
Statistical Inference

Chapter 1

Stochastic vectors and
matrices
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Random vectors

The vector X = (X1, . . . ,Xp)′ is called a random vector or
p-dimensional random variable, if the components X1, . . . ,Xp are
one dimensional random variables.
The vector X is called continuous if there is a function
f (x) = f (x1, . . . , xp) ≥ 0 such that

P(a1 ≤ X1 ≤ b1, . . . , ap ≤ Xp ≤ bp) =

∫ bp

ap

. . .

∫ b1

a1

f (x1, . . . , xp) dx1 . . . dxp.

The function f is called (joint) probability density function (p.d.f.) of
X .
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Random vectors

The random vector X is called discrete, if X has only values in a
finite or countable set {x1, x2, . . .} ⊂ IR

p. The function f with

f (x) =

{
P(X = x) x ∈ {x1, x2, . . .}
0 else

is called probability function or discrete p.d.f. of X .
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Random vectors

Continuous random vector

Consider the 2-dimensional continuous random vector x = (x1, x2)′ with
pdf

f (x1, x2) =


0.8(x1 + x2 + x1x2) 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 else.
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Random vectors

Discrete random vector

Consider the two dimensional random vector (X ,Y )′ with

X = proseminar grade Y = final exam grade

We have the following distribution:

Y/X 1 2 3 4

1 50
1007

40
1007

12
1007

6
1007

2 55
1007

97
1007

54
1007

10
1007

3 28
1007

100
1007

68
1007

33
1007

4 13
1007

79
1007

75
1007

36
1007

5 9
1007

44
1007

119
1007

79
1007
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Marginal and conditional distribution

Let the p-dimensional random vector X = (X1, . . . ,Xp)′ be
partitioned into the p1-dimensional vector X1 and the p2-dimensional
Vector X2, i.e. X = (X ′1,X

′
2)′.

The p1-dimensional p.d.f. or probability function fX1(x1) of X1 is then
called marginal p.d.f. or marginal probability function of X . It is given
by

fX1(x1) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f (x1, x2) dxp1+1 . . . dxp

for continuous random vectors, and

fX1(x1) =
∑

x2
f (x1, x2)

for discrete random vectors.
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Marginal and conditional distribution

The conditional p.d.f. or probability function of X1 given X2 = x2 is
defined as

f (x1|x2) =


f (x1, x2)

fX2(x2)
for fX2(x2) > 0

0 else.

The marginal and conditional p.d.f.’s or probability functions for X2

are defined in complete analogy.
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Marginal and conditional distribution

Continuous random vector

Consider the 2-dimensional continuous random vector x = (x1, x2)′ with
pdf

f (x1, x2) =


0.8(x1 + x2 + x1x2) 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

0 else.
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Marginal and conditional distribution

Discrete random vector

Y/X 1 2 3 4

1 50
1007

40
1007

12
1007

6
1007

2 55
1007

97
1007

54
1007

10
1007

3 28
1007

100
1007

68
1007

33
1007

4 13
1007

79
1007

75
1007

36
1007

5 9
1007

44
1007

119
1007

79
1007
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Expectation or mean vector

Let X = (X1, . . . ,Xp)′ be a p-dimensional random vector. Then

E(X) = µ = (µ1, . . . , µp)′ = (E(X1), . . . ,E(Xp))′

is called mean vector of X .

Example
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Covariance and correlation matrix

The covariance matrix Cov(X) = Σ of a p-dimensional random vector X
is defined as

Cov(X) = Σ = E(X − µ)(X − µ)′ =


σ11 . . . σ1p
...

...

σp1 . . . σpp

 ,

where σij = Cov(Xi ,Xj), i 6= j , is the covariance between Xi and Xj , and
σii = σ2

i = Var(Xi) is the variance of Xi .
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Covariance and correlation matrix

The correlation matrix R of X is defined as

R =


1 ρ12 . . . ρ1p
...

...

ρp1 ρp2 . . . 1

 ,

where

ρij =
Cov(Xi ,Xj)√

Var(Xi) · Var(Xj)
.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 1 – Stochastic vectors and matrices – 11 / 19



Covariance and correlation matrix

Example
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Properties of expectations and covariance matrices

Let X and Y be random vectors and A,B, a, b matrices and vectors.
1 E(X + Y ) = E(X) + E(Y )

2 E(AX + b) = A · E(X) + b

3 Cov(X) = E(XX ′)− µµ′

4 Var(a′X) = a′Cov(X)a =
k∑

i=1

k∑
j=1

aiajσij

5 The covariance matrix is symmetric and positive semi definite.

6 Cov(AX + b) = ACov(X)A′
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Multivariate Normal Distribution

A continuous p-dimensional random vector X = (X1,X2, . . . ,Xp)′ is
said to have a multivariate normal (or Gaussian) distribution if it has
p.d.f.

f (x) = (2π)−
p
2 |Σ|−

1
2 exp

[
−1

2 (x − µ)′Σ−1(x − µ)
]

with µ ∈ IR
p and positive definite (p × p)-matrix Σ.

It can be shown that E(X) = µ and Cov(X) = Σ.

We write
X ∼ Np(µ,Σ),

The special case µ = 0 and Σ = I is called the (multivariate)
standard normal distribution.
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Multivariate Normal Distribution

Example
X = (X1,X2,X3,X4)′ ∼ N(µ,Σ) with

µ = (1, 2, 3, 4)′ Σ =


3 1 0 1

1 4 2 0

0 2 5 2

1 0 2 4



© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 1 – Stochastic vectors and matrices – 15 / 19



Marginal and conditional distributions

Let the multivariate normal random variable X ∼ N(µ,Σ) be
partitioned into the subvectors Y = (X1, . . . ,Xr )

′ and
Z = (Xr+1, . . . ,Xp)′, i.e.

X =

(
Y

Z

)
, µ =

(
µY

µZ

)
, Σ =

(
ΣY ΣYZ

ΣZY ΣZ

)
.

Then Y has an r -dimensional normal distribution Y ∼ N(µY ,ΣY ).

The conditional distribution of Y given Z is again multivariate normal
with mean

µY |Z = µY + ΣYZ ·Σ−1
Z (Z − µZ )

and covariance matrix

ΣY |Z = ΣY −ΣYZΣ
−1
Z ΣZY .
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Marginal and conditional distributions

Furthermore, Y and Z are independent if and only if Y and Z are
uncorrelated, i.e. if ΣYZ = ΣZY = 0.

The equivalence is generally not true for non-normal random
vectors: If Y and Z are independent they are also uncorrelated, but
in general ΣZY = 0 does not imply independence.
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Marginal and conditional distributions

Example
Y = (X1,X2)′, Z = (Z1, Z2)′
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Linear transformations

Assume X ∼ Np(µ,Σ) is multivariate normal. Then the linear
transformation

Y = DX + d

with the m × p matrix D and the m × 1 vector d is again multivariate
normal

Y ∼ Nm(Dµ+ d ,DΣD′).
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Statistical Inference

Chapter 2

Classical Inference
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Classical Inference

Situation
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Situation

We consider a random variable X (discrete or continuous), whose
distribution Pθ depends on an unknown parameter θ. Two main goals:

Estimate the unknown parameter θ using statistical inference.

Assess the uncertainty of the estimate.
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Bernoulli Distribution / Binomial Distribution

Let X be binary with possible values 0 or 1 and probability function

f (1) = P(X = 1) = π,

f (0) = P(X = 0) = 1− π

or more compactly

f (x) =

{
πx (1− π)1−x x ∈ {0, 1}
0 else.

Here θ = π = P(X=1) = E(X ).
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Connection to the Binomial distribution

Let X1,X2,. . . ,Xn be i.i.d. Bernoulli-distributed random variables with
P(Xi=1) = π, P(Xi=0) = 1-π;
Then

X = X1 + · · ·+ Xn

= ’frequency with which an event E occurs’

∼ B(n, π)

The probability function is given by

f (x) = P(X = x) =

{(n
x

)
πx (1− π)n−x x = 0, 1, . . . , n

0 else.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 2 – Classical Inference – 4 / 108



Some properties of the Binomial distribution

a) Probability generating function
Gx (t) = E(tx ) = (1− π + tπ)n

b) Expected Value and Variance
E(X) = nπ
Var(X) = nπ(1− π)

c) Sum
Let X ,Y be independent with X ∼ B(n,π) and Y ∼ B(m,π). Then

Gx+y (t) = Gx (t)Gy (t) = (1− π + tπ)n+m

This is the probability generating function of the B(n+m, π)
distribution,

i.e. x+y ∼ B(n+m, π).
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Proof a)

GX (t) = E(tX ) =
n∑

x=0

tx
(

n
x

)
πx (1− π)n−x

=
n∑

x=0

(
n
x

)
(tπ)x (1− π)n−x

= (1− π + tπ)n

Use here

(z + y)n =
n∑

x=0

(
n
x

)
yxzn−x
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Proof b)

GX (t) = (1− π + tπ)n

G′x (t) = nπ(1− π + tπ)n−1

G′′x (t) = nπ2(n − 1)(1− π + tπ)n−2

E(X) = G′x (1) = nπ(1− π + π)n−1 = nπ

Var(X) = G′′x (1) + G′x (1)− (G′x (1))2

= nπ2(n − 1) + nπ − n2π2

= nπ(π(n − 1) + 1− nπ)

= nπ(1− π)
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Proof c)

Let X ,Y be independent with X ∼ B(n, π) and Y ∼ B(m, π).

Then
GX+Y (t) = GX (t)GY (t) = (1− π + tπ)n+m.

This is the probability generating function of the B(n + m, π)
distribution, i.e. X + Y ∼ B(n + m, π).
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Poisson distribution

Consider the Poisson distributed random variable X with probability
function

Pλ(X = x) = fλ(x) =

{
λx

x! exp(−λ) x = 0, 1, 2, . . .

0 else

We have E(X ) = λ, Var(X ) = λ (see exercise). The goal is to estimate λ,
i.e. θ = λ.
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Requirement for X being Poisson distributed

Two events can not happen at the same time.

The probability that an event happens within a small time interval of
length ∆t is approximately λ∆t .

The probability that a certain number of events happen within a time
interval depends on the length of the interval but not on the specific
location at the time axis.

The number of events in two disjunct time intervals are independent.
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Examples

Some examples for Poisson distributions:

Radioactive decay
The duration for an atom nucleus to decay is Exponentially
distributed. The radioactive half life is the period after that half of
the atom nuclei are decayed on average. The number of decays per
time unit is Poisson distributed.

Rice grains
Suppose we distribute a number N of rice grains randomly to a
number of squares. Then the number of rice grains at the squares is
(approximately) Poisson distributed with λ= N

n .
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Normal distribution

Let X ∼ N(µ,σ2) with parameter µ and σ2.

If σ2 is known then
θ = µ,

otherwise we have

θ =

(
µ

σ2

)
.
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Arbitrary distribution

Let X be an arbitrary distribution with existing mean E(X ) = µ and
variance Var(X ) = σ2.

The goal is to estimate µ (and possibly σ2), i.e. θ=
( µ
σ2

)
.
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Special case: population

Suppose we are given a population of size N with elements
y1,y2,. . . , yN . Aim is to estimate the population mean and variance

µ =
1
N

N∑
i=1

yi ,

σ2 =
1
N

N∑
i=1

(yi − ȳ)2.

Then X = ’randomly sampled element of the population’ is a random
variable with

E(X) =
1
N

(y1 + · · ·+ yN) = ȳ = µ

and

Var(X) =
1
N

N∑
i=1

(yi − ȳ)2 = σ2.
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Random sample

In order to estimate the unknown parameter θ, we draw an i.i.d.
(independent and identically distributed) random sample X1,X2,. . . ,Xn,
i.e. the Xi , i=1,. . . , n, are independent and identically distributed as X .

To estimate θ, we use a so-called statistic

θ̂ = T (X1, . . . ,XN),

which is an appropriate function of the sample.
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Example

Bernoulli distribution

π̂ = ’relative frequency of ones’

=
1
n

(X1 + · · ·+ Xn)

= X̄ ,

i.e.

T (X1, . . . ,Xn) = X̄ .
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Example

Poisson distribution

λ̂ = X̄

or (because λ=Var(X ))

λ̂ = S̃2 =
1
n

n∑
i=1

(Xi − X̄)2

or

λ̂ = S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2
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Example

Normal distribution

µ̂ = X̄

σ̂2 = S̃2 or σ̂2 = S2

Arbitrary distribution

µ̂ = X̄

σ̂2 = S̃2 or σ̂2 = S2
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Example

Gambler’s ruin

Gambler plays a series of games against the casino,

Bet 1e,

Probability of winning the game p = 0.52,

Gambler’s stake 5e, casino’s stake 50e.

Goal is to find the probability π of ruin!
Here we estimate the probability via simulation.
Simulate n game series and define

Xi =

{
1 gambler is ruined in i-th series

0 gambler is not ruined.
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Example

Gambler’s ruin (continued)

We have

Xi ∼ B(1, π), P(Xi = 1) = π, P(Xi = 0) = 1− π.

Estimate π through

π̂ =
1
n

(X1 + · · ·+ Xn) = X̄ .

Question: How large should we choose n for the estimate to be precise
enough?
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Classical Inference

Methods of evaluating estimators
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Biased and unbiased estimators

Consider the expected value E(θ̂) of the estimator θ̂ for θ. The estimator
θ̂ is unbiased for θ if

E(θ̂) = θ

for all possible parameters θ. Otherwise the estimator is biased with

Bias(θ̂) = E(θ̂)− θ.
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Frequency interpretation

If we repeat the estimation method several times with realized estimates
θ̂1,θ̂2,. . . ,θ̂m then

1
m

(θ̂1 + · · ·+ θ̂m) ≈ θ.
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Frequency interpretation

Figure: Illustration of an unbiased (left) and a biased (right) estimation method.
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Example

Arbitrary distribution

We have

E(X̄) = E

(
1
n

(X1 + · · ·+ Xn)

)
=

1
n

(E(X1) + · · ·+ E(Xn))

=
1
n

(µ+ · · ·+ µ)

=
1
n

nµ

= µ,

i.e. µ̂ = X̄ is unbiased for the expected value of a distribution.
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Example

Arbitrary distribution (continued)

For the variance we have

E(S2) = E

(
1

n − 1

n∑
i=1

(Xi − X̄)2

)
= σ2,

i.e. σ̂2 = S2 is unbiased for σ2 and σ̂2 = S̃2 is biased for σ2 as

E(S̃2) = E

(
1
n

n∑
i=1

(Xi − X̄)2

)

= E

(
n − 1

n(n − 1)

n∑
i=1

(Xi − X̄)2

)

= E

(
n − 1

n
S2
)

=
n − 1

n
σ2 6= σ2.
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Proof E(S2)

We have

n∑
i=1

(
Xi − µ

)2
=

n∑
i=1

((
Xi − X̄

)
+
(
X̄ − µ

))2

=
n∑

i=1

(
Xi − X̄

)2
+ 2

n∑
i=1

(
Xi − X̄

)(
X̄ − µ

)
+

n∑
i=1

(
X̄ − µ

)2

=
(
n − 1

)
S2 + n

(
X̄ − µ

)2
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Proof continued

Note

n∑
i=1

(
Xi − X̄

)(
X̄ − µ

)
=
(
X̄ − µ

) n∑
i=1

(
Xi − X̄

)
=
(
X̄ − µ

)( n∑
i=1

Xi −
n∑

i=1

X̄

)

=
(
X̄ − µ

)( n∑
i=1

Xi − nX̄

)

=
(
X̄ − µ

)( n∑
i=1

Xi −
n∑

i=1

Xi

)
= 0
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Proof continued

Applying expected values on both sides yields

E

( n∑
i=1

(
Xi − µ

)2
)

=
(
n − 1

)
E
(
S2)+ n E

(
X̄ − µ

)2︸ ︷︷ ︸
Var(X̄)

Because of

E

( n∑
i=1

(
Xi − µ

)2
)

=
n∑

i=1

E
(
Xi − µ

)2
= nσ2

we obtain

nσ2 = (n − 1)E(S2) + nVar(X̄) = (n − 1)E(S2) +
nσ2

n

and therefore
E(S2) = σ2.
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Remark

Note that S =
√

S2 is not an unbiased estimator for σ! Indeed we have

E(S) = E(
√

S2) <
√
σ2 = σ

because of Jensen’s inequality (
√
· · · concave).

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 2 – Classical Inference – 30 / 108



Comparison of unbiased estimators using the variance

Two (or more) unbiased estimators can be compared with the variance of
the estimators. An estimator θ̂1 is at least as powerful as another
estimator θ̂2 if

Var(θ̂1) ≤ Var(θ̂2)

for all possible values of θ.
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Frequency interpretation

Figure: Illustration of the variance of estimators.
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Example

Arbitrary distribution

The variance of µ̂=X̄ is given by

Var(X̄) = Var

(
1
n

n∑
i=1

Xi

)

=
1
n2

(
n∑

i=1

VarXi

)

=
1
n2 nσ2

=
σ2

n
=

Var(X)

n
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Example

Arbitrary distribution (continued)

In the Bernoulli case we have Var(X ) = π(1− π) and therefore

Var(π̂) = Var(X̄) =
Var(X)

n
=
π(1− π)

n
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Example

Arbitrary distribution (continued)

For Poisson distributed variables we obtain for λ̂1=X̄

Var(λ̂1) =
Var(X)

n
=
λ

n
.

For the competing estimator λ̂2=S2 one can show

Var(λ̂1) < Var(λ̂2).
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Mean squared error (MSE)

The mean squared error (MSE) can be used to compare competing (not
necessarily unbiased) estimators. It is defined as

MSEθ(θ̂) = E(θ̂ − θ)2

Justification for the MSE

a) We have the decomposition

MSE(θ̂) = Var(θ̂) + Bias2(θ̂)

b) For arbitrary ε > 0 we have

P
(∣∣θ̂ − θ∣∣ < ε

)
> 1− 1

ε2 E(θ̂ − θ)2 = 1− 1
ε2 MSE(θ̂),

i.e. the ’coverage probability’ becomes larger as MSE(θ̂) decreases!
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Proof a)

MSEθ(θ̂) = E(θ̂ − θ)2

= E
[
(θ̂ − E(θ̂)) + (E(θ̂)− θ)

]2
= E

(
θ̂ − E(θ̂)

)2
+ 2E

(
θ̂ − E(θ̂)

) (
E(θ̂)− θ

)︸ ︷︷ ︸
constant︸ ︷︷ ︸

0

+E
(
E(θ̂)− θ

)2

= Var(θ̂) + Bias2(θ̂)
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Proof b)

Define the random variable

V =

{
ε2

∣∣θ̂ − θ∣∣ ≥ ε
0 else.

Then

E(V ) = ε2 P(
∣∣θ̂ − θ∣∣ ≥ ε)

and because of V ≤ (θ̂ − θ)2

E(V ) ≤ E(θ̂ − θ)2.

Hence

ε2 P(
∣∣θ̂ − θ)

∣∣ ≥ ε) ≤ E(θ̂ − θ)2 = MSE(θ̂)

and therefore

P(
∣∣θ̂ − θ∣∣) < ε) = 1− P(

∣∣θ̂ − θ∣∣ ≥ ε) ≥ 1− 1
ε2 MSE(θ̂)
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Frequency interpretation

Figure: Illustration of the MSE of estimators.
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Examples

Arbitrary distribution / normal distribution

MSE(µ̂) = Var(µ̂) =
σ2

n

Bernoulli distribution

MSE(π̂) =
π(1− π)

n

Poisson distribution

MSE(λ̂1) =
λ

n
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An unusual estimation problem

Suppose we are given a lake and we want to estimate the number N of
fish in the lake. Estimation approach:

1. Draw a sample of size n1, mark the fish and return the marked fish
into the lake. Denote by

π =
n1

N
(1)

the share of marked fish
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An unusual simulation problem (continued)

2. Draw a second sample of size n2 and estimate the share of marked
fish through

π̂ =
X
n2
,

where X is the number of marked fish in the sample. Insert π̂ into
(1) and solve for N to obtain

N̂ =
n1n2

X

(Although π̂ is unbiased for π, N̂ is not unbiased for N)
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Case study: Doping - a rare phenomenon?

According to an article published in the “Süddeutsche Zeitung” on
23/12/2006:

Cool, cheerful, devotional, deceptive
A recent study has revealed that nearly every second German top athlete
uses unauthorized doping substances.

“They used the well-known questioning technique RRT, which includes
special instructions in addition to the normal questions. This method
allows further probability calculations.”

“It was found out that 48.1% of all German top athletes are using doping.”
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Initial situation

Sensitive yes-no questions

“Have you ever used unauthorized performance-enhancing drugs?”

“Have you ever made false statements in a tax declaration, for your own
benefit?”

. . .

Objective

Estimate the number of doped athletes.

Estimate the number of taxpayers who have made false statements.

. . .
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Sample

Draw a random sample of i = 1, . . . , n persons.

Define for each person the random variables

Ai =

{
1 i th person answers with YES

0 i th person answers with NO

and

Ri =

{
1 i th person dopes

0 i th person does not dope

Ai and Ri follow a Bernoulli-distribution

P(Ai = 1) = πA = P(YES-answer) P(Ai = 0) = 1− πA

and

P(Ri = 1) = πR = P(Athlete dopes) P(Ri = 0) = 1− πR.
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Honest answers

Assuming that we have honest answers, the share πA of
YES-answers and the share πR of doped athletes are equal, i.e.
πA = πR .

The relative frequency

π̂R = Ā =
1
n

(A1 + A2 + . . .+ An)

of YES-answers is an unbiased estimator for the share πR of doped
athletes.

Expected value and variance of π̂R = Ā are given by

E(Ā) = πR Var(Ā) =
1
n
πR(1− πR).
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Partially honest answers

For partially false answers:

P(YES-answer |Athlete dopes) = P(Ai = 1|Ri = 1) = q < 1

P(YES-answer |Athlete does not dope) = P(Ai = 1|Ri = 0) = 0.

hence

P(YES-answer) = P(Ai = 1) = P(Ai = 1|Ri = 1)P(Ri = 1) = q · πR.

Therefore the relative frequency Ā of YES-answers is a biased
estimator for the share πR of doped athletes with

E(Ā) = q · πR < πR.

The share of doped athletes is underestimated!
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Questioning techniques

Traditional interviews

Questionnaire

Computer-based questionnaire

Randomized Response

Idea: Guarantee anonymous answers with the help of an additional
experiment.
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A simple RR-Model

Every interviewed person tosses or rotates a fair coin, unobserved
by the interviewer. (Note: a rotated 2 C coin is not fair!)

If the coin shows “Head” the interviewed person should answer
honestly.

If the coin shows “Tail” the interviewed person must always answer
with YES, independent of whether he/she has doped or not.

The additional experiment guarantees the anonymity, since a
YES-answer does not conclude that the person was doped.

Assumption: The interviewees stick to the rules and answer
correctly.
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Even if the answers are only partially honest, i.e. πA = qπR < πR ,
we can make an unbiased estimate of the share πA of YES-answers
through the relative frequency Ā, i.e. π̂A = Ā.

For the probability of YES-answers πA the following is true

πA = P(YES-answer) =
1
2
πR +

1
2
· 1 =

1
2
πR +

1
2

and therefore
πR = 2πA − 1

is true for the probability πR of doping.

Hence:
π̂R = 2Ā− 1

is an unbiased estimator for the share of doped athletes.
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The variance is given by

Var(π̂R) = 1
nπR(1− πR) + 1

n (1− πR)

= Variance without randomization + 1
n (1− πR)

In comparison to the situation of honest answers, the variance of the
estimator increases!
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The quality of RR in real life - Social insurance fraud

A study of Heijden et al. (2000) concerning social insurance fraud
compares RR, computer-based questionnaires (CASI) and
traditional interviews.

The characteristic is that only persons who evidently committed
social insurance fraud were interviewed. The share of social
insurance frauds in the sample is thus 100%! Neither the
interviewees nor the interviewers were aware of this fact.

Result: RR results in an estimated share of 43-49%, CASI leads to
19% and traditional interviews lead to 25%.

RR significantly improves the results, nevertheless there is still a
large share of dishonest answers.
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Classical Inference

Asymptotic properties of
estimators
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Random variables as mappings

Consider a random experiment with possible outcome in the space Ω
and a corresponding probability measure P.

A random variable X is a mapping that assigns every ω ∈ Ω a real
value x , i.e. X (ω)=x ,
More specifically

X : Ω→ R
ω 7→ X(ω) = x
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Example

Rolling a dice twice

Ω =
{

(1, 1), (1, 2), . . . , (6, 6)
}

X((ω1, ω2)) = ω1 + ω2

e.g.

X((3, 4)) = 3 + 4 = 7

P(X = 3) = P(
{

(1, 2), (2, 1)
}

) =
2

36
,
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More precise definition of a random variable

Let Ω be the set of possible outcomes of a random experiment.
An event is a subset of Ω.

In general it is not possible to assign probabilities to every subset of Ω in
a consistant way. Instead we assign probabilities to a system of subsets
F , called σ-field. A σ-field F is a set of subsets of Ω such that

i) Ω ∈ F

ii) A ∈ F ⇒ Ā ∈ F

iii) A1, A2, . . . in F ⇒
⋃∞

i=1 Ai ∈ F

We call the couple (Ω,F ) a measurable space.
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More precise definition of a random variable (cont’d.)

A probability measure P is a mapping

P : F →
[
0, 1
]

such that

i) P(∅)=0

ii) P(Ω)=1

iii) P(
⋃∞

i=1 Ai )=
∑∞

i=1 P(Ai ) for sets A; with Ai ∩ Aj = ∅ for all i , j .

The space (Ω, F , P) is called probability space.
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More precise definition of a random variable (cont’d.)

Let (Ω, F , P) be a probability space and (Ω′, F ′) a measurable space.
A random variable X is a F -F ′-measurable function

X : Ω→ Ω′.

X is called measurable if

X−1(A′) ∈ F

for all A′ ∈ F ′.
Measurability is important because for A′ ∈ F ′ :

P(X ∈ A′) = P(X−1(A′)).
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Convergence concepts

We consider in the following a sequence of random variables

X1,X2,X3, . . .

and investigate the limit behavior for n→∞.
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Example

Arbitrary distribution

Consider the estimator
µ̂ = X̄

in dependence of n:

X̄1 = X1

X̄2 =
1
2

(X1 + X2)

X̄3 =
1
3

(X1 + X2 + X3)

...

X̄n =
1
n

n∑
i=1

Xi
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Almost sure convergence

A sequence Xn of random variables converges almost surely to a
random variable X if,

P( lim
n→∞

Xn = X) = 1.

The definition states that Xn(ω) converges to X (ω) for all ω ∈ Ω, except
perhaps for ω ∈ N where N ⊂ Ω and P(N) = 0.

Notation: Xn
a.s.−→ X
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Example

Ω = [0,1] and P the uniform distribution. Define

Xn(ω) = ω + ωn

and
X(ω) = ω.

We show that the sequence Xn converges to X almost surely.
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Example (continued)

For all ω ∈ [0, 1) we have ωn → 0 for n→∞ and therefore

Xn(ω) = ω + ωn → ω = X(ω)

.

For ω=1 we have Xn(1) = 2 for all n, such that Xn(1) does not
converge to X(1) = 1.

Since P([0, 1)) = 1, Xn converges almost surely to X .
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Convergence in probability

Xn converges to X in probability, if for ε > 0

lim
n→∞

P(
∣∣Xn − X

∣∣ ≥ ε) = 0

or
lim

n→∞
P(
∣∣Xn − X

∣∣ < ε) = 1.

Notation: Xn
P−→ X .
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Example

Weak law of large numbers

Let X1, X2, . . . be a sequence of i.i.d. random variables with finite
expected value µ and finite variance σ2.
Then

X̄n =
1
n

n∑
i=1

Xi
P−→ µ for n→∞

(X̄n
a.s.−→ µ can be established as well. Then we speak of the strong law

of large numbers).
The law says, that for large n ∣∣X̄n − µ

∣∣ < ε

with high probability.
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Example (continued)

Proof: Weak law of large numbers

Using the Tschebyschov we obtain

P(
∣∣X̄ − µ∣∣ ≥ ε) ≥ VarX̄

ε2 =
σ2

nε2 → 0 n→∞

Tschebyschov inequality: Let X be a random variable with expected
value µ and variance σ2. For ε > 0 the inequality

P(|X − µ| ≥ ε) ≤ σ2

ε2

or equivalently

P(|X − µ| < ε) ≥ 1− σ2

ε2

holds.
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Example

Convergence in probability, not almost sure

Let Ω = [0,1] and P is the uniform distribution. Define X1,X2,. . . as follows:

X1(ω) = ω + I[0,1](ω)

X2(ω) = ω + I[0, 1
2 ](ω)

X3(ω) = ω + I[ 1
2 ,1](ω)

X4(ω) = ω + I[0, 1
3 ](ω)

X5(ω) = ω + I[ 1
3 ,

2
3 ](ω)

X6(ω) = ω + I[ 2
3 ,1](ω)

...

Define
X(ω) = ω.
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Example (continued)

Convergence in probability, not almost sure

Xn converges to X in probability as

P(
∣∣Xn − X

∣∣ ≥ ε)
is the probability of an interval of ω values whose length is going to
0.

Xn does not converge to X almost surely as there is no ω ∈ Ω for
which

Xn(ω)→ ω = X(ω).
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Example (continued)

Convergence in probability, not almost sure

For every ω,Xn(ω) alternates between ω and ω + 1.

For example ω = 3
8 yields

X1
(3
8
) = 1

3
8

X2
(3

8

)
= 1

3
8

X3
(3

8

)
=

3
8

X4
(3

8

)
=

3
8

...

No pointwise convergence occurs for this sequence.
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Convergence in the r-th mean

Xn converges to X in the r-th mean, if

E(
∣∣X r

n

∣∣) <∞ for all n

and
lim

n→∞
E(
∣∣Xn − X

∣∣r ) = 0.

For r=2 we say that Xn converges in mean square to X .

Notation: Xn
r−→ X .
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Example

Arbitrary distribution

E(µ̂) = E(X̄) = µ

Var(µ̂) =
σ2

n

MSE(µ̂) = E(µ̂− µ)2 =
σ2

n
→ 0 with n→∞,

i.e. µ̂ converges in mean square to µ.
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Convergence in distribution

Xn converges to X in distribution, if

lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

or

lim
n→∞

FXn (x) = Fx (x)

at all points x where Fx (x) is continuous.
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Remark

Note that if

fn → f with n→∞,

where fn, f are the probability functions, then the distributions defined
through fn converge to the distribution defined through f .

Reverse is not correct, in general: Convergence in distribution does
not imply that the densities converge.
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Example

Convergence of the Binomial distribution to the Poisson distribution

Let Xn ∼ B(n,π) with probability function

f (x) = P(X = x) =

(
n
x

)
πx (1− π)n−x .

For n→∞ and nπ = λ f (x) converges to the probability function of the
Poisson distribution, i.e.

lim
n→∞

f (x) =
λxexp(−λ)

x!
.
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Example (continued)

Convergence of the Binomial distribution to the Poisson distribution

lim
n→∞

f (x) = lim
n→∞

(
n
x

)
πx (1− π)n−x

= lim
n→∞

n!

x!(n − x)!

(
λ

n

)x (
1− λ

n

)n−x

= lim
n→∞

λx

x!

n(n − 1) · · · (n − x + 1)

n · · · n︸ ︷︷ ︸
→1

(
1− λ

n

)n︸ ︷︷ ︸
→exp(−λ)

(
1− λ

n

)−x︸ ︷︷ ︸
→1

We have used

exp(y) = lim
n→∞

(
1 +

y
n

)n
=
∞∑

n=o

yn

n!
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Application of the limit theorem

If

X ∼ B(n, π),

n large,

π ’small’, i.e. λ = nπ ’moderate’ (rule of thumb n > 30, π ≤ 0.05),

then X can be approximated by the Poisson distribution with parameters
λ = nπ.
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Example

Rice grains

Distribute n rice grains randomly to N squares. Let

X = ’Number of rice grains in a square’.

We have

X ∼ B
(
n, π =

1
N

)
Because of n > 30, π < 0.05 we have

X
a∼ Po

(
λ = nπ =

n
N

)
.
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Example

The sentence ’at all x for which Fx (x) is continuous’ matters!
Let

Xn ∼ N
(
0,

1
n

)
and X a degenerated distribution at 0, i.e. P(X=0) = 1.
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Central Limit Theorem

Let X1,X2, . . . be a sequence of i.i.d. random variables with finite mean µ
and variance σ2.
Then

1√
nσ

(
n∑

i=1

Xi − nµ

)
=

1√
n

n∑
i=1

Xi − µ
σ

=
X̄ − µ
σ

√
n

D−→ N(0, 1).
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Standardizing random variables

Assume X is a random variable mit expected value µ and variance σ2.
Then

Y =
X − µ
σ

=
X
σ
− µ

σ

is the standardized version of X with

E(Y ) = E

(
X
σ
− µ

σ

)
=

1
σ

E(X)− µ

σ
=

1
σ
µ− µ

σ
= 0

and

Var(Y ) = Var

(
X
σ
− µ

σ

)
=

1
σ2 Var(X) =

1
σ2σ

2 = 1
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Standardizing random variables

Note that

E

(
n∑

i=1

Xi

)
=

n∑
i=1

E(Xi) =
n∑

i=1

µ = nµ

and

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) =
n∑

i=1

σ2 = nσ2

such that
1√
nσ

(
n∑

i=1

Xi − nµ

)
is the standardized version of the random variable

n∑
i=1

Xi .
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Utilities for the proof

For a proof of the central limit theorem we need the following facts from
analysis:

Exponential limit:

If a sequence an converges to a, i.e. an −→ a, then

lim
n→∞

(
1 +

an

n

)n
= exp(a) (1)
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Utilities for the proof

Taylor series expansion:

Let I be a real valued interval and f : I −→ R a function that is r + 1
times continuously differentiable. Then we obtain in a neighborhood
around a ∈ I

f (x) = f (a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2 +· · ·+ f (r)(a)

r !
(x−a)r +R(x),

where R(x) is a function with

limx−→a
R(x)

(x − a)r = 0. (2)
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Proof of the central limit theorem

Proof in case that the moment generating function MXi (t) exists in a
neighborhood around 0. In the general case the proof is similar and
based on the so called characteristic function (which is always
defined).

The proof uses property a) (uniqueness) of the moment generating
function of random variables (slide 16 of the probability theory
slides). We show that the moment generating function of

Zn :=
X̄n − µ
σ

√
n

converges for n→∞ to the moment generating function of the
N(0, 1) distribution.
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1. Step: Standardizing

Define the standardized random variable Yi = Xi−µ
σ and let MY (t)

be the moment generating function of Yi .
We now define

Zn :=
X̄n − µ
σ

√
n =

1√
n

n∑
i=1

Yi

and obtain the moment generating function of Zn:

MZn (t) =

(
MY

(
t√
n

))n

Here we used properties c) (with a = 1/
√

n, b = 0) and e) of the
moment generating function (slide 16, probability theory slides).

Note that MY
(r)(0) = E(Y r ) (property b) page 16 of the slides).

This implies MY (0) = 1, MY
′(0) = E(Y ) = 0,

MY
′′(0) = E(Y 2) = Var(Y ) = 1.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 2 – Classical Inference – 85 / 108



2. Step: Taylor series expansion

A second order Taylor series expansion of MY

(
t√
n

)
around 0

yields:

MY

(
t√
n

)
= MY (0) +

MY
′(0)

1!

t√
n

+
MY

′′(0)

2!

(
t√
n

)2

+ RY

(
t√
n

)

= 1 +
0
1!

t√
n

+
1
2!

(
t√
n

)2

+ RY

(
t√
n

)

= 1 +
1
2

(
t√
n

)2

+ RY

(
t√
n

)
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2. Step: Taylor series expansion

For fixed t 6= 0 we have t√
n
→ 0 and because of (2)

lim
n→∞

RY

(
t√
n

)
(

t√
n

)2 = 0

Since t 6= 0 is fixed we also obtain

lim
n→∞

RY

(
t√
n

)
(

1√
n

)2 = lim
n→∞

n RY

(
t√
n

)
= 0

This statement is also valid for t = 0 because RY

(
0√
n

)
= 0.
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3. Step: Limit

For fixed t we finally obtain

lim
n→∞

(
MY

(
t√
n

))n

= lim
n→∞

[
1 +

(
t/
√

n
)2

2!
+ RY

(
t√
n

)]n

= lim
n→∞

[
1 +

1
n

(
t2

2
+ n RY

(
t√
n

))]n

= exp

(
t2

2

)
Thereby we used the exponential limit (1) from above with

an =
t2

2
+ n RY

(
t√
n

)
→ t2

2
.

Since exp
(

t2

2

)
is the moment generating function of the N(0, 1)

distribution the theorem is proven.
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Relationship among modes of convergence

in probability

almost sure r-th moment
@
@
@
@@R

�
�

�
��	

?
in distribution

Xn
D−→ c ⇒ Xn

p−→ c
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Construction of confidence intervals I

Let X1, · · · ,Xn be an i.i.d sample with Xi ∼ N(µ, σ2) and σ2 known.

Then [
X̄ − z1−α2

σ√
n
, X̄ + z1−α2

σ√
n

]

is a 1− α confidence interval for µ.
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Proof

We have

X̄ ∼ N(µ,
σ2

n
)

respectively

X̄ − µ
σ

√
n ∼ N(0, 1). (3)

Hence for 0<α<1 we obtain

P(−z1−α2 ≤
X̄ − µ
σ

√
n ≤ z1−α2 ) = 1− α,

where z1−α2 is the 1− α
2 Quantile of the N(0,1) distribution.
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Proof (continued)

Rearranging terms yields

P(X̄ − z1−α2
σ√
n
≤ µ ≤ X̄ + z1−α2

σ√
n

) = 1− α,

such that [
X̄ − z1−α2

σ√
n
, X̄ + z1−α2

σ√
n

]
is a 1-α confidence interval for µ.
Because of the CLT(3) and with it the CI is valid for arbitrary distributions
provided that n is large enough (rule of thumb n≥30).
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Special Case: Approximation of the Binomial Distribution

Let X ∼ B(n, π). X can be represented as X = X1+ · · · +Xn, where

Xi ∈
{

0, 1
}
, P(Xi = 1) = π, P(Xi = 0) = 1− π

Applying the CLT we obtain

X − nE(Xi)√
n Var(Xi)

=
X − nπ√
nπ(1− π)

D∼ N(0, 1)

Thus approximately we have

X
a∼ N
(
nπ, nπ(1− π)

)
P(X ≤ x) ≈ φ

(
x − nπ√
nπ(1− π)

)
.
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Unknown variance

So far we have only considered the case where the variance σ2 is known.

To construct confidence intervals for unknown σ2 we would like to
replace

X̄ − µ
σ

√
n

D∼ N(0, 1)

by
X̄ − µ

S

√
n

D∼ N(0, 1).
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Continuous mapping theorem

If g : R→ R is a continuous function, then

(i) Xn
a.s.−→ X ⇒ g(Xn)

a.s.−→ g(X)

(ii) Xn
p−→ X ⇒ g(Xn)

p−→ g(X)

(iii) Xn
d−→ X ⇒ g(Xn)

d−→ g(X)
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Sums and products

(a) Xn
p−→ X , Yn

p−→ Y ⇒ Xn + Yn
p−→ X + Y

(b) Xn
r−→ X , Yn

r−→ Y ⇒ Xn + Yn
r−→ X + Y

(c) Xn
d−→ X , Yn

d−→ a⇒ Xn + Yn
d−→ X + a (Slutzky)

(d) Xn
p−→ X , Yn

p−→ Y ⇒ Xn · Yn
p−→ X · Y

(e) Xn
d−→ X , Yn

d−→ a⇒ Xn · Yn
d−→ a · X (Slutzky)
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Example

Sampling variance

S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2

=
n

n − 1
1
n

n∑
i=1

(Xi − X̄)2

=
n

n − 1

[
1
n

n∑
i=1

X 2
i − X̄ 2

]
We show

S2 P−→ σ2.
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Proof

We have
1
n

n∑
i=1

X 2
i

P−→ E(X 2)

because of the weak law of large numbers.

As X̄
P−→ µ the continuous mapping theorem implies X̄ 2 P−→ µ2.

Then
1
n

∑
X 2

i − X̄ 2 P−→ E(X 2)− µ2 = σ2

applying slide 96 a).

Finally as n/(n − 1)→ 1 we obtain

S2 =
n

n − 1

[
1
n

n∑
i=1

X 2
i − X̄ 2

]
P−→ σ2.
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Construction of confidence intervals II

Let X1, X2, . . . be an i.i.d. sample with finite mean µ and variance σ2.

We show that

X̄ − µ
S

√
n

D∼ N(0, 1).
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Proof

Since S2 P−→ σ2 we have S
P−→ σ according to the continuous

mapping theorem.

This implies (using slide 96 d)

1
S

P−→ 1
σ

and
σ

S
P−→ 1.

According to Slutsky we obtain

X̄ − µ
S

√
n =

σ

S︸︷︷︸
P−→1

X̄ − µ
σ

√
n︸ ︷︷ ︸

D−→N(0,1)

D−→ N(0, 1)

This result implies the following CI for µ and large n:[
X̄ − z1−α2

S√
n
, X̄ + z1−α2

S√
n

]
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Asymptotically unbiased estimators

An estimator θ̂ for θ is asymptotically unbiased, if for all θ

lim
n→∞

E(θ̂) = θ

Obviously every unbiased estimator θ̂ is also asymptotically unbiased.
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Example

Arbitrary distribution

σ̂2 = S2 =
1

n − 1

n∑
i=1

(Xi − X̄)2

is unbiased for σ2.

σ̂2 = S̃2 =
1
n

n∑
i=1

(Xi − X̄)2

is however biased. Since

E(S̃2) = E

(
n − 1

n
S2
)

=
n − 1

n
σ2

S̃2 is at least asymptotically unbiased.
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Consistency of an estimator

An estimator θ̂ for θ is called (weakly) consistent , if θ̂ converges on
probability to θ, i.e.

θ̂
P−→ θ n→∞

(strong consistency means convergence almost surely ).

An estimator θ̂ is consistent in square mean, if θ̂ converges to θ in
square mean, i.e.

θ̂
r = 2−→ θ.
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Example

Consistency of X̄ for µ

X1, X2, . . . i.i.d. with finite expected value µ and variance σ2.

As X̄
P−→ µ (law of large numbers), µ̂=X̄ is consistent for µ.

It follows that

π̂ = X̄

and

λ̂ = X̄

are consistent for π in the Binomial case and λ in the Poisson case.
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Example

Consistency of the variance estimator

We have S2 P−→ σ2. It follows that S2 is consistent for σ2.

Because of the continuous mapping theorem S
P−→ σ, so that S is

consistent for σ.
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Relationships between the various consistency concepts

weak consistency

strong consistency consistency in square mean
@
@
@
@@R

�
�

�
��	

If the MSE converges to 0, then θ̂
r=2−→ θ, because MSE(θ̂) = E(θ̂ − θ)2.

This implies consistency in square mean and in turn weak consistency.
Note that every consistent estimator is asymptotically unbiased.

Note also, that the consistency of θ̂ for θ implies the consistency of
g(θ̂) for g(θ), if g is continuous (because of the continuous mapping
theorem).
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Standard errors

Consider an i.i.d. random sample X1, . . . ,Xn.
Let θ̂ = T (X1, . . . ,Xn) be an estimator for θ. Let V be a consistant
estimator for Var (T ).

Then
√

V is consistent for
√

Var(T ).

The quantity
se(θ̂) =

√
V

is called standard error of θ̂.
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Example

Arbitrary distribution

X1,. . . ,Xn i.i.d. random sample with finite expected value µ and variance
σ2. Then

Var(X̄) =
σ2

n
and

V =
S2

n

is consistent for Var(X̄). Therefore

se(µ̂) =
S√
n
.
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Statistical Inference

Chapter 3

Likelihood based inference
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Likelihood based inference

Likelihood and log-likelihood
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Likelihood and log-likelihood

We throw a coin n = 10 times and observe y = 8 times tail.

Which value for
π = ’Probability of tail’

is most likely?

Let X=’Number of tails’, then

X ∼ B(10, π).
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Likelihood and log-likelihood (continued)

The following table provides Pπ(X=8) in dependence of π:

π Pπ(X=8)

0.1 0

0.2 0.00007373
...

...

0.7 0.23347444

0.8 0.3019898

0.9 0.1937

1 0
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Likelihood and log-likelihood (continued)

The most plausible value for the parameter π is π = 0.8!

Likelihood theory uses the estimator π̂ that maximizes the function

L(π) = Pπ(X = 8)

with respect to π.

L(π) is denoted as likelihood. In likelihood theory, all inferential
conclusions are based on the likelihood.
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Definition: Likelihood

Let x be the realized value of a random variable X . Let f (x , θ) be the
corresponding probability function (if X is discrete) respectively
density (if X is continuous).

Then
L(θ) = f (x , θ)

is called likelihood (function).
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Definition: Maximum likelihood estimator

The maximum likelihood estimator θ̂ML of a parameter θ is given by
maximizing the likelihood:

θ̂ML = argmax
θ

L(θ).

Usually it is more convenient to maximize the log-likelihood

`(θ) = log L(θ).

Because of the monotonicity of the logarithm we have

θ̂ML = argmax
θ

L(θ) = argmax
θ

`(θ).
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Example

Binomial distribution

Let X ∼ B(n, π) and x be the realized value.
Then

L(π) =

(
n
k

)
πx (1− π)n−x ∝ πx (1− π)n−x

l(π) = x log(π) + (n − x)log(1− π)

l ′(π) =
x
π

+
(n − x)

1− π
(−1) =

x
π
− n − x

1− π
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Example (continued)

Binomial distribution
Setting to zero yields

x
π
− n − x

1− π
= 0

and therefore
π̂ML =

x
n
.
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Likelihood and ML-estimator for a random sample

Consider an i.i.d. sample X1,. . . ,Xn with probability function or
density of Xi given by f (xi ,θ). If

x = (x1, . . . , xn)′

is the realized sample of

X = (X1, . . . ,Xn)′,

then because of the independence we have

L(θ) = f (x1, θ) · f (x2, θ) · · · · · f (xn, θ) =
n∏

i=1

f (xi , θ)

and

`(θ) = logf (x1, θ) + · · ·+ logf (xn, θ) =
n∑

i=1

logf (xi , θ).
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Example

Poisson distribution

Let X1, . . . , Xn be a random sample with Xi ∼ Po(λ).
The realizations are given by x1, x2, . . . , xn.
The probability function for Xi is given by

f (xi) = P(Xi = xi) =
λxi

xi !
exp(−λ).
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Example (continued)

Poisson distribution

Li(λ) =
λxi

xi !
exp(−λ) ∝ λxi exp(−λ)

li(λ) = log
(
λxi exp(−λ)

)
= xi log(λ)− λ

l ′i (λ) =
xi

λ
− 1

l ′(λ) =
1
λ

n∑
i=1

xi − n

Setting to zero and solving for λ yields

λ̂ML =
1
n

n∑
i=1

xi = x̄
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Likelihood based inference

Score function and Fisher
information
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Definition: Score function

The first derivative of the log-likelihood

S(θ) =
∂`(θ)

∂θ
= `′(θ)

is called score function.
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Definition: Fisher information

The negative second derivative of the log-likelihood

I(θ) = −∂
2`(θ)

∂θ2 = −∂S(θ)

∂θ
= −`′′(θ)

is called Fisher information.

Evaluating the Fisher information at the maximum θ̂ML yields the
observed Fisher information.
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First interpretation of the (observed) Fisher information

At the maximum θ̂ML the second derivative of the log-likelihood is
negative and therefore I(θ̂ML) positive.

The larger I(θ̂ML), the larger is the curvature of the log-likelihood, i.e. the
more ’information’ to locate the maximum.
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Example

Binomial distribution

Let X ∼ B(n, π).

l(π) = x log(π) + (n − x) log(1− π)

S(π) = l ′(π) =
x
π
− n − x

1− π

I(π) = −l ′′(π) = −
(
− x
π2 +

n − x
(1− π)2 (−1)

)
=

x
π2 +

n − x
(1− π)2

I(π̂) =
x

( x
n )2 +

n − x(
1− ( x

n )
)2 = · · · =

n
π̂(1− π̂)
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Example

Poisson distribution

X1, . . . , Xn i.i.d. Poisson distributed with Xi ∼ Po(λ) and realizations
x1, . . . , xn.

Si(λ) = l ′i (λ) =
xi

λ
− 1

S(λ) =
1
λ

n∑
i=1

xi − nλ

Ii(λ) = −l ′′i (λ) =
xi

λ2

I(λ) =
1
λ2

n∑
i=1

xi

I(λ̂) =
n2(∑n

i=1 xi
)2

n∑
i=1

xi =
n2∑n
i=1 xi

=
n
x̄
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Definition: Expected Fisher information

The expected value of the Fisher information I(θ), considered as a
function of the sample variables X=(X1,. . . ,Xn)’, is called expected
Fisher information:

J(θ) = E
(
I(θ)

)
.

Note that J(θ) is additive for an i.i.d. sample with density f (x ,θ).
Let J1(θ) be the expected Fisher information of xi . Then J(θ) = nJ1(θ).
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Example

Binomial distribution

Let X ∼ B(n, π). Then

I(π) =
X
π2 +

n − X
(1− π)2

J(π) = E

(
X
π2 +

n − X
(1− π)2

)
=

nπ
π2 +

n − nπ
(1− π)2 =

n
π

+
n

1− π

=
n(1− π) + nπ
π(1− π)

=
n

π(1− π)

=
1

Var(π̂)
,

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 3 – Likelihood based inference – 19 / 62



Likelihood based inference

Expected value and variance of the
score function
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Expected value and variance

Under regularity conditions we show

E(S(θ)) = 0 and Var(S(θ)) = J(θ).

Regularity conditions

Exchangeability of Differentiation and Integration (or Differentiation and
Summation).

For example fulfilled for fixed integral limits, f and ∂f
∂t continuous, then

∂

∂t

∫ b

a
f (x , t) dx =

∫ b

a

∂f (x , t)
∂t

dx
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Proof (for continuous distributions)

Because

S(θ) =
n∑

i=1

Si(θ),

it is sufficient to show E(Si(θ)) = 0 and we can restrict ourselves to
n = 1, then L(θ) = f (x , θ).

We have the following equivalent representations of the score
function:

S(θ) =
∂l(θ)

∂θ
=
∂ log L(θ)

∂θ
=

1
L(θ)

∂L(θ)

∂θ
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Proof (continued)

E(S(θ)) =

∫
S(θ)f (x , θ) dx

=

∫
1

L(θ)

∂L(θ)

∂θ
f (x , θ) dx

=

∫
∂L(θ)

∂θ
dx

=
∂

∂θ

(∫
L(θ) dx

)
=

∂

∂θ

(
1
)

= 0
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Proof (continued)

Since E(S(θ)) = 0 we have Var(S(θ)) = E(S(θ)2). Then

J(θ) = E

(
−∂

2 logL(θ)

∂θ2

)
= E

(
− ∂

∂θ

(
∂L(θ)

∂θ︸ ︷︷ ︸
=̂f

1
L(θ)︸︷︷︸

=̂g

))

= E

(
−
∂2L(θ)
∂θ2 L(θ)−

(∂L(θ)
∂θ

)2

L(θ)2

)
= −E

( ∂2L(θ)
∂θ2

L(θ)

)
+ E

((∂L(θ)
∂θ

)2

L(θ)2

)
= −

∫ ∂2L(θ)
∂θ2

L(θ)
f (x , θ) dx +

∫ (∂L(θ)
∂θ

)2

L(θ)2 f (x , θ) dx

= − ∂2

∂θ2

∫
L(θ) dx︸ ︷︷ ︸

=1

+

∫ (
∂

∂θ
logL(θ)

)2

f (x , θ) dx

= E
(
S(θ)2) = Var

(
S(θ)

)
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Proof (continued)

We thereby used the following rules regarding derivatives

( f
g

)′
=

f ′g − fg′

g2

and
∂

∂θ
logL(θ) =

∂L(θ)
∂θ

L(θ)
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Likelihood based inference

Cramer-Rao bound
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Cramer-Rao bound

Consider an unbiased estimator θ̂ for θ, i.e.

E(θ̂) = θ.

Let J(θ) be the expected Fisher information. Then we have

Var(θ̂) ≥ 1
J(θ)

(Cramer-Rao bound)

under regularity conditions, i.e. exchangeability of integration and
differentiation.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 3 – Likelihood based inference – 27 / 62



Application of the Cramer-Rao bound

If we can show in applications, that

Var(θ̂) =
1

J(θ)
,

i.e. the bound is reached, then θ̂ is the estimator with lowest variance
among all unbiased estimators.

Then θ̂ is called efficient.
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Proof

Let

f (~x , θ) =
n∏

i=1

f (xi , θ).

Then the squared correlation between S(θ) and θ̂ is

ρ2(S(θ), θ̂
)

=
Cov

(
S(θ), θ̂

)2

Var
(
S(θ)

)
Var
(
θ̂
) ≤ 1
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Proof (continued)

Because of Var(S(θ)) = J(θ) we have:

Cov
(
S(θ), θ̂

)2

J(θ)Var(θ̂)
≤ 1.

Rearranging yields

Var(θ̂) ≥
Cov

(
S(θ), θ̂

)2

J(θ)

It remains to show that Cov(S(θ), θ̂) = 1.
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Proof (continued)

Cov
(
S(θ), θ̂

)
= E

(
S(θ)θ̂

)
− E

(
S(θ)

)︸ ︷︷ ︸
=0

E
(
θ̂
)

=

∫
S(θ)θ̂f (~x , θ) d~x =

∫
∂f (~x , θ)

∂θ

1
f (~x , θ)

θ̂f (~x , θ) d~x

=

∫
∂f (~x , θ)

∂θ
θ̂ d~x

=
∂

∂θ

∫
f (~x , θ)θ̂ d~x

=
∂

∂θ

(
E(θ̂)

)
=

∂

∂θ

(
θ
)

= 1
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Example

Binomial distribution

X ∼ B(n, π).

Then

π̂ =
X
n
,

J(π) =
n

π(1− π)
.

Finally

Var(π̂) =
nπ(1− π)

n2 =
π(1− π)

n
=

1
J(π)

,

i.e. π̂ reaches the Cramer-Rao lower bound and is therefore efficient.
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Likelihood based inference

Distribution of the score statistic
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Distribution of the score statistic

Let X1, . . . , Xn be a random sample with density f (x , θ). Then

S(θ)√
J(θ)

D−→ N
(
0, 1
)

(1)

i.e. approximately we have

S(θ)
a∼ N
(
0, J(θ)

)
.

The proof is a direct application of the CLT

S(θ)√
J(θ)

=

∑
Si(θ)− 0√

J(θ)

D−→ N
(
0, 1
)
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Remark

In (1) the expected Fisher information can be replaced by the (observed)
Fisher information, i.e.

S(θ)√
I(θ)

,
S(θ)√
J(θ̂ML)

,
S(θ)√
I(θ̂ML)

.
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Example

Poisson distribution

T =
S(λ)√

J(λ)
=

∑
Xi
λ − n√

n
λ

a∼ N(0, 1).
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Application: Score Test

Aim is to test the hypothesis

H0 : θ = θ0 versus H1 : θ 6= θ0

Use the test statistic

S(θ0)√
J(θ0)

a∼ N(0, 1) (under H0).
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Application: Score Test (continued)

If
∣∣S(θ0)

∣∣ large, then the difference between θ0 and the ML-estimator
θ̂ML is large (note that S(θ̂ML)=0), i.e. we reject H0.

More precisely we reject H0 if∣∣S(θ0)
∣∣√

J(θ0)
> z1−α2 .

Note that the computation of the ML-estimator is not required to use the
score test.
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Example

Poisson distribution

H0 : λ = λ0 versus H1 : λ 6= λ0

Use

T =

∑
Xi

λ0
− n√
n
λ0

a∼ N(0, 1)

as the test statistic.
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Recap Hypotheses testing

Aim is to test the hypothesis

H0 : θ = θ0 versus H1 : θ 6= θ0.

Two sources of error:
H0 is true, but we decide for H1 (type I error)
H1 is true, but we decide to keep H0 (type II error)

Test is constructed asymmetrically such that type 1 error is under
our control, e.g. α = 0.05. Type II error is not controlled directly, but
can be reduced usually through sample size.

Test decision is based on a test statistics whose distribution under
H0 must be known. Often distribution is not known under H1, then
type II error is not available/computable.
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Recap Hypotheses testing

Caution I:
A nonsignificant result, i.e. H0 is kept, does not necessarily imply that
H0 is true!
Suppose we toss a coin 4 times and obtain 3 times head. The aim is
to test H0 : π = 0.5 versus H1 : π 6= 0.5 where π is the probability of
head.
Obviously any reliable test will not reject H0 on basis of the given
data.
However, already our intuition says, that the nonsignificant results
does not imply that H0 is true.

Caution II:
Think of the power of the test. Is there a real chance for a significant
result with the test at hand?
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Likelihood based inference

Distribution of the ML-estimator
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Distribution of the ML-estimator

Let X1, . . . , Xn be an i.i.d random sample with density (or probability
function) f (x , θ) and θ̂ML the ML-estimator for θ. Let θ0 be the true
parameter.

Then under regularity conditions the ML-estimator is consistent, i.e.

θ̂ML
P−→ θ0

and
√

n
(
θ̂ML − θ0

) d−→ N

(
0,

1
J1(θ0)

)
or

(θ̂ML − θ0)
√

nJ1(θ0) = (θ̂ML − θ0)
√

J(θ0)
d−→ N

(
0, 1
)
,

i.e. we obtain approximately

θ̂ML
a∼ N
(
θ0, J(θ0)−1)
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Remarks I

The asymptotic results suggest the following statistical properties of the
maximum likelihood estimator:

θ̂ML is weakly consistent, i.e. θ̂ML
P−→ θ0.

Consistency implies that θ̂ML is asymptotically unbiased. Note
however, that θ̂ML is generally not unbiased in finite samples!

For large n the approximate variance of θ̂ML is

Var(θ̂ML) ≈ 1
J(θ0)

,

i.e. the ML estimator reaches the Cramer- Rao bound as n tends to
infinity.

This in turn implies that θ̂ML is asymptotically efficient, i.e. among all
asymptotically unbiased estimators it is the estimator with the lowest
variance.
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Remarks II

In θ̂ML
a∼ N
(
θ0, J(θ0)−1

)
we can replace J(θ0) by I(θ0).

Because θ̂ML is consistent for θ0 we also have

θ̂ML
a∼ N
(
θ0, J(θ̂ML)−1) and θ̂ML

a∼ N
(
θ0, I(θ̂ML)−1).

For the construction of tests and CI’s this is important because
J(θ̂ML) does not depend on the unknown parameter.

The second remark yields approximate standard errors

se
(
θ̂ML
)
≈
√

1

J(θ̂ML)

or

se
(
θ̂ML
)
≈
√

1

I(θ̂ML)
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Regularity conditions for consistency

R1: The parameter is identifiable, i.e. if θ 6= θ′ then f (x ,θ) 6= f (x ,θ′).

R2: The densities f (x ,θ) have common support and f (x ,θ) is
differentiable in θ.

R3: The parameter space Θ contains an open set of which the true
parameter is an interior point.
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Additional regularity conditions for asymptotic normality

R4: The density f (x ,θ) is three times differentiable with respect to θ, the
third derivative is continuous in θ and

∫
f (x ,θ)dx can be

differentiated three times under the integral sign.

R5: For any θ0, there exists a positive number c and a function M(x)
(both of which may depend on θ0) such that∣∣∣∣∂3logf (x , θ)

∂θ3

∣∣∣∣ ≤ M(x)

for all x and θ0 − c < θ < θ0 + c with E(M(x)) <∞.
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Proof of asymptotic normality

A second order Taylor series expansion of the score function at the
ML-estimator θ̂ML about the true value θ0 yields

s
(
θ̂ML

)
= s(θ0)+

(
θ̂ML − θ0

)
l ′′ (θ0)+

1
2

(
θ̂ML − θ0

)2
l ′′′(θ∗) (3)

with θ∗ between θ0 and θ̂ML.

Using s(θ̂ML) = 0 and rearranging (3) yields

(θ̂ML − θ0)
√

n =

s(θ0)√
n

−1
n

l ′′(θ0)− 1
2n

(θ̂ML − θ0)l ′′′(θ∗)
. (4)
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Now we can derive the following three properties:
1 Because of the asymptotic properties of the score function we have

s(θ0)√
n

d−→ N (0, J1(θ0)) .

2 For −l ′′(θ0)/n the central limit theorem yields

− l ′′(θ0)

n
=

I(θ0)

n
=

1
n

n∑
i=1

Ii(θ0)
d−→ J1(θ0). (5)

3 The second summand in the denominator tends in probability to 0
as n→∞, i.e.

1
2n

(θ̂ML − θ0)l ′′′(θ∗)
p−→ 0. (6)

This is true because θ̂ML − θ0
p−→ 0 (consistency of the

ML-estimator) and 1/n l ′′′(θ∗) is bounded in probability. The latter is
due to regularity condition R5. More specifically,∣∣1

n
l ′′′(θ∗)

∣∣ =
∣∣1
n

n∑
i=1

l ′′′i (θ∗)
∣∣ ≤ 1

n

n∑
i=1

M(Xi)
d−→ E(M(X)) <∞.
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Properties 2 and 3 imply that the denominator in (4) converges to
J1(θ0) in probability, while property 1 shows that the numerator
converges in distribution to N (0, J1(θ0)).

Slutzky’s theorem shows that the ratio converges in distribution to
N(0, 1/J1(θ0)), which completes the proof.
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Likelihood based inference

Approximate Tests and confidence
intervals
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Wald-statistic

We investigate the hypotheses

H0 : θ = θ0 versus H1 : θ 6= θ0

For testing we use

T1 =

(
θ̂ML − θ0

)√
I
(
θ̂ML
)

or

T2 =

(
θ̂ML − θ0

)√
J
(
θ̂ML
)
.
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Wald-statistic

Under H0 we have

T1
a∼ N(0, 1)

T2
a∼ N(0, 1)

Rejection:

We reject H0 if ∣∣T1
∣∣ > z1−α2

respectively ∣∣T2
∣∣ > z1−α2 .
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Example

Poisson distribution

H0 : λ = λ0 versus H1 : λ 6= λ0

The various variants of the Fisher information are given by

I(λ) =
nX̄
λ2 J(λ) =

n
λ

I(λ̂ML) =
nX̄
X̄ 2 =

n
X̄

J(λ̂ML) =
n
X̄
.

Then

T1 = T2 =
(
X̄ − λ0

)√ n
X̄

a∼ N(0, 1).
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Example

Binomial distribution

H0 : π = π0 versus H1 : π 6= π0

J(π) =
n

π(1− π)
, J(π̂) =

n
X̄(1− X̄)

, X̄ =
X
n

T2 =
(
π̂ − π0

)√ n
π̂(1− π̂)
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Wald confidence intervals

Because of the duality between tests and confidence intervals we obtain
the following approximate confidence intervals:[

θ̂ML ± z1−α2

√
1

I(θ̂ML)

]
=

[
θ̂ML ± z1−α2 se(θ̂ML)

]
respectively [

θ̂ML ± z1−α2

√
1

J(θ̂ML)

]
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Example

Poisson distribution
An approximate confidence interval is given by[

X̄ ± z1−α2

√
X̄
n

]
.
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Example

Binomial distribution
An approximate confidence interval is given by[

π̂ ± z1−α2
π̂(1− π̂)

n

]
as

J(π̂) =
n

X̄(1− X̄)
.
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Likelihood based inference

Likelihood ratio test
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Likelihood ratio test

Our goal is again to investigate the hypotheses

H0 : θ = θ0 versus H1 : θ 6= θ0

The idea of the likelihood ratio test is to compare `(θ̂ML) with `(θ0). If
the difference `(θ̂ML)− `(θ0) is “large”, then θ0 is not plausible and
H0 is rejected.

The exact test statistic is

W = 2
(
`(θ̂ML)− `(θ0)

)
= 2 log

L(θ̂ML)

L(θ0)
.

Under H0 we have
W

a∼ χ2
1

and we reject H0 if W > χ2
1(1− α).
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Example

Poisson distribution

H0 : λ = λ0 versus H1 : λ 6= λ0

l(λ) =
n∑

i=1

Xi log(λ)− nλ = nX̄ log(λ)− nλ

W = 2
(
l(λ̂)− l(λ0)

)
= 2
(
nX̄ log X̄ − nX̄ − nX̄ log(λ0) + nλ0

)
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Derivation of the asymptotic distribution of W

To derive the asymptotic distribution of W under H0 we compute the
first order Taylor series expansion of the log-likelihood about θ0 at
θ̂ML

l(θ̂ML) = (θ0) +
(
θ̂ML − θ0

)
l ′(θ0) +

1
2

(
θ̂ML − θ0

)2
l ′′ (θ∗∗) (7)

with θ∗∗ between θ̂ML and θ0.

For the derivation of the asymptotic distribution of the ML-estimator
we also computed the second order Taylor series expansion of
l ′(θ̂ML) = s(θ̂ML) given by (3). Because of l ′(θ̂ML) = 0 we can
rearrange (3) to obtain

−l ′(θ0) =
(
θ̂ML − θ0

)
l ′′(θ0) +

1
2

(
θ̂ML − θ0

)2
l ′′′(θ∗).
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Inserting this into (7) yields

l
(
θ̂ML

)
− l (θ0) = −

(
θ̂ML − θ0

)[(
θ̂ML − θ0

)
l ′′(θ0) +

1
2

(
θ̂ML − θ0

)2
l ′′′(θ∗)

]
+ 1

2

(
θ̂ML − θ0

)
l ′′(θ∗∗)

= −n
(
θ̂ML − θ0

)2 [
1
n l ′′(θ0) +

1
2n (θ̂ML − θ0)l ′′′(θ∗)− 1

2n l ′′(θ∗∗)
]

We already know from (6) that the second summand in brackets
tends to 0 in probability.

The other two summands in brackets both tend to −J1(θ0) (see the
derivation of (5)). Hence 2(l(θ̂ML)− l (θ0)) has the same limit

distribution as
(
θ̂ML − θ0

)2
nJ1(θ0). The asymptotic normality of

the ML-estimator provides(
θ̂ML − θ0

)√
nJ1(θ0)

d−→ N(0, 1).
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Invoking the continuous mapping theorem we finally arrive at(
θ̂ML − θ0

)2
nJ1(θ0)

d−→ χ2
1.

(Note that if X i.i.d. N(0, 1) then X 2 ∼ χ2
1.)

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 3 – Likelihood based inference – 64 / 62



Statistical Inference

Chapter 4

Likelihood inference for
vector valued parameters
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Likelihood inference for vector valued parameters

Situation
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Situation

Let X1,...,Xn be a random sample with probability function or density
fi (xi ,θ).

The Xi ’s are still independent but no longer identically distributed.

Our goal is to estimate θ.
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Example

(Normal distribution)

The random sample X1, ...,Xn is assumed to be i.i.d. with Xi ∼ N(µ, σ2),
i.e.

θ =

(
µ

σ2

)
.
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Example

Linear Model

Y1,...,Yn independent with Yi∼ N(µi ,σ2) and

µi = β0 + β1xi1 + · · ·+ βk xik .

Define θ =
(
β0, β1, . . . , βk , σ

2
)′
.

We assume Xi1,...,Xik non stochastic.
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Example

Binary regression models

We assume an independent random sample Y1, ...,Yn with
Yi ∼ B(1, πi) being Bernoulli distributed, i.e. P(Yi = 1) = πi and
P(Yi = 0) = 1− πi .

Logit model:

πi =
exp(β0 + β1xi1 + · · ·+ βk xik )

1 + exp(β0 + β1xi1 + · · ·+ βk xik )

=
exp(x ′iβ)

1 + exp(x ′iβ)

=
exp(ηi)

1 + exp(ηi)
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Example

Binary regression models

Probit model

πi = Φ(β0 + · · ·+ βk xik ) = Φ(x ′iβ) = Φ(ηi),

where x i = (1, xi1, . . . , xik )′, β = (β0, β1, . . . , βk )′ and ηi = x ′iβ.

Here θ = (β0, . . . , βk )′.

For the logit model we further obtain

g(πi) = log

(
πi

1− πi

)
= β0 + β1xi1 + · · ·+ βk xik ,

where g is called link function (here the logit-link).
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Example

Binary regression models

The ratio log πi
1−πi

is called log-odds, which can be regarded as a
linear combination of the covariates.

For the odds ratio πi
1−πi

we have a multiplicative model, i.e.

πi

1− πi
= exp(β0) exp(β1xi1) · · · exp(βk xik ).
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Likelihood inference for vector valued parameters

Likelihood, score function and
Fisher information
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Likelihood

The likelihood of the sample X1,...,Xn is given by

L(θ) =
n∏

i=1

fi(Xi ,θ) =
n∏

i=1

Li(θ)

with
Li(θ) = fi(Xi ,θ).

The log-likelihood is given by

l(θ) =
n∑

i=1

li(θ) =
n∑

i=1

log
(
fi(Xi ,θ)

)
,

where
li(θ) = log

(
fi(Xi ,θ)

)
.
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Example

Normal distribution

Li(µ, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2

(
xi − µ

)2
)

∝ 1√
σ2

exp

(
− 1

2σ2

(
xi − µ

)2
)

li(µ, σ
2) = log(1)− 1

2
log(σ2)− 1

2σ2

(
xi − µ

)2

= −1
2

log(σ2)− 1
2σ2

(
xi − µ

)2

l(µ, σ2) =
n∑

i=1

li(µ, σ
2)
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Example

Linear regression

Li(β, σ
2) =

1√
2πσ2

exp

(
− 1

2σ2

(
yi − x ′iβ

)2
)

∝ 1√
σ2

exp

(
− 1

2σ2

(
yi − x ′iβ

)2
)

li(β, σ
2) = −1

2
log(σ2)− 1

2σ2

(
yi − x ′iβ

)2

l(β, σ2) = −1
2

n log(σ2)− 1
2σ2

n∑
i=1

(
yi − x ′iβ

)2
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Example

Binary regression

We obtain

Li(β) = πyi
i

(
1− πi)

1−yi

li(β) = yi log(πi) + (1− yi) log(1− πi)

for the likelihood and log-likelihood.
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Example (continued)

Binary regression

Because of

πi =
exp(x ′iβ)

1 + exp(x ′iβ)
, 1− πi =

1
1 + exp(x ′iβ)

and

log

(
πi

1− πi

)
= x ′iβ.

we further obtain

li(β) = yix ′iβ + log

(
1

1 + exp(x ′iβ)

)
= yix ′iβ − log

(
1 + exp(x ′iβ)

)
in case of the logit model.
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Score Function

Si(θ) =

(
∂li(θ)

∂θ1
, . . . ,

∂li(θ)

∂θp

)′

S(θ) =
n∑

i=1

Si(θ)

The ML-estimator is the solution to the following system of equations

S(θ) = 0.
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Fisher Information

Ii(θ) = −


∂2 li (θ)
∂θ1∂θ1

· · · ∂2 li (θ)
∂θ1∂θp

...
...

∂2 li (θ)
∂θp∂θ1

· · · ∂2 li (θ)
∂θp∂θp



I(θ) =
n∑

i=1

Ii(θ)

The observed Fisher-Information I(θ̂ML) can be calculated by inserting
the ML-estimator θ̂ML.
Expected Fisher-Information J(θ) is the expected value of I(θ).
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Example

Normal distribution

li(µ, σ
2) = −1

2
log(σ2)− 1

2σ2

(
xi − µ

)2

∂li(µ, σ2)

∂µ
= − 1

2σ2 2(−1)(xi − µ) =
1
σ2 (xi − µ)

∂li(µ, σ2)

∂σ2 = − 1
2σ2 +

1
2(σ2)2 (xi − µ)2

S

(
µ

σ2

)
=


1
σ2

n∑
i=1

(
xi − µ

)
− n

2σ2 +
1

2(σ2)2

n∑
i=1

(
xi − µ

)2
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Example (continued)

Normal distribution
The ML-estimator is given as the solution to

I :
1
σ2

n∑
i=1

(xi − µ) =
1
σ2

( n∑
i=1

xi − nµ

)
= 0

II : − n
2σ2 +

1
2(σ2)2

n∑
i=1

(
xi − µ

)2
= 0
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Example (continued)

Normal distribution

From I we have µ̂ = x̄ .

Inserting µ̂=x̄ in II yields

− n
σ2 +

1
(σ2)2

n∑
i=1

(
xi − x̄

)2
= 0

We obtain

σ̂2 =
1
n

n∑
i=1

(
xi − x̄

)2
.
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Remark

The ML-estimator for σ2 in the previous example is biased.

Alternatively to the ML-estimator for variance parameters, the so
called Restricted ML-estimator (REML) is often used.

It maximizes the marginal likelihood

RL(σ2) =

∫ ∞
−∞

L(µ, σ2) dµ

=

∫ ∞
−∞

n∏
i=1

(
1√

2πσ2
exp
(
− 1

2σ2

(
xi − µ

)2))
dµ.

REML estimators are used regularly for variance parameters, e.g. in
linear models or linear mixed models, in the context of likelihood
based inference.
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Example

Linear regression

li(β, σ
2) = −1

2
log(σ2)− 1

2σ2

(
yi − x ′iβ

)2

l(β, σ2) = −1
2

n log(σ2)− 1
2σ2

(
Y − Xβ

)′(
Y − Xβ

)
= −1

2
n log(σ2)− 1

2σ2

(
Y ′Y − 2Y ′Xβ + β′(X ′X)β

)
∂l(β, σ2)

∂β
= − 1

2σ2

(
−2X ′Y + 2X ′Xβ

)
= − 1

σ2

(
X ′Xβ − X ′Y

)
∂l(β, σ2)

∂σ2 = −n
2

1
σ2 +

1
2(σ2)2

(
Y − Xβ

)′(
Y − Xβ

)
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Example (continued)

Linear regression

Hence the score function is given by

S

(
β

σ2

)
=

(
− 1
σ2

(
X ′Xβ − X ′Y

)
− n

2σ2 + 1
2(σ2)2

(
X − Xβ)′

(
Y − Xβ

))

To obtain the ML-estimator we solve

S

(
β

σ2

)
=

(
0

0

)
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Example (continued)

Linear regression

We immediately obtain

β̂ML =
(
X ′X

)−1
X ′Y

σ̂2
ML =

1
n

(
Y − X β̂

)′(
Y − X β̂

)
.

Again σ̂2
ML is biased. The REML estimator

σ̂2
REML =

1
n − k − 1

(
Y − X β̂

)′(
Y − X β̂

)
is unbiased and maximizes the marginal likelihood

RL(σ2) =

∫
L

(
β

σ2

)
dβ.
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Example

Binary regression: Logit model

li(β) = yix ′iβ − log
(
1 + exp(x ′iβ)

)
= yiηi − log

(
1 + exp(ηi)

)
The individual score function is given by

si(β) =
∂li(β)

∂β
=
∂li(β)

∂ηi

∂ηi

∂β

=

(
yi −

1
1 + exp(ηi)

exp(ηi)

)
x i

= (yi − πi)x i .
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Example (continued)

Binary regression: Logit model

This implies

s(β) =
n∑

i=1

(yi − πi)x i = X ′(y − π),

where

X =


1 x11 . . . x1k

1 x21 . . . x2k

.

.

.
.
.
. · · ·

1 xn1 . . . xnk


is a design matrix and y = (y1, . . . , yn)′ and π = (π1, . . . , πn)′. The
ML-estimator solves the nonlinear equation system

s(β) = X ′
(
y − π

)
= 0

numerically.
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Example (continued)

Binary regression: Logit model

J(β) = E

(
−∂

2l(β)

∂β∂β′

)
= Cov(S(β)) = E(S(β)S′(β)).

After some tedious calculations we finally obtain

J(β) =
n∑

i=1

x ix ′iπi(1− πi).
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Numerical computation of the ML–estimator

In most practical situations

s(θ) = 0

can not be solved analytically. In this case we need numerical
algorithms to determine the ML estimator.

Here: Newton method and Fisher scoring.
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Iterative solution: θ one dimensional

1 Set θ = θ(0)

2 Fit at θ = θ(0) a tangent to s(θ). The tangent is given by

y = s
(
θ(0)

)
+
∂s
(
θ(0)

)
∂θ

·
(
θ − θ(0)

)
3 Set θ = θ(1) as the root of the tangent, i.e.

θ(1) = θ(0)−

∂s
(
θ(0)

)
∂θ

−1

·s
(
θ(0)

)
= θ(0)+I−1

(
θ(0)

)
·s
(
θ(0)

)
4 Proceed with step 2 thereby replacing θ(0) by θ(1). Iterate until the

new solution θ(1) and the previous solution do not change.
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Figure: Illustration Newton method.
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Figure: Illustration Newton method.
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Figure: Illustration Newton method.
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Figure: Illustration Newton method.
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General multiparameter case θ = (θ1, . . . , θp)
′:

θ(1) = θ(0)−

∂s
(
θ(0)

)
∂θ′

−1

s
(
θ(0)

)
= θ(0) +

(
I
(
θ(0)

))−1
s
(
θ(0)

)
with

s(θ) =

(
∂l(θ)

∂θ1
, . . . ,

∂l(θ)

∂θp

)′

I(θ) = −∂s(θ)

∂θ′
= −


∂2 l(θ)
∂θ1∂θ1

. . . ∂2 l(θ)
∂θ1∂θp

...
...

∂2 l(θ)
∂θp∂θ1

. . . ∂2 l(θ)
∂θp∂θp
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Fisher scoring

Replace the Fisher information I(θ) by the expected Fisher Information
J(θ) = E(I(θ)), i.e.

θ(1) = θ(0) +
(

J
(
θ(0)

))−1
s
(
θ(0)

)
.

Advantage: In many cases numerically more favorable.
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Properties of the ML-estimator

a) The ML-estimator is asymptotically unbiased and consistent.

b) Distributional properties

θ̂ML
a∼ Np

(
θ, J(θ)−1)

J(θ) can be substituted by J(θ̂ML), I(θ) or I(θ̂ML).

c) For n→∞ the ML-estimator converges to the Cramér - Rao bound:

Cov(θ̂ML) = J(θ)−1.

Hence, the ML-estimator is efficient for n→∞.
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Statistical tests

Linear hypotheses

H0 : Cθ = d versus H1 : Cθ 6= d,

where C is a r × p with full column rank.
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Some special cases

j-th parameter zero

H0 : θj = 0 versus H1 : θj 6= 0

C = (0 . . . 1︸︷︷︸
j

. . . 0) d = 0

Parameter θl equal to θj

H0 : θl = θj versus H1 : θl 6= θj

C = (0 . . . 1︸︷︷︸
l

. . . −1︸︷︷︸
j

. . . 0) d = 0.
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Test principles

Likelihood–ratio–test
θ̃ the ML-estimator for θ under Cθ = d .

W := 2(l(θ̂ML)− l(θ̃))
a∼ χ2

r

Wald–test

T := (Cθ̂ML − d)′(C ̂Cov(θ̂ML) C′)−1(Cθ̂ML − d)
a∼ χ2

r

Score–test

U := s(θ̃)′ ̂Cov(θ̂ML)
−1

s(θ̃)
a∼ χ2

r
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Wald-Test (special case)

Test the hypotheses

H0 : θj = θj0 against H1 : θj 6= θj0

Possible test statistic

T =
θ̂j − θj0

se
(
θ̂j

) a∼ N(0, 1)

Reject H0 if |T | > z1−α2 .

Alternative test statistic

T 2 =
(θ̂j − θj0)2

se
(
θ̂j

)2
a∼ χ2(1)

Reject H0 if T 2 > χ2
1(1− α).
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Statistical Inference

Chapter 5

Model choice and variable
selecion
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Model choice and variable selecion

Introduction
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Introduction

In many applications, a large (potentially enormous) number of
candidate predictor variables is available, and we face the challenge
and decision as to which of these variables to include in the
regression model.
The following are two naive (but often practiced) approaches to the
model selection problem:

Strategy 1: Estimate the most complex model which includes all
available covariates.
Strategy 2: First estimate a model with all variables. Then, remove all
insignificant variables from the model.
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Introduction

We investigate the simulated data illustrated in Figure 8 a).

The true model used for simulation is
yi = −1 + 0.3xi + 0.4x2

i − 0.8x3
i + εi with εi ∼ N(0, 0.072).

The scatter plot suggests polynomial modeling of the relationship
between y and x resulting in the regression model

yi = β0 + β1xi + β2x2
i + · · ·+ βlx

l
i + εi .

Figure 8 c) - e) show the estimated relationship for l = 1 (regression
line), l = 2, and l = 5.
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Introduction

Figure 8 f) additionally displays the mean squared error

MSE(l) =
1

50

50∑
i=1

(yi − ŷi(l))2

of the fitted models depending on the order of the polynomial
(continuous line). Clearly, MSE(l) decreases monotonically with
increased l .

Figure 8 b) shows additionally simulated observations for every
design point xi , i = 1, . . . , 50. We refer to this data set as the
validation sample, whereas we refer to the first data set (used for
estimation) as the training set.
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Introduction

Figure 8 f) shows the mean squared error of ŷ∗i for the data y∗i
(dashed line) in the validation set.

Apparently, the fit to the new data is initially getting better with an
increase of the polynomial order. However, from the polynomial
order l = 3 onward, the fit is getting worse.

The more complex the model, the better is the fit to the data that
were used for estimation. However with new data resulting from the
same data generating process, models that are too complex can
cause a poorer fit.
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Introduction
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Figure: Simulated training data yi (panel a) and validation data y∗i (panel b). Panels
c)-e) show estimated polynomials based on the training set. Panel f) displays MSE(l) in
relation to the polynomial degree (solid line). The dashed line shows MSE(l), if the
estimated polynomials are used to predict the validation data y∗i .

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 6 / 51



Introduction

Consider the n = 150 observations (yi , xi1, xi2, xi3), i = 1, · · · , 150,
in the scatter plot matrix in Figure 9.

The variables x1 and x3 are independent and uniformly distributed
on [0,1]. The variable x2 is defined as x2 = x1 + u, where u is also
uniformly distributed on [0,1].

The response variable y is simulated according to the model

y | x1, x2, x3 ∼ N(−1 + 0.3x1 + 0.2x3, 0.2
2).

The conditional mean of y is thus dependent on x1 and x3, but not
on x2.
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Introduction

We first estimate a regression model with all available covariates x1,
x2, and x3, see Table 1.

Clearly, x1 and x2 are nonsignificant. If we followed strategy 2, we
would not only eliminate the nonrelevant covariate x2, but also the
relevant variable x1.

If we estimate a correctly specified model with true predictor
variables x1 and x3, we obtain the results shown in Table 2.

When having a correct model specification, not only is x3 significant,
but so is the previously insignificant variable x1.
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Introduction
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Figure: Scatter plot matrix for the variables y, x1, x2 and x3.
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Introduction

Standard- 95% Confidence-

Variable Coefficient error t-value p-value interval

intercept -0.970 0.047 -20.46 <0.001 -1.064 -0.877

x1 0.146 0.187 0.78 0.436 -0.224 0.516

x2 0.027 0.177 0.15 0.880 -0.323 0.377

x3 0.227 0.052 4.32 <0.001 0.123 0.331

Table: Results for the model based on covariates x1, x2 and x3.
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Introduction

Standard- 95% Confidence-

Variable Coefficient error t-value p-value interval

intercept -0.967 0.039 -24.91 <0.001 -1.042 -0.889

x1 0.173 0.055 3.17 0.002 0.065 0.281

x3 0.226 0.052 4.33 <0.001 0.123 0.330

Table: Results for the correctly specified model based on covariates x1 and x3.
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Model choice and variable selecion

Theoretical insights
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Theoretical insights

We focus on the following questions:
1 Irrelevant Variables: What can be said about the bias and the

variance of the least squares estimator, in the case that we include
irrelevant variables in the model?

2 Missing Variables: What can be said about the bias and the
variance of the least squares estimator, if we omit relevant variables
in the model?

3 Prediction Quality: What effect does the model specification, more
specifically the selected variables in the model, have on prediction?
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Bias and Variance of the Least Squares Estimator

Consider a partition of the available explanatory variables
x = (x0, x1, . . . , xk )′ with x0 ≡ 1 into the subsets
x1 = (x0, x1, . . . , xk1)′ and x2 = (xk1+1, . . . , xk )′.

We look at the two models

y = Xβ + ε = X 1β1 + X 2β2 + ε

and
y = X 1β1 + u.

The first model uses all available variables. The second model uses
only the subset x1.
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Bias and Variance of the Least Squares Estimator

For the submodel we obtain the least squares estimators

β̂ = (X ′X)−1X ′y and β̃1 = (X ′1X 1)−1X ′1y

respectively.

For the estimator β̃1 of the submodel, we obtain

E(β̃1) = β1 + (X ′1X 1)−1X ′1X 2β2

and
Cov(β̃1) = σ2(X ′1X 1)−1.

For the estimator β̂ in the full model we obtain

E(β̂) = β Cov(β̂) = σ2 (X′X)−1.
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Bias and Variance of the Least Squares Estimator

We now investigate the following two situations:

Missing variables: Even though the complete model y = Xβ + ε is
correct, we mistakenly estimate the reduced model y = X 1β1 + u.
In this case we neglect the relevant variables x2.

Irrelevant Variables: Even though the reduced model y = X 1β1 + u
is correct, we mistakenly estimate the full model y = Xβ + ε. In
this case, we included irrelevant variables in the model. The
variables in x2 are redundant.
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Bias and Variance of the Least Squares Estimator

In the first case of missing variables the following applies:

β1 is biased. An exception is the case when X ′1X 2 = 0, i.e. every
variable in X 1 is uncorrelated to every variable in X 2.

It can be shown that the difference Cov(β̂1)− Cov(β̃1) of
covariance matrices is positive semi-definite. This implies that the
components of the estimator β̃1 based on the submodel
y = X 1β1 + u show a smaller variance than the corresponding
components of the estimator β̂1 based on the correct model
y = Xβ + ε. Thus we have Var(β̂j) ≥ Var(β̃j).

It can be shown that situations exist, in which the components in β̃1
based on the misspecified submodel actually show a smaller MSE
than the components in β̂1, which are based on the full model, i.e.
MSE(β̂j) ≥ MSE(β̃j).
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Bias and Variance of the Least Squares Estimator

In the second case of irrelevant variables, we have:

Even though irrelevant variables were considered, β̂ is unbiased. Of
course, the estimator β̃1 based on the true model is also unbiased.

It can be shown that the estimators for the components in β1 based
on β̂ have larger variance than based on β̃1. Thus we have
Var(β̂j) ≥ Var(β̃j). If the estimated model contains irrelevant
variables, then the precision of the estimators decreases.

We can reach the following conclusion: Preferably, the specified model
should not contain irrelevant covariates. Moreover, we should aim for a
sparse model so that bias and variance, and thus MSE, are small.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 18 / 51



Consequences of the Model Specification on Prediction

Next we take a look at prediction quality in linear models. Thereby,
we do not necessarily assume that the model is correctly specified.

We assume independent observations yi , i = 1, . . . , n, with
expectation E(yi) = µi and variance Var(yi) = σ2.

The variables x0 = 1, x1, . . . , xk are available as potential
regressors.

We assume that a subset M ⊂ {0, 1, 2, . . . , k} of the available
variables will be used for estimation.

The specified model is defined by the subset of included covariates
with corresponding design matrix X M .
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Consequences of the Model Specification on Prediction

For the least squares estimator we obtain

β̂M = (X ′MX M)−1X ′My .

An estimator ŷM for the vector µ of means µi = E(yi) is given by

ŷM = X Mβ̂M .

We can view the estimator ŷiM also as a prediction for future
observations yn+i = µi + εn+i , i = 1, . . . , n, with given covariates
xi1, . . . , xik .

In the following, we derive a formula for the sum of the expected
squared prediction errors

∑
E(yn+i − ŷiM)2.
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Consequences of the Model Specification on Prediction

To do so, we need the following, easily verifiable, properties of ŷM :

Expectation:
E(ŷM) = X M(X ′MX M)−1X ′ME(y).

Covariance matrix:

Cov(ŷM) = σ2X M(X ′MX M)−1X ′M .

Sum of the variances:

n∑
i=1

Var(ŷiM) = σ2tr(X M(X ′MX M)−1X ′M) = |M|σ2,

where |M| represents the cardinal number of M, i.e. the number of
the covariates included in the model. The sum of the variances
increases as more covariates are included in the model.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 21 / 51



Consequences of the Model Specification on Prediction

Sum of the mean squared errors (SMSE):

SMSE =
n∑

i=1

E(ŷiM − µi)
2

=
n∑

i=1

E ((ŷiM − µiM) + (µiM − µi))
2

=
n∑

i=1

Var(ŷiM) + 2
n∑

i=1

E ((ŷiM − µiM)(µiM − µi)) +
n∑

i=1

(µiM − µi)
2

= |M|σ2 +
n∑

i=1

(µiM − µi)
2.

Here we used µiM = E(ŷiM) as an abbreviation for the expectation
of the estimator ŷiM .
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Consequences of the Model Specification on Prediction

These properties provide us with the expected squared prediction error:

SPSE =
n∑

i=1

E(yn+i − ŷiM)
2

=
n∑

i=1

E((yn+i − µi)− (ŷiM − µi))
2

=
n∑

i=1

(E(yn+i − µi)
2 − 2E((yn+i − µi)(ŷiM − µi)) + E(ŷiM − µi)

2)

=
n∑

i=1

E(yn+i − µi)
2 +

n∑
i=1

E(ŷiM − µi)
2

= n σ2 + SMSE

= n σ2 + |M|σ2 +
n∑

i=1

(µiM − µi)
2

Note that in line 3 of the above derivation, the expectation for the cross
product term can be written as the product of expectations due to the
independence of ŷiM and yn+i . This way the entire term becomes zero.
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Consequences of the Model Specification on Prediction

Thus, the expected squared prediction error can be decomposed into
three additive terms:

Irreducible Prediction Error: The first term n σ2 depends on the error
variance. Hence, it cannot be reduced, even by sophisticated
inference techniques. This term is therefore referred to as the
irreducible prediction error.

Variance: The second term consists of the sum of variances
Var(ŷiM) of the estimators ŷiM . This term can be manipulated
through model choice. It becomes smaller as fewer variables are
included in the model.

Squared Bias: The last term
∑

(µiM − µi)
2 can be seen as a bias

term. It consists of the squared bias of the estimator ŷiM for the
expectation µi . This term can also be manipulated through model
choice and becomes smaller as more variables are included in the
model.
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Consequences of the Model Specification on Prediction

The decomposition of the expected prediction error into an
irreducible error, a variance term, and a squared bias term is not
limited to linear models, but rather a fundamental property of
prediction in all statistical models.

The formula for SPSE shows a classical bias-variance trade-off.

The more complex the model, the smaller the squared bias and the
greater the variance. On the contrary, simpler models show a
greater squared bias and in return for that a smaller variance.

This bias-variance trade-off is not only characteristic for linear
models, but for all statistical models.
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Model choice and variable selecion

Model choice
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Model choice: Minimizing SPSE

Estimate SPSE using new and independent data

If in fact additional observations yn+i are available, we are able to
estimate SPSE =

∑
E(yn+i − ŷiM)2 simply by

ŜPSE =
∑n

i=1(yn+i − ŷiM)2.

In practice, it is usually not possible to use this approach, as it rarely
happens that additional observations are collected.
An alternative procedure is the following:

Randomly split the data into two parts, i.e. a test and a validation
sample.
Use the test data set to estimate the specified model.
Use the validation set to assess the goodness-of-fit, i.e. for the
estimation of SPSE.
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Model choice: Minimizing SPSE

Estimate SPSE using existing data

A naive estimator for SPSE would be the use of the squared sum of
residuals

∑
(yi − ŷiM)2.

Note that this sum underestimates on average the expected
prediction error, as it can be shown that

E

(
n∑

i=1

(yi − ŷiM)2

)
= SPSE− 2|M|σ2.

Thus a better estimate for SPSE is given by

ŜPSE =
n∑

i=1

(yi − ŷiM)2 + 2|M|σ̂2.
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Model choice: Minimizing SPSE

Accordingly, we choose a model that minimizes ŜPSE. In doing so
we have to keep in mind that we always use the same estimator for
σ̂2. Preferably, this estimator should be based on the full model with
all available variables, in order to keep the bias in σ̂2 small.

The criterion ŜPSE has the typical structure of many model choice
criteria. It consists of two terms: The first term, the sum of squared
residuals, measures the goodness-of-fit and becomes smaller the
more complex the model becomes. The second term 2|M|σ̂2

measures model complexity and becomes smaller as models
become simpler.
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Model choice: Corrected coefficient of determination

When comparing different models, the use of the coefficient of
determination is limited, since the coefficient of determination will
always increase (never decrease) with the addition of a new
covariate into the model.

The corrected coefficient of determination adjusts for this problem,
by including a correction term for the number of parameters.

The corrected coefficient of determination is defined by

R̄2 = 1− n − 1
n − p

(1− R2).

We advice against its usage, since the “penalty” for newly included
covariates appears to be too small. It can be shown that R̄2 already
increases when a variable with a t-value greater than 1 is included in
the model, implying we would include variables with a p-value of
about 0.3.
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Model choice: Mallow’s Cp

Mallow’s Cp (“Complexity parameter”) is defined by

Cp =

n∑
i=1

(yi − ŷiM)2

σ̂2 − n + 2|M|.

Cp can be understood as an estimate of SMSE/σ2.

Thus minimizing Cp produces the same optimal model as

minimizing ŜPSE.
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Model choice: Akaike information criterion

AIC is defined by

AIC = −2 · l(β̂M , σ̂
2) + 2 (|M|+ 1),

where l(β̂M , σ̂
2) is the maximum value of the log-likelihood.

Smaller values of the AIC correspond to a better model fit.

In a linear model with Gaussian errors, we obtain

AIC = n · log(σ̂2) + 2 (|M|+ 1).
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Model choice: Akaike information criterion

Figure 10 plots AIC for the simulated data from the Example on
page 237 as a function of the polynomial degree.

AIC obtains a minimum for l = 2 resulting in a reasonable model,
even though we do not obtain the polynomial order of the true model
with l = 3.
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Model choice: Akaike information criterion
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Figure: AIC as a function of the polynomial degree for the simulated data of the
example on page 237.
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Model choice: Cross Validation

Cross validation is based on the following general principle:

Partition the data set into r subsets 1, . . . , r , of similar size.

Start with the first data set as validation set and use the combined
remaining r − 1 data sets for parameter estimation. Based on the
estimates, obtain predictions for the validation set and determine the
sum of the squared prediction errors.

Cycle through the partitions using the second, third, up to the r th
data set as validation sample, and all other data sets for estimation.
Determine the sum of squared prediction errors.

Use the model with the smallest sum of squared prediction errors,
where the final parameter estimates reflect all data. The partition
into test and validation samples serves only to estimate the
expected squared prediction error.
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Model choice: “leave-one-out” Cross Validation

“leave-one-out” cross validation uses all observations with the
exception of one for the estimation of model parameters.

We use this “leave-one-out” estimator to predict the deleted
observation and to determine the squared prediction error.

If we denote the “leave-one-out” estimator with ŷ−i
iM , we obtain the

cross validation score

CV =
1
n

n∑
i=1

(yi − ŷ−i
iM )2.

It can be shown

CV =
1
n

n∑
i=1

(
yi − ŷiM

1− hiiM

)2

,

where hiiM are the diagonal elements of the hat matrix
HM = X M(X ′MX M)−1X ′M.
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Model choice and variable selecion

Practical Use of Model Choice
Criteria

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 37 / 51



Practical Use of Model Choice Criteria

We can use the various model choice criteria to select the most promising
models from candidate models. We recommend the following approach:

On the basis of scientific knowledge, perhaps gained from previous
research, we obtain a preselection of potential models. The models
can differ in the number of variables but also in model type (e.g.
linear vs. nonlinear). The total number of potential models should
be as small as possible.

All potential models can now be assessed with the aid of one of the
various model choice criteria. The summary of the results should
not be restricted to the “best” model. As a rule, there are a number
of competitive models having approximately equal model fit, differing
only in small aspects from each other. These differences cause
some uncertainty regarding the conclusions.
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Practical Use of Model Choice Criteria

If the number of potential models is large, we can use the following
partially heuristic methods:

Complete Model Selection (All-Subset-Selection): In case that the
number of covariates is smaller than about 40, we can determine
the best model (in the sense of a model choice criterion) with the
“leaps and bounds” algorithm. An implementation can be found e.g.
in the R package leaps.

Forward Selection: Based on a starting model, forward-selection
includes one additional variable in every iteration of the algorithm.
The variable which offers the greatest reduction of a preselected
model choice criteria (Cp, AIC, CV) is chosen. The algorithm
terminates if no further reduction is possible.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 39 / 51



Practical Use of Model Choice Criteria

Backward Elimination: Backward elimination starts with the full
model containing all potential covariates. Subsequently, in every
iteration, the covariate which provides the greatest reduction of the
model choice criteria (Cp, AIC, CV) is eliminated from the model.
The algorithm terminates if no further reduction is possible.

Stepwise Selection: Stepwise selection is a combination of forward
selection and backward elimination. In every iteration of the
algorithm, the inclusion and the deletion of a variable are both
possible.
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Practical Use of Model Choice Criteria

The listed procedures should not be confounded with an algorithm
proposed by Efroymson in the 1960s, even though the approach is
similar.

In contrast to what has been proposed above, the Efroymson
algorithm includes or excludes those variables in/from the model,
which have the highest or lowest t-value.

The procedure terminates when no variable that potentially needs to
be included has a p-value of less than a previously fixed maximal
p-value (e.g. 0.05) and when no variable that needs to be excluded
has a p-value greater than a minimal p-value (e.g. 0.1).
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Practical Use of Model Choice Criteria

This automatic procedure, which is implemented in all major statistical
software packages, is often viewed as obscure among statisticians due to
the following two reasons:

Forward, backward, and stepwise selection usually provide different
results. This also happens when using a global model choice
criterion such as AIC. We can, however, compare the different
selected models with the help of the global model choice criterion.
When using the Efroymson approach, discrimination between the
different models is impossible.

The repetitive use of the t-test statistic, to assess whether or not a
regression coefficient is different from zero, suggests exact tests.
However, the t-test statistic does not follow a t-distribution under the
null hypothesis, since during the selection process we do not test an
arbitrary variable, but rather the variable with the maximal t-value.
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Case study: prices of used cars

We illustrate the approaches for model choice using data from the
sales price of pre-owned VW Golf automobiles.

Our goal is to model the relationship between the sales price in
1000 Euro (variable price) and the five explanatory variables “age of
the car in months” (age), “kilometer reading in 1000 km” (kilometer ),
“number of months until the next appointment with the Technical
Inspection Agency” (TIA), “ABS brake yes/no” (extras1), and
“sunroof yes/no” (extras2).
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Case study: prices of used cars

The plots of the Figure on page 281 suggest the following effects:

We can assume a linear or monotonically decreasing nonlinear
effect for the variables age and kilometer , which could be
appropriately modeled using (orthogonal) polynomials of degree
three or less.

The variable TIA appears to either have no effect or a very weak
linear effect on the average sales price.

Cars with ABS (extras1) seem to be slightly more expensive than
cars without ABS; the effect, however, remains arguable.

We can attest to no difference in the average sales price for models
with or without sunroof (extras2).

All in all, there seems to be a relationship with age and the kilometer
reading. The effects of the remaining variables appear doubtful.
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Case study: prices of used cars

We first examine eight regression models (see Table 3), which do
not differ in the modeling of the variables age and kilometer . For the
remaining three regressors, all possible model combinations will be
tested.

Using the AIC criterion, we obtain the first model in Table 3 as the
preliminary best model. Figure 11 displays the AIC values for the
eight models under consideration. In addition, the AIC for a ninth
model based on automatic variable selection is provided; see below.
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Case study: prices of used cars

Since only five explanatory variables are available, we can even
determine the AIC best model with the help of the “Leaps and
Bounds” algorithm. This model attains an AIC value of 389.35. It
differs from the current “best model", in that it only makes use of
polynomials of second degree (not third) for the variables age and
kilometer .

Figure 11 shows that the obtained AIC for this ninth model is
considerably smaller than the best AIC value of all the models that
we examined so far.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 5 – Model choice and variable selecion – 46 / 51



Case study: prices of used cars
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Case study: prices of used cars

Model kilometer age extras1 extras2 TIA AIC

degree 3 degree 3 linear

1 x x 393.234 (1)

2 x x x 394.566 (2)

3 x x x 395.119 (4)

4 x x x 394.973 (3)

5 x x x x 396.481 (6)

6 x x x x 396.143 (5)

7 x x x x 396.881 (7)

8 x x x x x 398.085 (8)

Table: Prices of used cars: potential models. The values in brackets indicate
the rank of the models according to AIC.
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Case study: prices of used cars

38
7

39
0

39
3

39
6

39
9

A
IC

1 2 3 4 5 6 7 8 9
model number

AIC for the different models

Figure: Prices of used cars: AIC values for the potential models.
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Case study: prices of used cars

Standard- 95% Confidence-

Variable Coefficient error t-value p-value interval

intercept 3.397 0.056 60.220 <0.001 3.285 3.508

ageop1 -0.705 0.061 -11.470 <0.001 -0.826 -0.584

ageop2 0.187 0.057 3.270 0.001 0.074 0.300

kilometerop1 -0.439 0.061 -7.170 <0.001 -0.560 -0.318

kilometerop2 0.141 0.057 2.460 0.015 0.028 0.254

Table: Prices of used cars: estimation results for the best model according to
AIC.
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Case study: prices of used cars
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Figure: Prices of used cars: model 9 based on all-subset selection, effects of
age and kilometer reading including partial residuals.
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Statistical Inference

Chapter 6

Bayesian Inference
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Bayesian Inference

Basic Concepts
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Basic Concepts

The fundamental difference to likelihood-based inference is that the
unknown parameters θ = (θ1, . . . , θp)′ are not considered as fixed,
deterministic quantities but as random variables with a prior
distribution.

Prior distribution: Any (subjective) information about the unknown
parameter θ is expressed by specifying a probability distribution
p(θ) for θ. The prior describes the degree of uncertainty about the
unknown parameters prior to the statistical analysis.

Observation model: The observation model specifies the conditional
distribution of observable quantities, that is the random sample
variables Y = (Y1, . . . ,Yn)′, given the parameters. The p.d.f. or
probability function of this conditional distribution is proportional to
the likelihood L(θ) and will be denoted by p(y |θ).
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Basic Concepts

Based on the prior and the observation model, Bayes’ theorem
determines the distribution of θ after the data are known through the
statistical experiment, that is the conditional distribution of θ given
the observations y = (y1, . . . , yn)′.

We obtain

p(θ | y) =
p(y |θ) p(θ)∫

p(y |θ) p(θ) dθ
= c · p(y |θ) p(θ),

with the normalizing constant c = [
∫

p(y |θ)p(θ) dθ]−1. This
conditional distribution is called posterior (distribution).
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Example

Poisson Distribution
Consider an i.i.d. sample Y1, . . . ,Yn from a Poisson distribution, i.e.
Yi ∼ Po(λ).

The joint probability for the observed sample y = (y1, . . . , yn)′ is

p(y |λ) =
1

y1! · · · yn!
λ
∑n

i=1 yi exp(−nλ).

We specify a gamma distribution with parameters a and b for λ, i.e.
λ ∼ Ga(a, b). It follows that λ has p.d.f.

p(λ) = k λa−1 exp(−bλ)

with k = ba

Γ(a) .
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Poisson Distribution
The posterior is obtained as

p(λ | y) =
p(y |λ) p(λ)∫

p(y |λ) p(λ) dλ

= c 1
y1!···yn!λ

∑n
i=1 yi exp(−nλ) kλa−1 exp(−bλ).

To determine the type of this distribution, we can ignore all factors
that do not depend on λ. This gives

p(λ | y) ∝ λ
∑n

i=1 yi exp(−nλ)λa−1 exp(−bλ)

= λa+
∑n

i=1 yi − 1 exp(−(b + n)λ).
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Poisson Distribution
This has the form of a gamma distribution with parameters
a′ = a +

∑n
i=1 yi and b′ = b + n, i.e.

λ | y ∼ Ga

(
a +

n∑
i=1

yi , b + n

)
,

and the posterior has the same type of distribution as the prior.

We call the prior as conjugate to the Poisson model because the
posterior is of the same type as the prior.
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Bayesian Logic Model - Diffuse Prior

We consider a logit model with a single covariate x :

Yi = B(1, πi), πi =
exp(ηi)

1 + exp(ηi)
, ηi = β0+β1xi , i = 1, . . . , n.

Assuming, as usual, (conditionally) independent response variables,
the observation model is given by

p(y |β) ∝ L(β) =
n∏

i=1

πyi
i (1− πi)

1−yi ,

where β = (β0, β1)′ is the vector of regression coefficients.
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Bayesian Logic Model - Diffuse Prior

Since estimated regression coefficients are often approximately
normally distributed, it is reasonable to assume a two-dimensional
normal prior, i.e.

p(β) ∼ N2(m,M)

with prior mean m and prior covariance matrix M .

If results from a previous statistical analysis are available, we could
choose the previous point estimate as m and its estimated
covariance matrix as M .

If the previous analysis has been carried out some time ago, we may
also multiply M with a factor a > 1 to express increased uncertainty.
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Bayesian Logic Model - Diffuse Prior

Increasing the variances in M , the normal prior becomes very flat
and approximates a uniform distribution.

In the limiting case the prior becomes proportional to a constant, i.e.

p(β) ∝ const.

We also write p(β) ∝ 1.

The integral of this flat prior over IR2 is not finite, so that p(β) is not
a density in the usual sense. Such a prior is called improper or
diffuse.
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Bayesian Logic Model - Diffuse Prior

Such diffuse priors are admissible as long as the posterior, resulting
from Bayes’ theorem, is a proper distribution. i.e. its integral over
IR

2 is finite. In a Bayesian logit model this is the case if a finite MLE
exists.

With a flat, diffuse prior the posterior density is

p(β | y) =
p(β)p(y |β)∫

p(β)p(y |β)d β
∝ p(y |β) =

n∏
i=1

πyi
i (1− πi)

1−yi .

Although the posterior is proper, it has no known distributional type.
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Bayesian Point Estimates

The posterior mean is given by

θ̂ = EW (θ | y) =

∫
θ p(θ | y) dθ = c ·

∫
θ p(y |θ) p(θ) dθ.

The posterior mode is the value θ̂ that (globally) maximizes the
posterior density, i.e.

θ̂ = argmax
θ

p(θ | y) = argmax
θ

p(y |θ)p(θ).

The second expression shows that no integration is necessary to
compute the posterior mode, because the normalizing constant is
not needed.

The posterior median, that is the median of the posterior
distribution, is sometimes preferred to the posterior mean because it
is more robust against outliers.
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Poisson Distribution
The posterior mean is

EW (λ | y) =

a +
n∑

i=1

yi

b + n
.

The smaller a (in relation to
∑

yi ) and b (in relation to n), the closer
the posterior mean is to the usual MLE λ̂ = ȳ .

The larger the prior information, i.e. the larger a and b are, the more
the posterior mean and the MLE differ from each other.
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Bayesian Interval Estimates

For the posterior mean, a natural measure is the posterior variance.

For the posterior median, the interquartile distance seems to be
appropriate to measure its variability.

In case of the posterior mode, the curvature of the posterior at the
mode, i.e. the observed Fisher information, is a natural choice.

Another way of assessing uncertainty are Bayesian confidence
intervals or credible intervals or, more generally, credible regions:
A region C ⊂ Θ of the parameter space is said to be a
(1− α)-credible region for θ if

P(θ ∈ C | y) = 1− α.

If C ⊆ IR is an interval it is called credible interval.

A credible region contains (at least) a probability mass 1− α of the
posterior.
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Bayesian Inference

Markov Chain Monte Carlo Methods
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Basic Idea

MCMC methods allow to draw samples from posterior distributions
(and, in principle, from any distribution) that are usually not available
analytically and to estimate characteristics of the posterior such as
the mean, the variance or quantiles, or the posterior density itself.

The most important advantage compared to more traditional
methods of drawing a sample from a distribution, for example
importance or rejection sampling, is that samples can be drawn from
high-dimensional densities, even for dimensions in the thousands.

Another advantage is that the normalizing constant, often a
high-dimensional integral that cannot be computed with traditional
numerical methods, does not have to be known.
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MCMC Methods - Basis Idea

Let θ be the unknown vector of parameters in a Bayesian model and
p(θ | y) the posterior density (we assume here that θ is continuous).

Instead of directly drawing an i.i.d. sample from p(θ | y), a Markov
chain is generated such that the iterations of the transition kernel
converge to the posterior of interest.

In this way random numbers are generated that can be considered
as a (correlated) sample from the posterior after some time of
convergence, the burn-in phase.
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Metropolis-Hastings Algorithm

To draw random numbers from the density p(θ | y), the
Metropolis-Hastings algorithm proceeds as follows:

1 Initialize θ(0) and the number T of iterations. Set t = 1.
2 Draw a random number θ∗ from the proposal density q(θ∗ |θ(t−1))

and accept it as the new state θ(t) with probability α(θ∗ |θ(t−1)),
otherwise set θ(t) = θ(t−1).

3 Stop if t = T , otherwise set t = t + 1 and go to 2.

After a burn-in phase t0, the random numbers θ(t0+1), . . . ,θ(T ) can be
considered as a (correlated) sample from p(θ | y).
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Bayesian Logit Model

We consider the following simulated logit model with two covariates
x1 and x2:

Yi = B(1, πi) i = 1, . . . , 500,

πi =
exp(ηi)

1 + exp(ηi)
,

ηi = −0.5 + 0.6 xi1 − 0.3 xi2.

The covariates x1 and x2 are drawn independently from a standard
normal distribution.

We want to construct a Metropolis-Hastings algorithm to estimate
the parameter β = (−0.5, 0.6,−0.3)′ given this simulated data.
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Bayesian Logit Model

We specify independent diffuse priors p(βj) ∝ const.
The posterior is then proportional to the likelihood:

p(β | y) ∝
500∏
i=1

πyi
i (1− πi)

1−yi .

As a proposal density for the Metropolis-Hastings algorithm we
choose a 3-dimensional normal distribution, with the current state
β(t−1) as its mean.
For its covariance matrix, we start with the diagonal matrix
Σ = diag(0.42, 0.42, 0.42).
Figure 13 (first row) shows the first 2000 random numbers for β0

and β1 drawn with this proposal density.
Since we have specified diffuse priors, Bayes estimates for the
regression coefficients should not differ too much from the MLEs.
Therefore, the MLEs are displayed as horizontal lines in the plots.
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Bayesian Logit Model
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Figure: Sampling paths for β0 and β1 for different MH algorithms. The third
column shows the respective autocorrelation functions for β1.

© 2020 Stefan Lang (Dept. of Statistics, Universität Innsbruck) Statistical Inference – 6 – Bayesian Inference – 20 / 33



Bayesian Logit Model
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Figure: Sampling paths for β0 and β1 for different MH algorithms. The third
column shows the respective autocorrelation functions for β1.
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Bayesian Logit Model

Clearly, only a few of the proposed random numbers are accepted
with this first algorithm, sometimes the state remains unchanged for
more than 100 iterations.

Thus, the acceptance probabilities are far too small.

We obtain larger acceptance probabilities if the variances of the
proposal density are decreased to Σ = diag(0.12, 0.12, 0.12).

The second row in Figure 13 shows the first 2000 random numbers
for β0 and β1 resulting from this second MH algorithm.

We recognize a short burn-in phase of about 50 iterations, followed
by reasonable iterations with relatively large acceptance rates.
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Bayesian Logit Model

If we further decrease the variance to
Σ = diag(0.022, 0.022, 0.022), acceptance rates are further
increased, but successive draws remain almost in the same state,
see the first row in Figure 14.

A useful and important tool for assessing the quality of MCMC
algorithms is the autocorrelation function of the sample.

Ideally, autocorrelations should rapidly converge to zero with
increasing lags. The smaller the autocorrelation of successive
parameters, the better the characteristics of the posterior can be
estimated, based on the same length T of the sample.
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Bayesian Logit Model

For practical work, ’thinning’ is carried out for the original sample,
i.e. only every k th random number is kept in the sample, so that the
remaining random numbers are almost uncorrelated. In this way,
memory space can be saved without worsening estimation results.

To generate an approximately uncorrelated sample of size 1000 with
our second MH algorithm, we would have to generate about 20000
random numbers after a short burn-in phase and then keep only
every 20th random number in the thinned sample.
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Bayesian Logit Model

We can conclude the following:

Small variances of the proposal density lead to high acceptance
rates.

In contrast, acceptance rates become small for large variances.

For very large or very small variances autocorrelations of
successive random numbers are high.

The art of designing good MH algorithms is therefore the choice of
appropriate proposal densities that combine high acceptance rates
with low autocorrelations.

Furthermore, automated methods are desirable that do not require
subjective tuning of parameters of the proposal density.
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Bayesian Logit Model

An algorithm with these desirable properties is the MH algorithm
based on IWLS proposals, see the last column of Fig. 14.

Using this algorithm a Markov chain was generated and, after the
burn-in phase, 20000 random numbers were drawn. Saving every
20th random number led to a thinned sample of size 1000. Based
on this thinned sample all characteristics of interest of the posterior
can be approximated.

To approximate the posterior mean we compute the arithmetic
means for the sample, resulting in β̂ = (−0.64, 0.65,−0.38)′.

Estimation of credible intervals can be based on the quantiles of the
sampled random numbers. For example, we obtain 95% credible
intervals by choosing the 2.5% quantiles as lower and 97.5%
quantiles as upper bounds. This results in the intervals
[−0.87,−0.42], [0.52− 0.78] and [−0.52,−0.26] for the sample
generated in our example.
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