p(θ)∫

p(y |θ) p(θ) dθ
= c · p(y |θ) p(θ),

with the normalizing constant c = [
∫

p(y |θ)p(θ) dθ]−1. This
conditional distribution is called posterior (distribution).
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Examples

Poisson Distribution
Consider an i.i.d. sample Y1, . . . ,Yn from a Poisson distribution, i.e.
Yi ∼ Po(λ).

The joint probability for the observed sample y = (y1, . . . , yn)
′ is

p(y |λ) = 1
y1! · · · yn!

λ
∑n

i=1 yi exp(−nλ).

We specify a Gamma distribution with parameters a and b for λ, i.e.
λ ∼ Ga(a, b). It follows that λ has p.d.f.

p(λ) = k λa−1 exp(−bλ)

with k = ba

Γ(a) .
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Examples

Poisson Distribution
The posterior is obtained as

p(λ | y) =
p(y |λ) p(λ)∫

p(y |λ) p(λ) dλ

= c 1
y1!···yn!

λ
∑n

i=1 yi exp(−nλ) kλa−1 exp(−bλ).

To determine the type of this distribution, we can ignore all factors
that do not depend on λ. This gives

p(λ | y) ∝ λ
∑n

i=1 yi exp(−nλ)λa−1 exp(−bλ)

= λa+
∑n

i=1 yi − 1 exp(−(b + n)λ).

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 3 – Basic concepts – 4 / 17



Examples

Poisson Distribution
This has the form of a gamma distribution with parameters
a′ = a +

∑n
i=1 yi and b′ = b + n, i.e.

λ | y ∼ Ga

(
a +

n∑
i=1

yi , b + n

)
,

and the posterior has the same type of distribution as the prior.

We call the prior as conjugate to the Poisson model because the
posterior is of the same type as the prior.
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Examples

Bayesian Logic Model - Diffuse Prior

We consider a logit model with a single covariate x :

Yi = B(1, πi), πi =
exp(ηi)

1 + exp(ηi)
, ηi = β0+β1xi , i = 1, . . . , n.

Assuming, as usual, (conditionally) independent response variables,
the observation model is given by

p(y |β) ∝ L(β) =
n∏

i=1

πyi
i (1 − πi)

1−yi ,

where β = (β0, β1)
′ is the vector of regression coefficients.
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Examples

Bayesian Logic Model - Diffuse Prior

Since estimated regression coefficients are often approximately
normally distributed, it is reasonable to assume a two-dimensional
normal prior, i.e.

p(β) ∼ N2(m,M)

with prior mean m and prior covariance matrix M .

If results from a previous statistical analysis are available, we could
choose the previous point estimate as m and its estimated
covariance matrix as M .

If the previous analysis has been carried out some time ago, we may
also multiply M with a factor a > 1 to express increased uncertainty.
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Examples

Bayesian Logic Model - Diffuse Prior

Increasing the variances in M , the normal prior becomes very flat
and approximates a uniform distribution.

In the limiting case the prior becomes proportional to a constant, i.e.

p(β) ∝ const.

We also write p(β) ∝ 1.

The integral of this flat prior over IR2 is not finite, so that p(β) is not
a density in the usual sense. Such a prior is called improper or
diffuse.
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Examples

Bayesian Logic Model - Diffuse Prior

Such diffuse priors are admissible as long as the posterior, resulting
from Bayes’ theorem, is a proper distribution. i.e. its integral over
IR

2 is finite. In a Bayesian logit model this is the case if a finite MLE
exists.

With a flat, diffuse prior the posterior density is

p(β | y) =
p(β)p(y |β)∫

p(β)p(y |β)d β
∝ p(y |β) =

n∏
i=1

πyi
i (1 − πi)

1−yi .

Although the posterior is proper, it has no known distributional type.
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Examples

Normal Distribution with known expectation

Consider an i.i.d. sample Y1, . . . ,Yn from a normal distribution with
known expectation µ, i.e. Yi ∼ N(µ, σ2).

In the absence of any prior knowledge regarding the unknown
parameter σ2, one is tempted to assume a diffuse uniform prior over
IR

+.

It follows that p(σ2) is improper and proportional to a constant, i.e.,
p(σ2) ∝ 1.

Suppose now, that we had parameterized the Normal distribution in
terms of the standard deviation σ rather than the variance.

According to our recipe for a noninformative prior, we would then
assign a uniform distribution for σ, i.e., p(σ) ∝ 1.
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Examples

Normal Distribution with known expectation

We now obtain p(σ2) ∝ (σ2)−1/2, which is no longer a uniform
distribution over IR+.

Thus, if we parameterize the normal distribution with the variance,
our noninformative prior for σ2 is a uniform distribution. If we
parameterize in terms of the standard deviation, we result with a
non-uniform distribution for σ2.

This means that the prior is not invariant with respect to the specific
parametrization.
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Jeffreys’ Prior

Jeffreys’ prior for a scalar parameter θ is defined to be proportional
to the square root of the expected Fisher information, i.e.

p(θ) ∝
√

F(θ) =
√

E(−l ′′(θ)).

Jeffreys’ prior solves the invariance problem of the previous
example as it is indeed invariant with respect to one to one
transformations of the parameter.

Jeffreys’ prior for a scalar parameter can be characterized as a
reference prior.

Informally, the reference prior can be characterized as the
distribution that maximizes the influence of the data on the posterior.
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Jeffreys’ Prior

More specifically, the reference prior maximizes the expected
Kullback-Leibler distance of the posterior relative to the prior. In this
sense the reference prior is noninformative as the data get maximal
weight and the influence of the prior is minimized.

In situations with vector-valued parameter θ, Jeffreys’ prior
generalizes to

p(θ) ∝
√
|F(θ)|.

This prior is still translation invariant, but is in general not the
reference prior.

Instead, we can still base the choice of noninformative priors on the
reference prior concept, see e.g. Held and Sabanes Bove (2021) for
details.
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Normal Distribution with known expectation

In the case of a normal distribution with known expectation µ,
Jeffreys’ or the reference prior for σ2 is obtained as

p(σ2) ∝ 1
σ2 .

Now the distribution of the standard deviation can be derived to be
p(σ) ∝ 1/σ which is the same distribution as for σ2.

If both parameters µ and σ2 are unknown, we obtain a
noninformative prior in the form of the reference prior. This
reference prior is given by

p(µ, σ2) ∝ 1
σ2

implying a priori independence of µ and σ2 with distributions
p(µ) ∝ 1 and p(σ2) ∝ 1/σ2.
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Bayesian Point Estimates

The posterior mean is given by

θ̂ = EW (θ | y) =
∫

θ p(θ | y) dθ = c ·
∫

θ p(y |θ) p(θ) dθ.

The posterior mode is the value θ̂ that (globally) maximizes the
posterior density, i.e.

θ̂ = argmax
θ

p(θ | y) = argmax
θ

p(y |θ)p(θ).

The second expression shows that no integration is necessary to
compute the posterior mode, because the normalizing constant is
not needed.

The posterior median, that is the median of the posterior
distribution, is sometimes preferred to the posterior mean because it
is more robust against outliers.
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Poisson Distribution
The posterior mean is

EW (λ | y) =

a +
n∑

i=1

yi

b + n
.

The smaller a (in relation to
∑

yi ) and b (in relation to n), the closer
the posterior mean is to the usual MLE λ̂ = ȳ .

The larger the prior information, i.e. the larger a and b are, the more
the posterior mean and the MLE differ from each other.
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Bayesian Interval Estimates

For the posterior mean, a natural measure is the posterior variance.

For the posterior median, the interquartile distance seems to be
appropriate to measure its variability.

In case of the posterior mode, the curvature of the posterior at the
mode, i.e. the observed Fisher information, is a natural choice.

Another way of assessing uncertainty are Bayesian confidence
intervals or credible intervals or, more generally, credible regions:
A region C ⊂ Θ of the parameter space is said to be a
(1 − α)-credible region for θ if

P(θ ∈ C | y) = 1 − α.

If C ⊆ IR is an interval it is called credible interval.

A credible region contains (at least) a probability mass 1 − α of the
posterior.
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Bayesian Inference

Chapter 4

MCMC Methods
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Basic Idea

MCMC methods allow to draw samples from posterior distributions
(and, in principle, from any distribution) that are usually not available
analytically and to estimate characteristics of the posterior such as
the mean, the variance or quantiles, or the posterior density itself.

The most important advantage compared to more traditional
methods of drawing a sample from a distribution, for example
importance or rejection sampling, is that samples can be drawn from
high-dimensional densities, even for dimensions in the thousands.

Another advantage is that the normalizing constant, often a
high-dimensional integral that cannot be computed with traditional
numerical methods, does not have to be known.
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Basis Idea

Let θ be the unknown vector of parameters in a Bayesian model and
p(θ | y) the posterior density (we assume here that θ is continuous).

Instead of directly drawing an i.i.d. sample from p(θ | y), a Markov
chain is generated such that the iterations of the transition kernel
converge to the posterior of interest.

In this way random numbers are generated that can be considered
as a (correlated) sample from the posterior after some time of
convergence, the burn-in phase.
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Metropolis-Hastings Algorithm

To draw random numbers from the density p(θ | y), the
Metropolis-Hastings algorithm proceeds as follows:

1 Initialize θ(0) and the number T of iterations. Set t = 1.
2 Draw a random number θ∗ from the proposal density q(θ∗ |θ(t−1))

and accept it as the new state θ(t) with probability

α(θ∗ |θ(t−1)) = min

{
p(θ∗ | y) q(θ(t−1) |θ∗)

p(θ(t−1) | y) q(θ∗ |θ(t−1))
, 1

}
,

otherwise set θ(t) = θ(t−1).
3 Stop if t = T , otherwise set t = t + 1 and go to 2.

After a burn-in phase t0, the random numbers θ(t0+1), . . . ,θ(T ) can be
considered as a (correlated) sample from p(θ | y).

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 4 – MCMC Methods – 3 / 15



Bayesian Logit Model

We consider the following simulated logit model with two covariates
x1 and x2:

Yi = B(1, πi) i = 1, . . . , 500,

πi =
exp(ηi)

1 + exp(ηi)
,

ηi = −0.5 + 0.6 xi1 − 0.3 xi2.

The covariates x1 and x2 are drawn independently from a standard
normal distribution.

We want to construct a Metropolis-Hastings algorithm to estimate
the parameter β = (−0.5, 0.6,−0.3)′ given this simulated data.

We specify independent diffuse priors p(βj) ∝ const.
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Bayesian Logit Model

The posterior is then proportional to the likelihood:

p(β | y) ∝
500∏
i=1

πyi
i (1 − πi)

1−yi .

As a proposal density for the Metropolis-Hastings algorithm we
choose a 3-dimensional normal distribution, with the current state
β(t−1) as its mean.

For its covariance matrix, we start with the diagonal matrix
Σ = diag(0.42, 0.42, 0.42).

Figure 1 (first row) shows the first 2000 random numbers for β0 and
β1 drawn with this proposal density.

Since we have specified diffuse priors, Bayes estimates for the
regression coefficients should not differ too much from the MLEs.
Therefore, the MLEs are displayed as horizontal lines in the plots.
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Bayesian Logit Model
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Bayesian Logit Model
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Bayesian Logit Model

Clearly, only a few of the proposed random numbers are accepted
with this first algorithm, sometimes the state remains unchanged for
more than 100 iterations.

Thus, the acceptance probabilities are far too small.

We obtain larger acceptance probabilities if the variances of the
proposal density are decreased to Σ = diag(0.12, 0.12, 0.12).

The second row in Figure 1 shows the first 2000 random numbers
for β0 and β1 resulting from this second MH algorithm.

We recognize a short burn-in phase of about 50 iterations, followed
by reasonable iterations with relatively large acceptance rates.
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Bayesian Logit Model

If we further decrease the variance to
Σ = diag(0.022, 0.022, 0.022), acceptance rates are further
increased, but successive draws remain almost in the same state,
see the first row in Figure 2.

A useful and important tool for assessing the quality of MCMC
algorithms is the autocorrelation function of the sample.

Ideally, autocorrelations should rapidly converge to zero with
increasing lags. The smaller the autocorrelation of successive
parameters, the better the characteristics of the posterior can be
estimated, based on the same length T of the sample.
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Bayesian Logit Model

For practical work, ’thinning’ is carried out for the original sample,
i.e. only every k th random number is kept in the sample, so that the
remaining random numbers are almost uncorrelated. In this way,
memory space can be saved without worsening estimation results.

To generate an approximately uncorrelated sample of size 1000 with
our second MH algorithm, we would have to generate about 20000
random numbers after a short burn-in phase and then keep only
every 20th random number in the thinned sample.
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Bayesian Logit Model

We can conclude the following:

Small variances of the proposal density lead to high acceptance
rates.

In contrast, acceptance rates become small for large variances.

For very large or very small variances autocorrelations of
successive random numbers are high.

The art of designing good MH algorithms is therefore the choice of
appropriate proposal densities that combine high acceptance rates
with low autocorrelations.

Furthermore, automated methods are desirable that do not require
subjective tuning of parameters of the proposal density.
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Bayesian Logit Model

An algorithm with these desirable properties is the MH algorithm
based on IWLS proposals, see the last column of Fig. 2.

Using this algorithm a Markov chain was generated and, after the
burn-in phase, 20000 random numbers were drawn. Saving every
20th random number led to a thinned sample of size 1000. Based
on this thinned sample all characteristics of interest of the posterior
can be approximated.

To approximate the posterior mean we compute the arithmetic
means for the sample, resulting in β̂ = (−0.64, 0.65,−0.38)′.

Estimation of credible intervals can be based on the quantiles of the
sampled random numbers. For example, we obtain 95% credible
intervals by choosing the 2.5% quantiles as lower and 97.5%
quantiles as upper bounds. This results in the intervals
[−0.87,−0.42], [0.52 − 0.78] and [−0.52,−0.26] for the sample
generated in our example.
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Gibbs Sampler and Hybrid Algorithms

In many practical applications the parameter vector is
high-dimensional.

The acceptance rates then become rather small, even for
well-designed MH algorithms, because a high-dimensional random
number has to be accepted or not.

So-called hybrid algorithms provide a solution to this problem, using
a “divide and conquer” strategy.

The high-dimensional parameter vector θ is partitioned into smaller
blocks θ1,θ2, . . . ,θS .

Separate MH steps are then constructed for these subvectors.

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 4 – MCMC Methods – 13 / 15



Gibbs Sampler and Hybrid Algorithms

Let p(θ | y) be the posterior and assume that θ is partitioned into S
blocks θ1, . . . ,θS . The Gibbs sampler generates random numbers as
follows:

1 Specify initial values θ
(0)
1 , . . . ,θ

(0)
S and the number of iterations T .

Set t = 1.
2 For s = 1, . . . ,S: Draw random numbers from the full conditionals

p(θs |θ(t)
1 , . . . ,θ

(t)
s−1,θ

(t−1)
s+1 , . . . ,θ

(t−1)
S , y).

Note that the most actual states are used in the conditioning set of
parameter blocks.

3 Stop if t = T , otherwise set t = t + 1 and go to 2.
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Gibbs Sampler and Hybrid Algorithms

If it is not possible to directly draw random numbers from some of
the full conditionals, then an MH step is included instead.

For the corresponding block θs, a proposal density

qs(θ
∗
s |θ

(t)
1 , . . . ,θ

(t)
s−1,θ

(t−1)
s , . . . ,θ

(t−1)
S )

is chosen and random numbers θ∗
s are drawn from it.

They are accepted as new states of the Markov chain with
probability

α(θ∗
s | θ(t−1)

s ) = min

 p(θ∗
s | θ(t−1)

−s )qs(θ
(t−1)
s | θ(t)

1 , . . . , θ
(t)
s−1, θ

∗
s , . . . , θ

(t−1)
S )

p(θ(t−1)
s | θ(t−1)

−s )qs(θ∗
s | θ(t)

1 , . . . , θ
(t)
s−1, θ

(t−1)
s , . . . , θ

(t−1)
S )

, 1

 ,

where p(θs |θ(t−1)
−s ) = p(θs |θ(t)

1 , . . . ,θ
(t)
s−1,θ

(t−1)
s+1 , . . . ,θ

(t−1)
S , y)

denotes the full conditional of θs.

Otherwise, θ(t)
s = θ

(t−1)
s as in the original MH algorithm.
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Bayesian Inference

Chapter 5

Model Selection
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Classical Approach

The classical approach for Bayesian model choice is to compare
competing models through the posterior probabilities of the models.

Suppose we are given K competing models M1, . . . ,MK with
associated parameters θ1, . . . ,θK . By a “model” we mean a set of
probability distributions.

For instance Mj , j = 1, . . . ,K , could denote the regression models
y |θj ,Mj ∼ N(X jθj , σ

2I) (with known variance σ2 for simplicity).

For each Model Mj let p(y |θj ,Mj) denote the observation model
and p(θj |Mj) be the prior for the model parameters θj .
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Classical Approach

The posterior for θj under model Mj is then given by

p(θj | y ,Mj) =
p(y |θj ,Mj) p(θj |Mj)

p(y |Mj)
,

where

p(y |Mj) =

∫
p(y |θj ,Mj) p(θj |Mj) dθj (1)

is the marginal likelihood.

For model selection, we additionally have to assign prior
probabilities p(Mj) associated with each model Mj .
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Classical Approach

Now the competing models can be compared through the posterior
model probabilities given by

p(Mj | y) =
p(y |Mj) p(Mj)

p(y)
∝ p(y |Mj) p(Mj)

with

p(y) =
K∑

k=1

p(y |Mk) p(Mk).

We prefer model Mj against model Ms if p(Mj | y) > p(Ms | y), i.e. if
the posterior ratio

p(Mj | y)
p(Ms | y)

=
p(Mj)

p(Ms)

p(y |Mj)

p(y |Ms)

is larger than 1.
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Bayes Factor

In cases of equal priors p(M1) = p(M2) = · · · = p(MK ) = 1/K the
posterior ratio simplifies to the Bayes factor

BFjs(y) =
p(y |Mj)

p(y |Ms)
.

If none of the competing models is favored prior to analysis of the
data, model choice is based on Bayes factors.

Care has to be taken when using the Bayes factor in combination
with improper priors.
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Bayes Factor

Suppose, we assume improper priors

p(θj |Mj) ∝ cj , p(θs |Ms) ∝ cs

for the model parameters θj and θs of models Mj and Ms. Here cj

and cs are arbitrary constants.
The Bayes factor then becomes

BFjs(y) =
cj

cs

∫
p(y |θj ,Mj) dθj∫
p(y |θs,Ms) dθs

,

where cj/cs is an arbitrary constant. This in turn implies that the
Bayes factor is not uniquely defined.
Thus, improper priors can not be used in the context of Bayesian
model choice, at least if Bayes factors or in other words marginal
likelihoods are involved.
Improper priors may be appropriate only if the parameter θ is the
“same” under all models under consideration.
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Bayesian Information Criterion

In many applications, the exact computation of Bayes factors is
difficult because computation of the marginal model likelihoods
p(y |Mj) causes problems.

An approximation (after multiplying with −2) is

−2p(y |Mj) ≈ −2 · log(p(y | θ̂j ,Mj)) + log(n) pj ,

where pj is the dimension of the parameter vector θj and θ̂j is the
posterior mode.

The approximation can be derived through a Laplace approximation
of the integral in (1) and leads to the Bayesian Information Criterion
(BIC).
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Bayesian Information Criterion

For a model with parameter θ, log-likelihood l(θ) and MLE θ̂, the
BIC is defined as

BIC = −2l(θ̂) + log(n) p.

Among a set of competing models, the model with the smallest BIC
will be selected.
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Bayesian Information Criterion

Although derived from a Bayesian perspective, the BIC is not very
popular in Bayesian inference. The main reasons are: First, the
assumptions underlying the derivation of the BIC as an
approximation of marginal log-likelihoods are not sufficiently well
fulfilled in complex high-dimensional models.

Related to this is the problem of determining n in the factor log(n). It
is not always the data sample size: For example, in mixed models, n
is the number of individuals.

Second, when more complex Bayesian models are fitted with
MCMC methods, the BIC is not directly available anyway.
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Deviance Information Criterion

A more recent criterion for model choice, that has become quite
popular in connection with MCMC inference, is the Deviance
Information Criterion (DIC).

Its popularity is due to the fact that it can be easily computed from
MCMC output.

Let θ(1), . . . ,θ(T ) denote an MCMC sample from the posterior of
the model.
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Deviance Information Criterion

Computation of the DIC is based on two quantities.

The first is the (unstandardized) deviance

D(θ) = −2 log(p(y |θ))

of the model.

The second is the effective number pD of parameters in the model.
It can be estimated through

pD = D(θ)− D(θ̄),

where

D(θ) =
1
T

T∑
t=1

D(θ(t))

is the average posterior deviance and D(θ̄) is the deviance
evaluated at θ̄ = 1

T

∑T
t=1 θ

(t).
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Deviance Information Criterion

The DIC is then defined as

DIC = D(θ) + pD = 2D(θ)− D(θ̄).

As a disadvantage, the DIC value changes for different MCMC
random samples.

Therefore it may happen that model choice by DIC can lead to
selecting different models with different MCMC samples. This will be
only the case, however, if the DIC values of the models are quite
close.
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Deviance Information Criterion

Bayesian Logit Model—DIC

We illustrate the use of DIC with the simulated data from previous
Example.

If we mistakenly omit the covariate x2 and fit a logit model with x1

only, then we obtain the (estimated) values pD = 1.99 and
DIC = 571.6.

The effective number of parameters of about 2 is plausible, because
we have estimated exactly two parameters β0 and β1.

Fitting the correctly specified model, we obtain pD = 2.93 and
DIC = 540.3.

The effective number of parameters is now about 3, as had to be
expected.

The DIC is now considerably smaller than for the wrong model so
that the more complex, true model is selected.
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Deviance Information Criterion

Bayesian Logit Model—DIC

For illustration, we fit the correct model with five further MCMC runs.

For pD we obtain the values 3.05, 2.99, 3.15, 2.87 and 3.23 and for
the DIC 540.56, 540.42, 540.73, 540.19 and 540.91, respectively.

We see that the DIC varies between the different MCMC runs, but
variability is usually quite low.
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Bayesian Inference

Chapter 6

Bayesian Linear Model
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Standard Conjugate Analysis

Our starting point is the classical linear model y = Xβ + ε.

In contrast to classical inference, the Bayesian approach treats the
unknown parameters β and σ2 as random variables.

Thus, the distribution of the response y can be understood as
conditional on the parameters β and σ2, and we obtain the
observation model

y |β, σ2 ∼ N(Xβ, σ2I).
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Standard Conjugate Analysis

The standard conjugate prior for linear models is obtained by
assuming a multivariate normal prior for the regression coefficients

β |σ2 ∼ N(m, σ2M),

with known expectation m and covariance matrix M , e.g., m = 0
and M = I .

A normal distribution seems a natural choice since the distribution of
the estimated regression coefficients in the classical linear model is
(approximately) multivariate normal.

For σ2, we specify an inverse gamma distribution with
hyperparameters a and b, i.e.,

σ2 ∼ IG(a, b). (2)
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Standard Conjugate Analysis

To shed light on the specific form of the inverse gamma prior for σ2,
Fig. 3 shows the prior density for various choices of a and b.

Of particular interest is the case a = b and both values approaching
zero. Such a distribution converges to an improper distribution that
also results from a general prior construction principle (Jeffreys’
prior).

Another interesting case is when a = 1 and b is chosen to be small.
In this case, the distribution of log(σ2) tends to a uniform
distribution.
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Standard Conjugate Analysis
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Figure: Inverse gamma prior density for σ2 for various values of the
hyperparameters a and b
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Standard Conjugate Analysis

The joint prior for β and σ2 is a normal-inverse gamma distribution
with density

p(β, σ2) = p(β |σ2) p(σ2) (3)

=
1

(2π)
p
2 (σ2)

p
2 |M|

1
2

exp

(
− 1

2σ2 (β − m)′M−1(β − m)

)
ba

Γ(a)
1

(σ2)a+1 exp

(
− b
σ2

)
and parameters m, M , a, and b. We write β, σ2 ∼ NIG(m,M, a, b).
Ignoring all factors in Eq. (3) that are independent of β and σ2, we
obtain

p(β, σ2) ∝ 1

(σ2)
p
2+a+1

exp

(
− 1

2σ2 (β − m)′M−1(β − m)− b
σ2

)
(4)

for the density of the normal-inverse gamma prior.
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Noninformative prior

The widely accepted noninformative prior in the linear model is
given by

p(β, σ2) ∝ 1
σ2 , (5)

which is the reference prior that maximizes the expected
Kullback-Leibler distance of the posterior distribution relative to the
prior.

Informally, the reference prior can be characterized as the
distribution that maximizes the influence of the data on the posterior.

Since the density (5) cannot be normalized such that it integrates to
one, it is an improper prior.

The prior can be expressed as the product between a uniform prior
p(β) ∝ 1 for β and the prior p(σ2) ∝ 1/σ2 for σ2 so that β and σ2

are a priori stochastically independent.
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Noninformative prior

Note that the prior for σ2 is equivalent to a uniform prior for log(σ2).

Technically, we can identify the noninformative prior (5) with the
conjugate NIG(m,M, a, b) prior by setting m = 0, M−1 = 0,
a = −p, and b = 0.

This is useful for posterior analysis because we can treat the
noninformative case within the standard prior.

Note, however, that we have to be very careful when proceeding this
way. When dealing with improper priors, it is important to check
whether the resulting posterior is truly proper. For the
noninformative prior (5), this is indeed the case.
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Noninformative prior

Another approach to define a noninformative prior is described in
O’Hagan (1994). Here we start with the marginal IG(a, b)
distribution for σ2.

If a → 0 and b → 0 tend to zero, we obtain

p(σ2) ∝ 1
σ2 .

For the joint NIG(m,M, a, b) prior, we then have

p(β, σ2) ∝ 1

(σ2)
p
2+1

exp

(
− 1

2σ2 (β − m)′M−1(β − m)

)
.
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Noninformative prior

If rather M−1 = 0, we arrive at the alternative noninformative prior

p(β, σ2) ∝ σ−(p+2).

This can be shown to be Jeffreys’ prior.

Although Jeffreys’ prior is usually not used in multiparameter
settings, our derivation justifies the widely used choice of a and b as
equal to each other and near zero as a weakly informative choice for
the prior of σ2 (and more generally variance parameters).
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Posterior Analysis

Bayesian inference is based on properties of the posterior
distribution, i.e., on the conditional distribution of the unknown
parameters β and σ2 given the data y.

The density of the posterior distribution is proportional to the
product of the likelihood and the prior distribution, i.e.

p(β, σ2 | y) ∝ L(β, σ2) p(β |σ2) p(σ2) (6)

∝ 1

(σ2)
n
2
exp

(
− 1

2σ2 (y − Xβ)′(y − Xβ)

)
1

(σ2)
p
2

exp

(
− 1

2σ2 (β − m)′M−1(β − m)

)
1

(σ2)a+1 exp(− b
σ2 ).
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Posterior Analysis

The linear model is one of a few examples in which the posterior
distribution is analytically tractable, at least for the standard
NIG(m,M, a, b) prior.

We can show that the posterior distribution, like the prior
distribution, is a normal-inverse gamma distribution.

The parameters m̃, M̃ , ã, and b̃ of the distribution are given by

M̃ = (X ′X + M−1)−1 m̃ = M̃(M−1m + X ′y),

and

ã = a +
n
2

b̃ = b +
1
2

(
y ′y + m′M−1m − m̃′M̃

−1
m̃
)
.
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Posterior Analysis

Of particular interest is the posterior mean

β̂B = E(β | y) = m̃ = (X ′X + M−1)−1(M−1m + X ′y)

as a point estimate of β.

Using the matrix A = (X′X + M−1)−1X′X, we can write the Bayes
estimator as a weighted average of the prior expectation m and the
least squares estimator β̂:

β̂B = (I − A)m + Aβ̂.

To interpret the Bayes estimator, note that the diagonal elements of
M contain (up to the factor σ2) the prior variances of β.

The greater the diagonal elements of M (i.e., the variances of β),
the smaller are the elements of M−1.
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Posterior Analysis

In the limit M−1 → 0, the matrix A approaches the identity matrix,
and β̂B the ordinary least squares estimator.

On the contrary, small elements in M (corresponding to small
variances of β) imply that the matrix A approaches the zero matrix
and I − A the identity matrix.

The Bayes estimator is then identical with the prior mean m.

This gives us the following interpretation of β̂B: The smaller the
prior information about β, i.e., the greater the diagonal elements of
M , the closer is β̂B to the least squares estimator. The larger the
prior information, i.e., the smaller the diagonal elements of M , the
more the prior mean m dominates β̂B.

For the noninformative prior with m = 0 and M−1 = 0, the Bayes
estimator coincides with the least squares estimator, i.e.,

β̂B = (X ′X)−1X ′y = β̂LS.
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Full Conditional Densities and MCMC Inference

We develop a Gibbs sampler, that consecutively draws random
numbers from the full conditional distributions of β and σ2.
We obtain β | · ∼ N

(
µβ,Σβ

)
where

Σβ =

(
1
σ2 X′X +

1
σ2 M−1

)−1

. (7)

and

µβ = Σβ

(
1
σ2 X′y +

1
σ2 M−1m

)
. (8)

We further obtain p(σ2 | ·) ∼ IG(a′, b′) with parameters

a′ = a +
n
2
+

p
2

(9)

and

b′ = b +
1
2
(y − Xβ)′(y − Xβ) +

1
2
(β − m)′M−1(β − m). (10)
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Full Conditional Densities and MCMC Inference

Summarizing, we obtain the following Gibbs sampler:

1 Define initial values β(0) and (σ2)(0). Set t = 1.
2 Sample β(t) by drawing from the Gaussian full conditional with

covariance matrix (7) and mean (8), where σ2 is replaced by the
current state of the chain (σ2)(t−1).

3 Sample (σ2)(t) by drawing from the inverse gamma full conditional
with parameters a′ and b′ given by Eqs. (9) and (10), where β is
replaced by the current state of the chain β(t).

4 Stop if t = T , otherwise set t = t + 1 and go to 2.

A derivation of the Gibbs sampler can be found in Fahrmeir et al. (2022).
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Software

Functions bayesLMRef and bayesLMConjugate of the R package
spBayes.

Software package BayesX for noninformative priors only (see also
the R interface R2BayesX).

Function zlm of the R package BMS (Zellner’s g-prior only).
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Munich Rent Index—Quality of Kitchen – frequentist approach

The rent index is updated every two years, with the collection of new
data.

For financial reasons, the update during 2001 only consisted of data
for 1,500 apartments.
Due to the smaller sample size, a complete redesign of the rent
index was not possible. Instead the following procedure was
chosen:

The same explanatory variables from the 1999 rent index were used,
implying that the structure of the rent index did not change.
Potential changes in the effects of regressors across data sets need
to be examined.
To do so, both data sets of 1999 and 2001 were analyzed
simultaneously, and changes in covariate effects have been
investigated with the help of interactions.
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Munich Rent Index—Quality of Kitchen – frequentist approach

We will illustrate the approach using the quality of the kitchen
(kitchen), with categories “kitchen below average” (reference
category), “normal kitchen” (dummy variable nkitchen), and
premium kitchen (dummy variable pkitchen).

We apply the model

rentsqmi = β0 + β1 · area−1
i + β2 · yearci + β3 · yearc2

i + β4 · yearc3
i +

β5 year01 + β6 nkitchen + β7 pkitchen+

β8 nkitchen · year01 + β9pkitchen · year01 + εi .

(11)

Hence, the model consists of the transformed living area 1/area, a
cubic polynomial for year of construction, and the two kitchen
dummies nkitchen (“normal kitchen”) and pkitchen (“premium
kitchen”).

The dummy variable year01 specifies whether an observation has
been taken from the year 2001 (year01 = 1) or from the year 1999
(year01 = 0).
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Munich Rent Index—Quality of Kitchen – frequentist approach

We obtain the estimate

̂rentsqm = · · · − 0.26 year01 + 0.91 nkitchen + 1.09 pkitchen+

0.41 nkitchen · year01 + 0.74 pkitchen · year01.

The results can be summarized as follows, on a per square meter
basis:

In 2001, apartments with a below average kitchen are approximately
0.26 Euro per square meter cheaper than apartments in 1999.
Apartments with a normal kitchen are approximately
−0.26 + 0.41 = 0.15 Euro more expensive in 2001 than in 1999.
Apartments with a premium kitchen are approximately
−0.26 + 0.74 = 0.48 Euro more expensive in 2001 than in 1999.
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Munich Rent Index—Quality of Kitchen – Bayesian approach

For the Bayesian approach, we again use model (11) without the
interactions.

We first develop a Bayesian version of the model based solely on
the data for 1999.

At that time we have no prior information regarding the unknown
parameters. We therefore use the noninformative prior (5).

Although the model could in principle be estimated analytically, we
used the Gibbs sampler for inference since most available software
packages do not support the analytical solution.
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Munich Rent Index—Quality of Kitchen

Using the function bayesLMRef of the R package spBayes, we
obtained the results of Table 1.

Up to sampling imprecision, the posterior mean is identical to the
least squares estimator (as suggested by the analytically derived
posterior).

The posterior standard deviations and the quantiles are also very
close to the respective least squares standard errors and the 95%
confidence intervals.

Note that the analytical posterior mean (and mode) coincides
exactly with the least squares estimator, while the posterior
standard deviation and quantiles are slightly different from their least
squares counterparts.
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Munich Rent Index—Quality of Kitchen

Standard 2.5% 97.5%

Variable Coefficient deviation Quantile Quantile

invarea 122.5417 5.5877 -111.5955 -133.7277

yearc -0.0861 0.0351 -0.1549 -0.0174

yearc2 0.0015 0.0007 0.0002 0.0028

yearc3 0.0000 0.0000 0.0000 0.0000

nkitchen 0.9274 0.1258 0.6770 1.1840

pkitchen 1.1022 0.1873 -0.7410 1.4718

Table: Munich rent index: estimation results based on the noninformative
prior (5) for the parameters. Results are based on the data collected in 1999
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Munich Rent Index—Quality of Kitchen

Turning our attention to the new data collected in 2001 for the rent
index update, it seems natural to use the posterior values obtained
with the data from 1999 as prior information for the new analysis.

That is we estimate a Bayesian linear model using the data
collected in 2001 together with a NIG(m,M, a, b) prior with
parameters derived from the posterior obtained with the 1999 data.

Clearly, m should be the empirical mean vector of the sampled
regression coefficients in the MCMC sampler for the 1999 data.

Since the prior covariance matrix is given by σ2M , we set
M = 1/σ̂2S, where S is the empirical covariance matrix of the
MCMC samples for the 1999 data and σ̂2 is the empirical mean of
the samples for σ2.
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Munich Rent Index—Quality of Kitchen

To obtain prior values for a and b, we note that the mean and
variance of the IG(a, b) prior for σ2 are given by

E(σ2) = b
a − 1 ,

Var(σ2) = b2

(a − 1)2(a − 2)
= E(σ2)2 1

a − 2 .

Solving for a and b yields

a =
E(σ2) + 2Var(σ2)

Var(σ2)
,

b = (a − 1)E(σ2).

Based on the analysis for the 1999 data, we can now replace E(σ2)
and Var(σ2) by their posterior estimates σ̂2 and s2

σ̂2 to obtain prior
values for a and b.
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Munich Rent Index—Quality of Kitchen

Using these values for the NIG(m,M, a, b) prior, we arrive at the
results given in Table 2.

The table is obtained from the function bayesLMConjugate in the
R package spBayes. For comparison, we additionally included the
least squares estimates for the 2001 data.

In particular for the kitchen dummies, the least squares estimates
for the 2001 data differ considerably from those for the 1999 data
(see Table 1).

The Bayes estimator is a compromise between the least squares
results for the 1999 and the 2001 data.
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Munich Rent Index—Quality of Kitchen

Although the new data based on 2001 have an impact on the
estimates for nkitchen and pkitchen, the Bayes estimator is closer to
the least squares estimate for the 1999 data.

This is a clear result of the prior which pulls the posterior mean to a
certain extent towards the prior mean, which is identical to the 1999
least squares estimate.

We also observe that the posterior standard deviations of the
regression coefficients are considerably lower than the least
squares standard errors. This is again a result of the use of
additional prior information.
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Munich Rent Index—Quality of Kitchen

Variable LS 2001 Bayes 2001

Coeff. Std. Coeff. Std.

invarea 125.8373 7.2360 124.3540 3.3618

yearc -0.0335 0.0480 -0.0631 0.0208

yearc2 0.0004 0.0009 0.0010 0.0004

yearc3 0.0000 0.0000 0.0000 0.0000

nkitchen 1.2944 0.1701 1.0327 0.0795

pkitchen 1.7935 0.2714 1.2910 0.1193

Table: Munich rent index: comparison of the Bayes estimate with informative
prior and the least squares estimate for the data collected in 2001
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Regularization Priors

A number of “regularization priors” have been proposed in the
literature.

Here, we will develop some of the most widely used Bayesian
regularization priors.

Throughout, the observation model is a classical linear model given
by

y |β, σ2 ∼ NV (β01 + X̃ β̃, σ2I),

where X̃ is the n × k -design matrix excluding the column of ones for
the intercept and β̃ is the corresponding vector of regression
coefficients excluding β0.
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Regularization Priors

Since the intercept is not subject to regularization, we assume a
noninformative (diffuse) prior, i.e.,

p(β0) ∝ const.

We also assume that the intercept β0 is independent of the other
regression coefficients β̃.

For the variance parameter σ2, we specify the usual inverse gamma
prior with hyperparameters a and b, i.e., σ2 ∼ IG(a, b).
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Bayesian Ridge Regression

Ridge regression minimizes the penalized least squares criterion

PLS(β) = (y − Xβ)′(y − Xβ) + λβ̃
′
β̃. (12)

Usually the intercept is not penalized so that here the penalty is
restricted to β̃ = (β1, . . . , βk)

′.

The penalty shrinks the parameters towards zero in order to reduce
the variance of the least squares estimator at the cost of a
(hopefully small) bias.

The amount of penalization is governed by the parameter λ. Small
values for λ correspond to negligible penalization, whereas large
values lead to strong penalization.
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Bayesian Ridge Regression

Using a particular prior for the regression coefficients, we obtain a
Bayesian version of ridge regression.

We assume a priori independent regression coefficients βj ,
j = 1, . . . , k , and set

β̃ | τ 2 ∼ N(0, τ 2I). (13)

Since the prior for the intercept is improper, the joint prior for
β = (β0, β̃)

′ is also improper.

Maximizing the corresponding posterior with respect to β is
equivalent to minimizing the penalized least squares criterion (12)
for fixed λ = σ2/τ 2.
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Bayesian Ridge Regression

While in the frequentist approach to ridge regression, the penalty
parameter λ is estimated outside of the optimization criterion, e.g.,
via cross validation, the Bayesian approach allows for simultaneous
inference for the regression coefficients and the amount of
penalization measured through τ 2.

This is facilitated by defining an additional prior for τ 2. A convenient
and flexible choice is another inverse gamma distribution
τ 2 ∼ IG(aτ 2 , bτ 2), similar to the conjugate prior for σ2 outlined
above.

The advantage of this specification is that the full conditional for τ 2

is again an inverse gamma distribution allowing for straightforward
simulation-based MCMC inference.
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Bayesian Ridge Regression

Introducing an additional prior for τ 2, however, changes the
interpretation of the prior.

This is illustrated in Fig. 4 (left panel) which displays the log-prior
density, for a single parameter βj , conditional on τ 2 and the
marginal log-prior with the variance parameter τ 2 integrated out.

The marginal log-prior is quite different to the Gaussian conditional
log-prior. It shows a distinct peak at zero with sharp declines.
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Bayesian Ridge Regression
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Figure: Conditional (solid lines) and marginal (dashed lines) log-priors for the
ridge (left panel) and the LASSO prior (right panel). In case of the ridge prior,
the plots are based on a = 0.28 and b = 0.005 for the inverse gamma prior. In
case of the LASSO, the plots correspond to a = 0.08 and b = 0.001. With
these choices, roughly 90% of the probability mass are contained in the interval
[−4, 4]. The hyperparameters are chosen such that the differences between
conditional and marginal distributions and between ridge and LASSO are best
visible
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Bayesian Lasso

The LASSO replaces the quadratic penalty of ridge regression by
the sum of absolute values leading to the penalized least squares
criterion

PLS(β) = (y − Xβ)′(y − Xβ) + λ

k∑
j=1

|βj|. (14)

Similar to ridge regression, we define a prior for the regression
coefficients such that the corresponding posterior mode is obtained
by minimizing (14).

We again assume (conditional) independence among the
regression coefficients and arrive at the prior

β̃ | τ 2
1 , . . . , τ

2
k ∼ NV (0, diag(τ 2

1 , . . . , τ
2
k )), (15)

where now each regression coefficient βj has its own variance τ 2
j .

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 6 – Bayesian Linear Model – 35 / 86



Bayesian Lasso

The variance parameters are assumed mutually independent with
priors

τ 2
j | ∼ Expo(0.5λ2);

The marginal distribution for βj , obtained by integrating over τ 2
j , is a

Laplace distribution with location parameter 0 and scale parameter
1/λ, i.e., p(βj) ∝ exp(−λ|βj |).
Based on this prior specification, it can be shown that the posterior
mode for β with fixed penalty parameter λ corresponds to
minimizing the penalized least squares criterion (14).
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Bayesian Lasso

Similar to Bayesian ridge regression, we can assign a hyperprior for
λ that allows for simultaneous estimation of the regression
coefficients and the amount of penalization.

Since the precision of the regression coefficients is given by
Var(βj)

−1 = 2λ2, we assign a gamma distribution to λ2, i.e.,
λ2 ∼ GV (aλ, bλ).

Summarizing, the joint prior for β, τ 2
j , j = 0, . . . , k , and λ factors as

p(β, τ 2
1 , . . . , τ

2
k , λ) = p(β0) p(β̃ | τ 2

1 , . . . , τ
2
k ) p(τ 2

1 |λ)·. . .·p(τ 2
k |λ) p(λ2).
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Bayesian Lasso

We finally compare the LASSO prior with the ridge prior.

The right panel of Fig. 4 shows the log-prior log p(βj |λ), for a
single parameter βj , conditional on the parameter λ and with the
marginal log-prior with λ integrated out.

As stated, the conditional prior is a Laplace distribution and
therefore quite different from the Gaussian conditional log-prior in
the case of ridge regression (see the left panel of the figure).

Somewhat surprisingly, the marginal log-priors appear to be similar,
although the LASSO prior still has heavier tails than the ridge prior.

This is the reason why the Bayesian variants of ridge regression and
the LASSO behave often very similar in empirical studies;
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Posterior inference regularization priors

1 Initialization:
Define initial values β(0), (σ2)(0) and (τ 2)(0) (ridge), (τ 2

1 )
(0),

. . . , (τ 2
k )

(0), λ(0) (LASSO).

Set t = 1 and specify the number of iterations T .

2 Sample β: Draw β(t) | · ∼ N(µβ,Σβ) with µβ and ˚β given by

Σβ =

(
1

(σ2)(t−1)
X′X + K

)−1

µβ =
1

(σ2)(t−1)
ΣβX′y .

Here K = 1/τ 2diag(0, 1, . . . , 1) in case of ridge regression and
K = (0, 1/τ 2

1 , . . . , 1/τ 2
k ) in case of LASSO.
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Posterior inference regularization priors

3 Sample σ2: Sample (σ2)(t) from the full conditional of σ2 which is
inverse gamma with parameters

anew = a +
n
2
, bnew = b +

1
2
(y − Xβ(t))′(y − Xβ(t)).

4 Sample variance parameters:
For the ridge prior draw (τ 2)(t) | · from an inverse gamma distribution
with parameters

anew = a +
k
2
, bnew = b +

1
2
(̃β(t))′β̃

(t)
.

For the LASSO prior, sample

(1/τ 2
j )

(t) | · ∼ InvGauss( |λ
(t−1)|
|β(t)

j |
, (λ(t−1))2),

(λ2)(t) | · ∼ G

(
a + k , b + 1

2

k∑
j=1

(τ 2
j )

(t)

)
.

1 Stop if t = T , otherwise set t = t + 1 and proceed with step 2.
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Prices of Used Cars—Bayesian Ridge and LASSO

This example compares the Bayesian variants of ridge regression
and the LASSO with their classical counterparts.

Using the software package BayesX, we obtained the estimates
displayed in Table 3 together with their 95% credible intervals.

The Bayesian ridge estimates behave quite similar to classical ridge
regression. Both variants provide comparable results which are also
very close to the unpenalized least squares estimate for these data.

On the other hand, both LASSO variants show pronounced
differences.

Most striking is that the Bayesian LASSO does not allow removal of
a covariate from the model, as is possible with the classical LASSO.
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Prices of Used Cars—Bayesian Ridge and LASSO

The reason is that the Bayesian LASSO point estimator is the
posterior mean or median (rather than the posterior mode)
estimated via MCMC.

Since the posterior for the regression coefficients is typically
skewed, the posterior mean and median will not coincide with the
posterior mode, and, as a consequence, will always be different
from zero.

This is a distinct disadvantage of the Bayesian LASSO, as the main
attraction of the classical LASSO is lost: the ability to perform
variable selection.

On the other hand, the sampling-based approach provides richer
information regarding the posterior, such as posterior standard
deviations and quantiles.
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Prices of Used Cars—Bayesian Ridge and LASSO

Finally we note that the Bayesian LASSO appears to induce less
shrinkage than the classical LASSO.

In fact, Bayesian ridge regression and LASSO show quite similar
shrinkage behavior.

Indeed, Table 3 shows that both regularization variants, albeit
conceptually different, produce almost identical posterior estimates.

This is in agreement with our theoretical findings, see Fig. 4.
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Prices of Used Cars—Bayesian Ridge and LASSO
Variable Bayesian ridge Bayesian LASSO Ridge LASSO LS

Coeff. 95% CI Coeff. 95% CI Coeff. Coeff. Coeff.
ageop1 -0.682 (-0.802,-0.559) -0.694 (-0.813, -0.563) -0.672 -0.682 -0.709

ageop2 0.165 (0.052,0.280) 0.163 (0.052,0.270) 0.164 0.150 0.172

ageop3 0.014 (-0.089,0.128) 0.011 (-0.099,0.113) 0.015 - 0.016

kilometerop1 -0.428 (-0.541, -0.308) -0.424 (-0.545,-0.303) -0.425 -0.412 -0.437

kilometerop2 0.140 (0.028,0.252) 0.126 (0.012,0.244) 0.138 0.110 0.142

kilometerop3 0.013 (-0.103,0.125) 0.009 (-0.085,0.108) 0.010 - 0.009

TIA -0.005 (-0.021,0.011) -0.004 (-0.020,0.012) -0.005 - -0.005

extras1 -0.093 (-0.332,0.152) -0.075 (-0.306,0.124) -0.104 -0.036 -0.114

extras2 -0.030 (-0.257,0.211) -0.022 (-0.240, 0.200) -0.042 - -0.031

Table: Prices of used cars: posterior mean and 95% credible intervals for
Bayesian ridge regression and LASSO. For comparison the last three columns
contain results for classical ridge and LASSO regression, as well as the least
squares estimator
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Classical Bayesian Model Choice

Suppose we are given a number of potential covariates, and there is
uncertainty as to which of the covariates should enter the model.

For k possible regressors, there are 2k different models when the
intercept β0 is always included. Denote the different models by Mr ,
r = 1, . . . , 2k .

More specifically, Mr is given by

y |β, σ2,Mr = y |β0, β̃r , σ
2,Mr ∼ N(β01 + X̃ r β̃r , σ

2I),

where the n × kr -design matrix X̃ r consists of all kr covariates
included in Mr , and β̃r is the corresponding vector of regression
coefficients.

As usual, the vector β is the full vector of regression coefficients
(including the intercept). Those components of β not contained in
β̃r are zero in model Mr .
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Classical Bayesian Model Choice

We assign the normal-inverse gamma prior to β0, β̃r , and the error
variance σ2, such that

p(β0, β̃r , σ
2 |Mr ) = p(β0, β̃r |σ2,Mr ) p(σ2)

with β0, β̃r |σ2,Mr ∼ N(mr , σ
2M r ), and σ2 |Mr = σ2 ∼ IG(a, b).

For completeness, we combine the zero components of β in the
(k − kr )-dimensional vector β̃−r with a Dirac prior at (0, . . . , 0)′, i.e.

β̃−r |Mr ∼ Dirac(0, . . . , 0).

The Dirac prior concentrates all probability mass onto the point
(0, . . . , 0)′, i.e., P(β̃−r = (0, . . . , 0)′ |Mr ) = 1 and zero otherwise.

Thus the prior for β and σ2 under model Mr factors into

p(β, σ2 |Mr ) = p(β̃−r |β0, β̃r , σ
2,Mr ) p(β0, β̃r , σ

2 |Mr ).
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Classical Bayesian Model Choice

To compare models using their posterior probabilities, we
additionally have to assign prior probabilities to each model Mr .

A popular prior is
p(Mr ) = θkr (1 − θ)k−kr , (16)

i.e., every possible covariate enters the model independently and
with inclusion probability θ ∈ (0, 1).

The “natural” choice θ = 1/2 results in a uniform prior
p(Mr ) = 1/2k , i.e., each model Mr has the same prior probability.
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Classical Bayesian Model Choice

The prior (16) with inclusion probability θ implies a certain prior
distribution on the size of the models, denoted by S.

Let δj , j = 1, . . . , k , be inclusion indicators with δj = 1 if covariate xj

is included in the model and 0 otherwise.

Then δj has a Bernoulli distribution, i.e., δj ∼ B(1, θ), and the model
size S has a binomial distribution with

S =
k∑

j=1

δj ∼ B(k , θ),

resulting in a prior mean model size of E(S) = θ · k and variance
Var(S) = θ · (1 − θ) · k .
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Classical Bayesian Model Choice

In light of these results, the choice θ = 1/2 seems less natural than
suggested at first sight.

In particular for a large number k of possible predictors, the prior
expected model size appears to be much higher than one would
typically expect in applications.

For instance, for k = 50 potential covariates, the prior expected
model size of E(S) = 25 seems to be far too high for most
applications.

A convenient way to elicit the model prior (16) is to specify the prior
mean model size E(S) and then to set θ = E(S)/k .

For instance, if we have k = 20 potential regressors and assume a
priori a model size of E(S) = 5, then we must set θ = 5/20 = 1/4.
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Classical Bayesian Model Choice

Based on our prior assumptions, the posterior probability for model
Mr is given by

p(Mr | y) =
p(y |Mr ) p(Mr )

2k∑
h=1

p(y |Mh) p(Mh)

, (17)

where p(y |Mr ) is the marginal likelihood obtained as

p(y |Mr ) =

∫
p(y |β0, β̃r , σ

2,Mr ) p(β0, β̃r , σ
2 |Mr ) dβ0 dβ̃r dσ2.

It can be shown that p(y |Mr ) is multivariate t-distributed with 2a
degrees of freedom, location parameter X r mr , and dispersion
matrix I + X r M r X ′

r , where X r = (1 X̃ r ).
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Classical Bayesian Model Choice

The Bayes factor for two competing models Mr and Ms is then
obtained as

BFrs =
p(y |Mr )

p(y |Ms)
.

With M̃ r = (X ′
r X r + M−1

r )−1, we have

BFrs =

(
|M̃ r ||Ms|
|M̃s||M r |

)1/2 ( 2a + (y − Xsms)
′(I − XsM̃sX ′

s)(y − Xsms)

2a + (y − X r mr )′(I − X r M̃ r X ′
r )(y − X r mr )

)a+n/2

. (18)
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Classical Bayesian Model Choice

Once the posterior probabilities p(Mr | y) are computed for every
model Mr under consideration, there are several ways to summarize
the results.

If the primary focus is on selecting one single (preferably sparse)
model, often the model M∗ with highest posterior probability is taken
and inference for the regression coefficients is based on the
posterior p(β∗, σ

2 | y ,M∗) conditional on model M∗.

If model selection is done by minimizing the BIC, we exactly follow
this strategy.

However, Barbieri and Berger (2004) point out that often the model
M∗ with highest posterior probability is not optimal in terms of
prediction.

They show that the optimal predictive model is often the median
probability model. This model consists of those covariates with
posterior probability of 1/2 and higher for being in the model.
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Classical Bayesian Model Choice

Both approaches, however, ignore model uncertainty. In many
applications, there are a number of models which are close in terms
of posterior probabilities.

If this is the case, inference for β (or any other quantity of interest) is
better conducted by model averaging where the models are
weighted by their posterior probability.

More specifically, the posterior is given by

p(β, σ2 | y) =
2k∑

r=1

p(β, σ2 | y ,Mr ) p(Mr | y), (19)

where p(β, σ2 | y ,Mr ) is the conditional posterior under model Mr

and p(Mr | y) is the corresponding posterior model probability given
in Eq. (17).
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Classical Bayesian Model Choice

While models with high posterior probability make important
contributions to the posterior, those with negligible posterior
probability will contribute only very little information.

If most models coincide in their posterior assessment of specific
subvectors of β, this assessment will also carry over to the
model-averaged estimate.

While the computation of the posteriors p(β, σ2 | y ,Mr ) and
p(Mr | y) required to obtain Eq. (19) is straightforward for a
particular model Mr , it may be prohibitive for all models.
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Classical Bayesian Model Choice

The problem is that the number of possible models grows
exponentially with k .

For k ≤ 25 regressors, enumeration of all models under
consideration is usually possible in the available software packages.
If k exceeds 25, more sophisticated algorithms are necessary.

The model space then can be explored via MCMC simulation
techniques. In doing so, we usually do not visit all models, but rather
those models with relatively high posterior probabilities. One such
Monte Carlo approach is the MC3 algorithm of Madigan and York
(1995), see the R package BMS.

Other R packages for Bayesian variable selection (partly based on
other methodology than described here) are BAS and BMA.
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Prices of Used Cars—Bayesian Model Averaging (1)

We illustrate the Bayesian approach for model choice using the data
on the price of used cars.

We assume possibly nonlinear effects for the variables age and
kilometer modeled through the orthogonal cubic polynomials
ageop1, ageop2, ageop3 and kilop1, kilop2, kilop3.

Together with the regressors TIA, extras1, and extras2, we have
k = 9 potential covariates.

We used the package BMS in R for the analysis; see Zeugner (2010)
for a tutorial.
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Prices of Used Cars—Bayesian Model Averaging (1)

We started with a uniform prior for the models, i.e. θ = 1/2 in
Eq. (16).

Table 4 provides a summary of the preliminary results. From left to
right, the columns correspond to the variable names, the posterior
inclusion probabilities (PIP), the posterior estimates for the
regression coefficients together with their standard deviations, the
probability of a positive sign for the respective coefficient, and (for
comparison) the least squares estimates.

The PIP is the ratio between the number of iterations with models
that include a particular covariate and the total number of MCMC
iterations.

Similarly, the probability of a positive sign reflects the ratio between
iterations with positive sign for a covariate and the total number of
iterations.
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Prices of Used Cars—Bayesian Model Averaging (1)
Variable PIP Mean Std.dev Cond. pos sign LS

ageop1 1.00 -0.7065 0.0621 0 -0.7085

ageop2 0.94 0.1823 0.0721 1 0.1716

ageop3 0.07 0.0009 0.0156 1 .0162

kilop1 1.00 -0.4345 0.0616 0 -.4366

kilop2 0.61 0.0872 0.0827 1 0.1417

kilop3 0.07 0.0011 0.0160 1 0.0090

TIA 0.08 -0.0003 0.0025 0 -0.0051

extras1 0.11 -0.0127 0.0565 0 -0.1135

extras2 0.07 -0.0029 0.0374 0 -0.0315

Table: Prices of used cars: posterior inclusion probabilities (PIP), model
averaged estimated coefficients and standard deviations, probabilities of
positive sign, and (for comparison) the ordinary least squares estimates. The
results are based on a uniform prior for the models (θ = 0.5).
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Prices of Used Cars—Bayesian Model Averaging (1)

For the covariates ageop1, ageop2, kilop1, and kilop2 with high
inclusion probabilities (> 0.5), the Bayesian estimator averaged
over the models is quite close to the ordinary least squares
estimator.

For the remaining covariates, the inclusion probabilities are very low,
and the model averaged estimates are shrunken to zero compared
to least squares.

As can be seen from Table 5, the covariates with high inclusion
probability also define the two models with by far the highest
posterior probabilities.

The top model, with posterior model probability of 0.37, consists
exactly of the four covariates with inclusion probabilities greater than
0.5.
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Prices of Used Cars—Bayesian Model Averaging (1)

In this case, the median probability model, that consists of those
covariates with posterior probability of 1/2 and higher for being in the
model, coincides with the model with largest posterior probability.

The second model, with posterior probability 0.25, additionally
excludes the variable kilop2.

All other models have comparably low posterior probabilities.
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Prices of Used Cars—Bayesian Model Averaging (1)

We conclude the example by an investigation of the sensitivity of
results on prior assumptions, particularly on the prior expected
model size E(S).

The upper panel of Fig. 5 compares the PIP for the three models
with θ = 1/2, θ = 2/9, and θ = 8/9 corresponding to expected
model sizes E(S) = 4.5, E(S) = 2, and E(S) = 8, respectively.

The results are quite sensitive to the choice of θ and E(S). Except
for ageop1, ageop2, and kilop1, the PIP differ considerably, e.g., for
kilop2 from 0.33 (E(S) = 2), then 0.61 (E(S) = 4.5), to 0.92
(E(S) = 8).

We will explain the reasons of this undesirable behavior below.
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Prices of Used Cars—Bayesian Model Averaging (1)
Variable T1 T2 T3 T4 T5

ageop1 + + + + +

ageop2 + + + + +

ageop3 - - - - -

kilop1 + + + + +

kilop2 + - + + +

kilop3 - - - - -

TIA - - - + -

extras1 - - + - -

extras2 - - - - +

PMP 0.375 0.250 0.040 0.032 0.030

Table: Prices of used cars: top five models T1-T5 with highest posterior
probabilities. The results are based on a uniform prior for the models (θ = 0.5).
A plus (minus) sign indicates that the variable is included in (excluded from) the
model. The last row displays the posterior model probabilities (PMP)

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 6 – Bayesian Linear Model – 62 / 86



Prices of Used Cars—Bayesian Model Averaging (1)
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Figure: Prices of used cars: comparison of posterior inclusion probabilities with
θ = 1/2 (Model 1, corresponding to expected model size E(S) = 4.5), θ = 2/9
(Model 2, E(S) = 2) and θ = 8/9 (Model 3, E(S) = 8). The upper panel
corresponds to fixed θ. The lower panel corresponds to a beta hyperprior for θ
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Classical Bayesian Model Choice

The example shows that the results can be strongly affected by the
prior choice for θ and the corresponding prior on the model size.

Indeed, if θ is chosen as θ = E(S)/k , then the induced prior for the
model size S places relatively small probability mass on model sizes
that are moderately far away from the mean E(S).

This is illustrated with the following figures which show, both with
k = 10 regressors (left column) and with k = 40 regressors (right
column), some priors for the model size based on different choices
for θ (dashed lines).

In particular, with an asymmetric prior for expected model size E(S)
and for k = 40, a broad range of possible model sizes has virtually
no prior probability mass.

As a result, estimates are often quite sensitive to the choice of the
prior for expected model size.
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Classical Bayesian Model Choice
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Classical Bayesian Model Choice
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Classical Bayesian Model Choice
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Classical Bayesian Model Choice

To reduce the dependence of results on the prior choice, a remedy
is to introduce a hyperprior in a further stage of the hierarchy.

In our case, a flexible and convenient choice for θ is to assume a
beta distribution with hyperparameters a and b, i.e. θ ∼ Beta(a, b).

Since S | θ ∼ B(k , θ), the marginal distribution for S is
beta-binomial, i.e. S ∼ BetaB(k , a, b) with prior model size
distribution

P(S = s) =
Γ(a + b)

Γ(a)Γ(b)Γ(a + b + k)

(
k
s

)
Γ(a + s)Γ(b + k − s),

and mean and variance given by

E(S) = a
a+b k ,

Var(S) = ab(a+b+k)
(a+b)2(a+b+1)k .

(20)
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Classical Bayesian Model Choice

To ease initiation of the prior, we fix a = 1, which still allows for very
flexible priors. To choose b, we rearrange E(S) in Eq. (20) to obtain
b = (k − E(S))/E(S). Hence, similar to fixed θ, we can choose the
prior expected model size to fully specify the prior.

As can be seen from the figures above, the (marginal) prior for
model size S shows much more variability compared to fixed θ so
that all possible model sizes have positive probability mass.
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Prices of Used Cars—Bayesian Model Averaging (2)

We rerun the three regressions of our example, again with prior
expected model size E(S) = 2, 4.5, 8, but now with a beta
hyperprior for θ.

The bottom panel of Fig. 5 compares the PIP for the nine possible
covariates.

The probabilities are now quite close to each other. An exception
are the PIP for kilop2, where there is some inclusion uncertainty.

For two of the three model priors (with E(S) = 4.5 and E(S) = 8)
the best model with highest posterior probability consists of the
covariates ageop1, ageop2, kilop1, and kilop2.

The model that excludes kilop2 is the second best model. It is also
the best model for prior expected model size E(S) = 2.

All other models have very low posterior probabilities.
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Prices of Used Cars—Bayesian Model Averaging (2)

In summary, we are quite certain that only two covariates, the age of
the car and the kilometer reading, are relevant predictors for the
price.

A second-order polynomial is sufficient to model the nonlinear
effects of the two covariates.

There is some uncertainty whether a linear effect for kilometer
reading is sufficient. Note also that the quadratic effect of kilometer
reading is already close to linearity.
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Bayesian Inference

Chapter 7

Appendix: Some
distributions
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Gamma distribution

A continuous nonnegative random variable X is said to have a gamma
distribution with parameters a > 0 and b > 0 if it has pdf

f (x) =
ba

Γ(a)
xa−1 exp (−bx) , x > 0.

The mean and variance are given by

E(X) = a/b,

Var(X) = a/b2.

The mode is (a − 1)/b (for a > 1). We write X ∼ G(a, b).
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Gamma distribution

An alternative parametrization of the pdf, depending on µ = E(X) and
scale parameter ν > 0 is

f (x) =
1

Γ(ν)

(
ν

µ

)ν

xν−1 exp

(
−ν

µ
x

)
, x > 0.

This alternative pdf is used, for example, for gamma regression models.
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Inverse Gamma distribution

If Y ∼ G(a, b), then X = 1/Y has an inverse gamma distribution with
pdf

f (x) =
ba

Γ(a)
x−(a+1) exp (−b/x) , x > 0.

The mean and variance are given by

E(X) = b/(a − 1), a > 1,

Var(X) = b2/((a − 1)2(a − 2)), a > 2.

We write X ∼ IG(a, b).

© 2022 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Introduction to Bayesian Inference – 7 – Appendix: Some distributions – 3 / 5



Normal-Inverse Gamma Distribution

Let Y be a p × 1 dimensional random vector and S be a random variable.
The random vector X = (Y ,S)′ is said to have a normal-inverse gamma
distribution with parameters µ, Σ, a and b if

Y |S ∼ N(µ,SΣ),

S ∼ IG(a, b).

We write X = (Y ,S)′ ∼ NIG(µ,Σ, a, b). The density of the distribution
is given by

f (y , s) =
1

(2π)
p
2 |sΣ|

1
2

exp

(
− 1

2s
(y − µ)′Σ−1(y − µ)

)
× ba

Γ(a)
1

sa+1 exp

(
−b

s

)
.
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Normal-Inverse Gamma Distribution

The NIG(µ,Σ, a, b)-distribution has the following properties:
1 E(Y ) = µ.

2 Cov(Y ) = b/(a − 1)Σ.

3 E(S) = b/(a − 1) provided that a > 1.

4 Var(S) = b2/[(a − 1)2(a − 2)] provided that a > 2.

5 Y ∼ t(2a,µ, b/aΣ).
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Multivariate t-Distribution

A continuous p-dimensional random vector X = (X1, . . . ,Xp)
′ is

said to have a multivariate t-distribution with ν degrees of freedom,
location parameter µ and (positive definite) dispersion matrix Σ, if it
has pdf

f (x) = |Σ|−
1
2 (νπ)−

p
2
Γ((ν + p)/2)

Γ(ν/2)

(
1 +

(x − µ)′Σ−1(x − µ)

ν

)−(ν+p)/2

.

We write X ∼ t(ν,µ,Σ).

The expectation is µ (provided that ν > 1) and the covariance
matrix is ν/(ν − 2)Σ (provided that ν > 2).
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Multivariate t-Distribution

Note that a diagonal dispersion matrix Σ corresponds to
uncorrelated components of the random vector X . In contrast to the
multivariate normal distribution the components are, however, not
stochastically independent.

Any subvector of X has a (multivariate) t-distribution with ν degrees
of freedom and the corresponding subvector of µ and the submatrix
of ˚ as location parameter and dispersion matrix, respectively.
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Beta Distribution

A continuous random variable X is said to have a beta distribution
with parameters a > 0 and b > 0 if it has probability function

f (x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1 − x)b−1, x ∈ (0, 1),

where Γ(·) is the gamma function.

The mean and the variance are given by

E(X) =
a

a + b
,

Var(X) =
ab

(a + b)2(a + b + 1)
.

We write X ∼ Beta(a, b).

For a = b = 1, we obtain a uniform distribution on the interval
(0, 1).
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Beta-Binomial Distribution

A discrete random variable X is said to have a beta-binomial
distribution with parameters n ∈ {1, 2, . . . }, a > 0, b > 0 if it has
probability function

f (x) =
Γ(a + b)

Γ(a)Γ(b)Γ(a + b + n)

(
n
x

)
Γ(a+x)Γ(a+n−x) x = 0, 1, 2, . . . , n.

The mean and the variance are given by

E(X) = n
a

a + b
,

Var(X) = n
ab

(a + b)2

a + b + n
a + b + 1

.

We write X ∼ BetaB(n, a, b).
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Beta-Binomial Distribution

For a = b = 1, the beta-binomial distribution corresponds to a
discrete uniform distribution on 0, 1, . . . , n, i.e. f (x) = 1/(n + 1).

The beta-binomial distribution arises as a mixture distribution.
Suppose X |π ∼ B(n, π) and π ∼ Beta(a, b), then
X ∼ BetaB(n, a, b).
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Bayesian Inference

Chapter 8
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