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Abstract

This tutorial demonstrates the usage of BayesX for analysing Bayesian semiparametric
regression models based on MCMC techniques. As an example we consider data on undernu-
trition of children in Zambia. The tutorial is designed to be self-contained and describes all
features of BayesX in detail, that will be needed throughout the tutorial. Therefore it may
also serve as a first introduction into the general usage of BayesX.
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1 Introduction

This tutorial demonstrates the usage of BayesX for analysing Bayesian semiparametric regression
models based on MCMC techniques. As an example we consider data on undernutrition of children
in Zambia. This data has already been analysed in Kandala et al. (2001) and we will use the same
model that has been developed there. Since our focus is on demonstrating how regression models
can be estimated in BayesX, we do not discuss or interpret the estimation results but simply give
the commands to produce them.

The main focus in this tutorial is on full Bayesian inference based on MCMC-techniques. BayesX
also supports the estimation of semiparametric regression models in an empirical Bayes context
based on mixed model methodology. An advantage of the the full Bayesian approach is, that it
can deal with massive data sets while the empirical Bayes approach is limited to data sets with
medium sample size. On the other side, questions about the convergence of MCMC samples or
sensitivity on hyperparameters do not arise in the empirical Bayes approach. Furthermore, this
approach may be much faster in situations with a relatively small number of regression parameters
and non-normal responses. A comparison of both approaches in a simulation study has shown,
that the empirical Bayes approach yields somewhat better point estimates, especially for Bernoulli
distributed response, see Fahrmeir, Kneib and Lang (2003).

A second tutorial, dealing with the empirical Bayes approach is available from the tutorials section
of the BayesX-homepage. All tutorials are designed to be self-contained and describe all features
of BayesX in detail, that will be needed throughout the tutorial. Users who are already familiar
with the usage of dataset and map objects may therefore skim through sections 3-5.

The theoretical background of Bayesian semiparametric regression will not be described in this
tutorial. Chapter 7 of the manual may serve as an introduction, full details about the estimation
techniques for the full Bayesian approach can be found in Fahrmeir and Lang (2001a,2001b), Lang
and Brezger (2003) and Brezger and Lang (2003). Survival models are treated in Hennerfeind,
Brezger and Fahrmeir (2003) and Fahrmeir and Hennerfeind (2003), Count data regression is
covered in Fahrmeir and Osuna (2003).

2 Description of the data set

Undernutrition among children is usually determined by assessing the anthropometric status of a
child relative to a reference standard. In our example undernutrition is measured by stunting or
insufficient height for age, indicating chronic undernutrition. Stunting for a child i is determined
using a Z-score which is defined as

Zi =
AIi −MAI

σ

where AI refers to the child‘s anthropometric indicator (height at a certain age in our example),
MAI refers to the median of the reference population and σ refers to the standard deviation of the
reference population.

The main interest is on modelling the dependence of undernutrition on covariates including the
age of the child, the body mass index of the child‘s mother, the district the child lives in and some
further categorial covariates. Table 1 gives a description of the variables that we will use in our
model.

3 Getting started

After having started BayesX, a main window with four sub-windows appears on the screen. These
are a command window for entering and executing code, an output window for displaying results,
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Variable Description
hazstd standardised Z-score of stunting
bmi body mass index of the mother
agc age of the child in months
district district where the child lives
rcw mother‘s employment status with categories ”working” (= 1) and ”not working”

(= −1)
edu1/2 mother‘s educational status with categories ”complete primary but incomplete

secondary” (edu1 = 1), ”complete secondary or higher” (edu2 = 1) and ”no
education or incomplete primary” (edu1 = edu2 = −1)

tpr locality of the domicile with categories ”urban” (= 1) and ”rural” (= −1)
sex gender of the child with categories ”male” (= 1) and ”female” (= −1)

Table 1: Variables in the undernutrition data set.

a review window for easy access to past commands, and an object browser that displays all objects
currently available.

BayesX is object oriented although the concept is limited, i.e. inheritance and other concepts of
object oriented languages like C++ or S-plus are not supported. For every object type a number
of object-specific methods may be applied to a particular object. The syntax for generating a new
object in BayesX is

> objecttype objectname

where objecttype is the type of the object, e.g. dataset, and objectname is the name to be given
to the new object.

The rest of the tutorial is separated in seven parts dealing with the different steps of estimating
a regression model. In section 4 we create a dataset object to incorporate, handle and manipulate
the data. We will also give a brief description of some methods that may be applied to dataset
objects. Since we want to estimate a spatial effect of the district in which a child lives, we need
the boundaries of the districts to compute the neighbourhood information of the map of Zambia.
This information will be stored in a map object. Section 5 describes how to create and handle
these objects. Estimation of the regression model is carried out in section 6 using a bayesreg object.
The next two sections describe how to visualise the estimation results and how to customise the
obtained graphics. Section 9 describes post estimation commands which can be used to investigate
the sampling paths and the autocorrelation functions of the estimated parameters. In a last section
we perform a sensitivity analysis to assess the impact of hyperparameter choices on our estimation
results.

If you have not done so yet, please download the data set and the boundary file associated with
this tutorial now. You may also want to download the batch file containing the commands used in
the following sections. Please note, that paths within these commands must be changed according
to the storage location of the corresponding files on your hard disk.

4 Reading data set information

In a first step we read the available data set information into BayesX. Therefore we create a dataset
object named d:

> dataset d

We store the data in d using the method infile:

> d.infile, maxobs=5000 using c:\data\zambia.raw
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Note, that we assume the data to be provided in the external file c:\data\zambia.raw. The first
few lines of this file look like this:

hazstd bmi agc district rcw edu1 edu2 tpr sex

0.0791769 21.83 4 81 -1 1 0 1 -1

-0.2541965 21.83 26 81 -1 1 0 1 -1

-0.1599823 20.43 56 81 1 -1 -1 1 1

0.1733911 22.27 6 81 -1 0 1 1 1

In our example the file contains the variable names in the first line. Therefore it is not necessary to
specify them in the infile command. If the file contained only the data without variable names,
we would have to supply them after the keyword infile:

> d.infile hazstd bmi agc district rcw edu1 edu2 tpr sex, maxobs=5000
using c:\data\zambia.raw

Option maxobs can be used to speed up the execution time of the infile command. If maxobs is
specified, BayesX allocates enough memory to store all the data while the total amount of required
memory is unknown in advance if maxobs remains unspecified. For larger data sets this may cause
BayesX to start reading the data set information several times because the currently allocated
memory is exceeded. However, this is only meaningful for larger data sets with more than 10,000
observations and could therefore be omitted in our example.

A second option that may added to the infile command is the missing option to indicate missing
values. Specifying for example ’missing = M’ defines the letter ’M’ as an indicator for a missing
value. The default for missing values are a period ’.’ and ’NA’ (which remain valid indicators for
missing values even if an additional indicator is defined by the missing option).

After having read in the dataset information we can inspect the data visually. Executing the
command

> d.describe

opens an Object-Viewer window containing the data in form of a spreadsheet (see Figure 1). This
can also be achieved by double-clicking on the dataset object in the object browser.

Figure 1: A screenshot of the dataset.

Further methods allow to examine the variables in the dataset object. For a categorial variable,

4



e.g. sex, the tabulate command may be used to produce a frequency table:

> d.tabulate sex

resulting in

Variable: sex

Value Obs Freq Cum
-1 2451 0.5057 0.5057
1 2396 0.4943 1

being printed in the output window. For continuous variables the descriptive command prints
several characteristics of the variable in the output window. E.g., executing

> d.descriptive bmi

leads to

Variable Obs Mean Median Std Min Max
bmi 4847 21.944349 21.4 3.2879659 12.8 39.29

5 Map objects

In the following we want to estimate a spatially correlated effect of the district in which a child
lives. Therefore we need the boundaries of the districts in Zambia to compute the neighbourhood
information of the map of Zambia. We therefore create a map object

> map m

and read in the boundaries using the infile command of map objects:

> m.infile using c:\data\zambia.bnd

Having read in the boundary information, BayesX automatically computes the neighbourhood
matrix of the map.

The file following the keyword using is assumed to contain the boundaries in form of closed
polygons. To give an example we print a small part of the boundary file of Zambia. The map
corresponding to the section of the boundary file can be found in Figure 2.

.

..

”52”,48
28.080507,-12.537530
28.083376,-12.546980
28.109501,-12.548961
28.134972,-12.566787
28.154797,-12.585320
28.165771,-12.593912
28.165771,-12.593912
28.160769,-12.609917
28.152800,-12.633824
28.144831,-12.657733
28.132877,-12.677656
28.120922,-12.701565
28.120922,-12.717505
28.120922,-12.741411
28.116938,-12.761335
28.108969,-12.777274
28.100998,-12.793213
28.089045,-12.817122
28.085060,-12.837045
28.081076,-12.856968
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28.081076,-12.876892
28.080862,-12.884153
28.080862,-12.884153
28.076630,-12.879521
28.031454,-12.881046
27.974281,-12.884675
27.910725,-12.878692
27.686228,-12.880120
27.665676,-12.854732
27.653563,-12.818301
27.639263,-12.759848
27.648254,-12.699927
27.662464,-12.680613
27.662464,-12.680613
27.666534,-12.675080
27.703260,-12.679779
27.752020,-12.695455
27.797932,-12.702188
27.836775,-12.707567
27.867813,-12.699892
27.902308,-12.667418
27.922668,-12.630853
27.943035,-12.596350
27.963434,-12.571486
27.983179,-12.563844
28.016331,-12.554779
28.070650,-12.542199
28.080507,-12.537530

.

..

For each region of the map the boundary file must contain the identifying name of the region, the
polygons that form the boundary of the region, and the number of lines the polygon consists of.
The first line always contains the region code surrounded by quotation marks and the number of
lines the polygon of the region consists of. The code and the number of lines must be separated
by a comma. The subsequent lines contain the coordinates of the straight lines that form the
boundary of the region. The straight lines are represented by the coordinates of their end points.
Coordinates must be separated by a comma. Note that the first and the last point must be identical
(see the example above) to obtain a closed polygon. Compare chapter 5 of the complete manual
for a detailed description of some special cases, e.g. regions divided into subregions.

Figure 2: Corresponding graph of the section of the boundary file

Map objects may be visualised using method describe:

> m.describe

resulting in the graph shown in Figure 3. Additionally, describe prints further information about
the map object in the output window including the name of the object, the number of regions, the
minimum and maximum number of neighbours and the bandwidth of the corresponding adjacency
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or neighbourhood matrix:

MAP m
Number of regions: 54
Minimum number of neighbors: 1
Maximum number of neighbors: 9
Bandsize of corresponding adjacency matrix: 24

Figure 3: The districts within Zambia.

The numerical complexity associated with the estimation of structured spatial effects using MCMC
techniques depends essentially on the structure of the neighbourhood matrix. Often the geograph-
ical information stored in a boundary file does not represent the ”ideal” ordering (as regards to
the estimation problem) of the districts or regions. Therefore it may be useful to reorder the map
using method reorder:

> m.reorder

Usually reordering results in a smaller bandwidth although the bandwidth is not the criterion that
is minimised by reorder. Instead the envelope of the neighbourhood matrix is minimised (compare
George and Liu 1981) .

In order to avoid reordering the map object every time you start BayesX it is useful to store the
reordered version in a separate file. This can be achieved using the outfile command of map
objects:

> m.outfile, replace using c:\data\zambiasort.bnd

The reordered map is now stored in the given file. Note, that specifying the option replace allows
BayesX to overwrite an existing file with the same name. Without this option an error message
would be raised if the given file is already existing.

Reading the boundary information from an external file and computing the neighbourhood matrix
may be a computationally intensive task if the map contains a large number of regions or if the
polygons are given in great detail. To avoid doing these computation in every BayesX session, we
store the neighbourhood information in a so-called graph file using method outfile together with
the graph option:

> m.outfile, replace graph using c:\data\zambiasort.gra

A graph file stores the nodes and the edges of a graph G = (N,E), see for example George and Liu
(1981, Ch. 3) for a first introduction into graph theory. A graph is a convenient way of representing
the neighbourhood structure of a geographical map. The nodes of the graph correspond to the
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region codes. The neighbourhood structure is represented by the edges of the graph. In some
situations it may be useful to define weights associated with the edges of a graph which can be be
stored in the graph file as well.

We now describe the structure of a graph file as it is expected by BayesX. The first line of a graph
file must contain the total number of nodes of the graph. In the remaining lines, the nodes of
the graph together with their edges and associated weights are specified. One node corresponds
to three consecutive lines. The first of the three lines must contain the name of the node, which
may simply be the name of a geographical region. In the second line the number of edges of that
particular node is given. The third line contains the corresponding edges of the node, where an
edge is given by the index of a neighbouring node. The index starts with zero. For example, if the
fourth and the seventh node/region in the graph file are connected/neighbours, the edge index for
the fourth node/region is 6 and for the seventh node/region 3.

We illustrate the structure of a graph file with an example. The following few lines are the
beginning of the graph file corresponding to the reordered map of Zambia:

57
87
1
5
76
3
9 8 7
67
2
10 9

.

.

.

The first line specifies the total number of nodes, in the present example 57 nodes. The subsequent
three lines correspond to the node with name ’87’, which is the first region in the reordered map
of Zambia. Region ’87’ has 1 neighbour, namely the sixth node appearing in the graph file. Once
again, note that the index starts with zero, i.e. 0 corresponds to the first node, 1 corresponds to
the second node and so on. Lines 5 to 7 in the example correspond to node ’76’ and its three
neighbours and lines 8 to 10 correspond to node ’67’.

In a graph file it is also possible to specify weights associated with the edges of the nodes. Since in
the preceding example no weights are explicitly specified, all weights are automatically defined to be
equal to one. Nonequal weights are specified in the graph file by simply adding them following the
edges of a particular node. An example of the beginning of a graph file with weights is given below:

57
87
1
5 1.44172
76
3
7 8 9 0.707424 1.3816 0.682372
67
2
9 10 1.67424 0.8406

.

..

Here the edge of the first node ’87’ has weight 1.44172, the edges of the second node have weights
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0.707424, 1.3816 and 0.682372.

Note, that graph files allow the estimation of more general Markov random fields. While the
polygons stored in a boundary file represent geographical information, the nodes and edges of a
graph may define arbitrary neighbourhood structures. For example, the definition of 3 dimensional
Markov random fields representing space-time interactions is possible.

To see how storing maps in graph files affects the computation time of the infile command, we
create a second map object and read in the information from the graph file. Again, we have to
specify the keyword graph:

> map m1
> m1.infile, graph using c:\data\zambiasort.gra

As you should have noticed, reading geographical information from a graph file is usually much
faster than reading from a boundary file. However, using graph files also has a drawback. Since they
do no longer contain the full information on the polygons forming the map, we can not visualise a
map object created from a graph file. Trying to do so

> m1.describe

raises an error message. This implies, that visualising estimation results of spatial effects can only
be based on map objects created from boundary files, although estimation can be carried out using
graph files. Since we will work with the map object m in the following, we delete m1:

> drop m1

6 Bayesian semiparametric regression

To estimate a regression model using MCMC techniques we first create a bayesreg object:

> bayesreg b

By default estimation results are written to the subdirectory output of the installation directory.
In this case the default filenames are composed of the name of the bayesreg object and the type of
the specific file. Usually it is more convenient to store the results in a user-specified directory. To
define this directory we use the outfile command of bayesreg objects:

> b.outfile = c:\data\b

Note, that outfile does not only specify a directory but also a base filename (the character ’b’
in our example). Therefore executing the command above leads to storage of the results in the
directory ’c:\data’ and all filenames start with the character ’b’. Of course the base filename may
be different from the name of the bayesreg object.

In addition to parameter estimates BayesX also gives acceptance rates for the different effects
and some further information on the estimation process. In contrast to parameter estimates this
information is not stored automatically but is printed in the output window. Therefore it is useful
to store the contents of the output window. This can be achieved automatically by opening a log
file using the logopen command

> logopen, replace using c:\data\logmcmc.txt

After opening a log file, every information written to the output window is also stored in the log file.
Option replace allows BayesX to overwrite an existing file with the same name as the specified
log file. Without replace results are appended to an existing file.

The model presented in Kandala et al. (2001) is given by the following semiparametric predictor:

η = γ0+γ1rcw+γ2edu1+γ3edu2+γ4tpr+γ5sex+f1(bmi)+f2(agc)+fstr(district)+funstr(district)

9



The two continuous covariates bmi and agc are assumed to have a possibly nonlinear effect on
the Z-score and are therefore modelled nonparametrically (as P-splines with second order random
walk prior in our example). The spatial effect of the district is split up into a spatially correlated
part fstr(district) and an uncorrelated part funstr(district), see Fahrmeir and Lang (2001b) for
a motivation. The correlated part is modelled by a Markov random field prior, where the neigh-
bourhood matrix and possible weights associated with the neighbours are obtained from the map
object m. The uncorrelated part is modelled by an i.i.d Gaussian effect.

To estimate the model we use method regress of bayesreg objects:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2)
+ agc(psplinerw2) + district(spatial,map=m) + district(random),
family=gaussian iterations=12000 burnin=2000 step=10 predict using d

Options iterations, burnin and step define properties of the MCMC-algorithm. The total
number of of MCMC iterations is given by iterations while the number of burn in iterations
is given by burnin. Therefore we obtain a sample of 10000 random numbers with the above
specifications. Since, in general, these random numbers are correlated, we do not use all of them
but thin out the Markov chain by the thinning parameter step. Specifying step=10 as above
forces BayesX to store only every 10th sampled parameter which leads to a random sample of
length 1000 for every parameter in our example.

Note, that the choice of iterations also affects computation time. On a 2.4 GHz PC estimation
of our model took about 1 minute and 5 seconds, which is rather fast in regard of the complexity
of the model.

If option predict is specified, samples of the deviance, the effective number of parameters pD,
and the deviance information criteria DIC of the model are computed, see Spiegelhalter et al.
(2002). In addition, estimates for the linear predictor and the expectation of every observation are
obtained.

In the following we reproduce the content of the output window to make the user familiar with the
estimation results produced by BayesX:

ESTIMATION RESULTS:

Predicted values:

Estimated mean of predictors, expectation of response and

individual deviances are stored in file

c:\data\b_predictmean.raw

Estimation results for the deviance:

Unstandardized Deviance (-2*Loglikelihood(y|mu))

Mean: 12688.959

Std. Dev: 12.615837

2.5% Quantile: 12663.847

10% Quantile: 12673.03

50% Quantile: 12688.804

90% Quantile: 12705.921

97.5% Quantile: 12714.078

Saturated Deviance (-2*Loglikelihood(y|mu) + 2*Loglikelihood(y|mu=y))

Mean: 4848.1335

Std. Dev: 98.563486

2.5% Quantile: 4657.7394

10% Quantile: 4719.1869

50% Quantile: 4847.534

90% Quantile: 4971.7679

97.5% Quantile: 5059.5874
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Samples of the deviance are stored in file

c:\data\b_deviance_sample.raw

Estimation results for the DIC:

DIC based on the unstandardized deviance

Deviance(bar_mu): 12639.654

pD: 49.305405

DIC: 12738.265

DIC based on the saturated deviance

Deviance(bar_mu): 4797.8139

pD: 50.31962

DIC: 4898.4532

Estimation results for the scale parameter:

Acceptance rate: 100 %

Mean: 0.802517

Std. dev.: 0.0164098

2.5% Quantile: 0.768981

10% Quantile: 0.782025

50% Quantile: 0.802168

90% Quantile: 0.824066

97.5% Quantile: 0.83595

FixedEffects1

Acceptance rate: 100 %

Variable mean Std. Dev. 2.5% quant. median 97.5% quant.

const 0.102975 0.0493194 0.00460694 0.102048 0.201918

rcw 0.00782474 0.0129786 -0.0177587 0.0079339 0.0325389

edu1 -0.0612525 0.0268997 -0.11368 -0.0622293 -0.00870588

edu2 0.234627 0.0468064 0.146532 0.23578 0.322222

tpr 0.0891162 0.0218746 0.0476786 0.0893937 0.133562

sex -0.058801 0.0130027 -0.083714 -0.0593365 -0.031744

Results for fixed effects are also stored in file

c:\data\b_FixedEffects1.res

f_bmi_pspline

Acceptance rate: 100 %

Results are stored in file

c:\data\b_f_bmi_pspline.res

Postscript file is stored in file

c:\data\b_f_bmi_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 1

f_bmi_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00192786

Std. dev.: 0.00268103
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2.5% Quantile: 0.000281651

10% Quantile: 0.000452872

50% Quantile: 0.00119819

90% Quantile: 0.00380296

97.5% Quantile: 0.00806144

Results for the variance component are also stored in file

c:\data\b_f_bmi_pspline_var.res

f_agc_pspline

Acceptance rate: 100 %

Results are stored in file

c:\data\b_f_agc_pspline.res

Postscript file is stored in file

c:\data\b_f_agc_pspline.ps

Results may be visualized using method ’plotnonp’

Type for example: objectname.plotnonp 3

f_agc_pspline_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.00600587

Std. dev.: 0.00993897

2.5% Quantile: 0.00119369

10% Quantile: 0.00169024

50% Quantile: 0.00397818

90% Quantile: 0.0107538

97.5% Quantile: 0.0227737

Results for the variance component are also stored in file

c:\data\b_f_agc_pspline_var.res

f_district_spatial

Acceptance rate: 100 %

Results are stored in file

c:\data\b_f_district_spatial.res

Postscript file is stored in file

c:\data\b_f_district_spatial.ps

Results may be visualized in BayesX using method ’drawmap’

Type for example: objectname.drawmap 5

f_district_spatial_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.0359038

Std. dev.: 0.0176849

2.5% Quantile: 0.0117425

10% Quantile: 0.0168868

50% Quantile: 0.0321435

90% Quantile: 0.0593765
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97.5% Quantile: 0.0807406

Results for the variance component are also stored in file

c:\data\b_f_district_spatial_var.res

f_district_random

Acceptance rate: 100 %

Results for random effects are stored in file

c:\data\b_f_district_random.res

Results for the sum of the structured and unstructured

spatial effects are stored in file

c:\data\b_district_spatialtotal.res

f_district_random_variance

Acceptance rate: 100 %

Estimation results for the variance component:

Mean: 0.0077143

Std. dev.: 0.00580379

2.5% Quantile: 0.000703806

10% Quantile: 0.00152536

50% Quantile: 0.00648848

90% Quantile: 0.0153428

97.5% Quantile: 0.0215434

Results for the variance component are also stored in file

c:\data\b_f_district_random_var.res

Files of model summary:

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions is stored in file

c:\data\b_graphics.prg

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Batch file for visualizing effects of nonlinear functions

in S-Plus is stored in file

c:\data\b_splus.txt

NOTE: ’input filename’ must be substituted by the filename of the boundary-file

---------------------------------------------------------------------------

Latex file of model summaries is stored in file

c:\data\b_model_summary.tex

---------------------------------------------------------------------------

In addition to the information being printed to the output window results for each effect are written
to external ASCII files. The names of these files are given in the output window, compare the
previous pages. The files contain the posterior mean and median, the posterior 2.5%, 10%, 90%
and 97.5% quantiles, and the corresponding 95% and 80% posterior probabilities of the estimated
effects. For example, the beginning of the file c:\data\b_f_bmi_pspline.res for the effect of bmi
looks like this:

intnr bmi pmean pqu2p5 pqu10 pmed pqu90 pqu97p5 pcat95 pcat80
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1 12.8 -0.284065 -0.660801 -0.51678 -0.283909 -0.0585753 0.085998 0 -1

2 13.15 -0.276772 -0.609989 -0.483848 -0.275156 -0.070517 0.0572406 0 -1

3 14.01 -0.258674 -0.515628 -0.416837 -0.257793 -0.10009 -0.00289024 -1 -1

The posterior quantiles and posterior probabilities may be changed by the user using the options
level1 and level2. For example specifying level1=99 and level2=70 in the option list of
the regress command leads to the computation of 0.5%, 15%, 85% and 99.5% quantiles of the
posterior. The defaults are level1=95 and level2=80.

Some nonparametric effects are visualised by BayesX automatically and the resulting graphs are
stored in ps format. E.g. the effect of bmi is visualised in the file c:\data\b_f_bmi_pspline.ps
(compare the results on the previous pages for the other filenames). In addition to the ps files
a file containing the commands to reproduce the graphics is stored in the output directory. In
our example the name of the file is c:\data\b_graphics.prg. The advantage is that additional
options may be added by the user to customise the graphs (compare the following two sections).

Moreover a file with ending .tex is created in the outfile directory. This file contains a summary
of the estimation results and may be compiled using LATEX.

Having finished the estimation we may close the log file by typing

> logclose

Note, that the log file is closed automatically when you exit BayesX.

7 Visualising estimation results

BayesX provides three possibilities to visualise estimation results:

• As mentioned in the previous section, certain results are automatically visualised by BayesX
and stored in ps files.

• Post estimation commands of bayesreg objects allow to visualise results after having executed
a regress command.

• Graph objects may be used to produce graphics using the ASCII files containing the esti-
mation results. In principle graph objects allow the visualisation of any content of a dataset
object. Graph files are also used in the batch file containing the commands to reproduce the
automatically generated graphics.

In this section we describe the general usage of the post estimation commands as well as the
commands for the usage with graph objects to enable the user to reproduce the automatically
generated plots directly in BayesX. Section 8 describes how to customise plots.

7.1 Post estimation commands

After having estimated a regression model plots for nonparametric effects of metrical covariates
can be produced using the post estimation command plotnonp:

> b.plotnonp 1

and

> b.plotnonp 3

produce the graphs shown in Figure 4 in an object-viewer window. The numbers following the
plotnonp command depend on the order in which the model terms have been specified. The
numbers are supplied in the output window after estimation, compare the results in the previous
section.
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By default the plots contain the posterior mean and pointwise credible intervals according to the
levels specified in the regress command. So by default the plot includes pointwise 80% and 95%
credible intervals.
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Figure 4: Effect of the body mass index of the child‘s mother and of the age of the child together
with pointwise 80% and 95% credible intervals.

A plot may be stored in ps format using the outfile option. Executing

> b.plotnonp 1, replace outfile = c:\data\f_bmi.ps

stores the plot for the estimated effect of bmi in the file c:\data\f_bmi.ps. Again, specifying
replace allows BayesX to overwrite an existing file. Note, that BayesX does not display the graph
on the screen if the option outfile is specified.

Estimation results for spatial effects are best visualised by drawing the respective map and colouring
the regions of the map according to some characteristic of the posterior, e.g. the posterior mean.
For the structured spatial effect this can be achieved using the post estimation command drawmap

> b.drawmap 5

which results in the graph shown in Figure 5.

-0.320786 0 0.24232

Figure 5: Posterior mean of the structured spatial effect.

7.2 Graph Objects

The commands presented in the previous subsection work only after having estimated a regression
model in the current BayesX session but it may also be useful to visualise results of former analyses.
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This can be achieved using graph objects. Note again, that graph files are also used in the batch
file containing the commands to reproduce the automatically generated graphics. Therefore the
purpose of this subsection is also to enable the user to understand the content of this batch file.

First we read the estimation results into a dataset object. For example the estimation results for
the effect of bmi can be read into BayesX by executing the commands

> dataset res
> res.infile using c:\data\b_f_bmi_pspline.res

Now the estimation results (or any content of a dataset object) may be visualised using a graph
object which we create by typing

> graph g

The results stored in the dataset object res are now visualised using the plot command of graph
objects. Executing

> g.plot bmi pmean pqu2p5 pqu10 pqu90 pqu97p5 using res

reproduces the graph in Figure 4.

Similar as for plotnonp, the direct usage of the drawmap command is only possible after executing
a regress command. However, using graph objects again allows us to visualise results that have
been stored in a file.

First we read the information contained in this file into a dataset object. For example the following
command

> res.infile using c:\data\b_f_district_spatial.res

stores the estimation results for the structured spatial effect in the dataset object res. Now we
can visualise the posterior mean using method drawmap of graph objects leading again to the graph
shown in Figure 5:

> g.drawmap pmean district, map=m using res

Since – in contrast to a bayesreg object – no map object is associated with a graph object we have
to specify the map that we want to use explicitly in the option list.

Using graph objects also allows us to plot other characteristics of the posterior than the posterior
mean. For instance the posterior 95% probabilities may be visualised by

> g.drawmap pcat95 district, map=m using res

The result is shown in Figure 6.

A further advantage of graph objects is, that they allow to visualise the estimation results for the
uncorrelated spatial effects. Since these are modelled as unstructured random effects, BayesX is
unable to recognise them as spatial effects. However, proceeding as follows gives us the possibility
to plot the unstructured spatial effect shown in Figure 7:

> res.infile using c:\data\b_f_district_random.res
> g.drawmap pmean district, map=m using res

8 Customising graphics

This section describes how to customise graphics created in BayesX. All options are described
for the usage with the post estimation commands but may be used with graph files as well. So
the options presented in this section also enable the user to modify the batch file containing the
commands to reproduce the automatically generated graphics.
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-1.0 0 1.0

Figure 6: Posterior 95% probability of the structured spatial effect.

-0.0972329 0 0.100343

Figure 7: Posterior mean of the unstructured spatial effect.

For the presentation of nonparametric effects it may be desirable to include only one of the credible
interval into the plot. This is achieved by specifying the levels option. Possible values of this
option are 1 and 2, corresponding to the levels specified in the regress command (compare section
6). If the default values of level1 and level2 have been used, specifying level=2 in the plotnonp
command causes BayesX to plot the 80% credible interval only (Figure 8):

> b.plotnonp 1, levels=2

It may be useful to add some more information to the graphs of nonparametric effects to distinguish
more obviously between different covariates. Ways to do so are the specification of a title or the
specification of axis labels. Both possibilities are supported by BayesX as demonstrated in the
following examples (compare Figure 9 for the resulting plots):

> b.plotnonp 1, title="Mother body mass index"
> b.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"

By default BayesX displays x- and y-axis with five equidistant ticks according to the range of the
data that is to be visualised. These defaults may be overwritten using the options xlimbottom,
xlimtop and xstep for the x-axis and ylimbottom, ylimtop and ystep for the y-axis, respectively.
The usage of these options is more or less self-explanatory and is demonstrated in the following

17
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Figure 8: Effect of the body mass index of the child‘s mother with pointwise 80% credible intervals
only.
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Figure 9: Specification of title and axis labels.

commands which lead to the graph shown in Figure 10.

> r.plotnonp 1, xlab="bmi" ylab="f_bmi" title="Mother body mass index"
ylimbottom=-0.8 ylimtop=0.6 ystep=0.2 xlimbottom=12 xlimtop=40

Figure 10 also includes a graph for the effect of the age of the child that is customised in the same
way as for the effect of bmi.

> r.plotnonp 3, xlab="age" ylab="f_age" title="Age of the child in months"
ylimbottom=-0.3 ystep=0.3 xlimbottom=0 xlimtop=60 xstep=10

Now we turn to the options for method drawmap. By default drawmap uses grey scales to represent
different values of the posterior mean. Using the option color forces BayesX to use different
colours instead. Here the default would be to represent higher values through green colours and
smaller values through red colours. Specifying swapcolors switches this definition. Therefore the
following command

> b.drawmap 5, color swapcolors

leads to the graph shown in Figure 11 with higher values being represented through red colours
and smaller values through green colours.

Similar options as for the visualisation of nonparametric effects exist for method drawmap. For
example, a title may be included by specifying the option title

> b.drawmap 5, color swapcolors title="Structured spatial effect"
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Figure 10: Re-defining x- and y-axis.

-0.320786 0 0.24232

Figure 11: Posterior mean of the structured spatial effect in colour.

or the range of values to be displayed may be defined using the options lowerlimit and
upperlimit:

> b.drawmap 5, color swapcolors title="Structured spatial effect" lowerlimit=-0.3
upperlimit=0.3

The graph produced by the second command is shown in Figure 12.

9 Autocorrelation functions and sampling paths

Bayesreg objects provide some post estimation commands to get sampled parameters or to plot
autocorrelation functions of sampled parameters. For example

> b.plotautocor, maxlag=250

computes and displays the autocorrelation functions for all estimated parameters with maxlag
specifying the maximum lag number (Figure 13 shows a small part of the resulting graph).

If the number of parameters is large this may be computationally expensive, so BayesX pro-
vides a second possibility to compute autocorrelation functions. Adding the option mean to the
plotautocor command as in
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Figure 12: Specifying a title and the range of the plot for spatial effects.
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Figure 13: Autocorrelation function for the scale parameter and the intercept.

> b.plotautocor, mean

leads to the computation of only the minimum, mean and maximum autocorrelation functions.
The result for the scale parameter is shown in Figure 14.

Note, that executing the plotautocor command also stores the computed autocorrelation functions
in a file named autocor.raw in the output directory of the bayesreg object.

To save memory, the sampling paths of the estimated parameters are only stored temporarily by
default and will be destroyed, when the corresponding bayesreg object is deleted. If we want to
store the sampling paths permanently, we have to execute the getsample command

> b.getsample

which stores the sampled parameters in ASCII files in the output directory. To avoid too large
files, the samples are typically partitioned into several files. Executing the getsample command
also produces ps files of the sampling paths in the output directory. (compare Figure 15 for the
content of one of these files).
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Figure 14: Minimum, mean and maximum autocorrelation function for the scale parameter.

10 Sensitivity analysis

In some situations the estimation results of a full Bayesian semiparametric regression model depend
on the choice of hyperparameters, e.g. the parameters a and b defining the inverse gamma prior of
the variances of nonparametric and spatial effects, it is often recommended to check how sensitive
the results are with respect to changes in the hyperparameters. In the following we will re-estimate
the model from section 6 with different choices for the hyperparameters a and b for each effect in
the model. The standard choices for a and b are a = b = 0.001. As a first trial we choose a smaller
value for a and b:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex
+ bmi(psplinerw2,a=0.00001,b=0.00001) + agc(psplinerw2,a=0.00001,b=0.00001)
+ district(spatial,map=m,a=0.00001,b=0.00001)
+ district(random,a=0.00001,b=0.00001), family=gaussian iterations=12000
burnin=2000 step=10 predict using d

Figure 16 shows the results for the nonparametric effects with this choice of hyperparameters.
Obviously, the estimated functions are somewhat smoother but they do not differ that much from
the estimates with the standard choices.

Now we try two further choices for the hyper parameters, with both a = 1 and b small. We estimate
models with b = 0.005 and b = 0.00005:

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2,a=1,b=0.005)
+ agc(psplinerw2,a=1,b=0.005) + district(spatial,map=m,a=1,b=0.005)
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Figure 15: Sampling path of the intercept.
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Figure 16: Results for the nonparametric effects with hyper parameters a = b = 0.00001 for
nonparametric and spatial effects.

+ district(random,a=1,b=0.005), family=gaussian iterations=12000 burnin=2000
step=10 predict using d

> b.regress hazstd = rcw + edu1 + edu2 + tpr + sex + bmi(psplinerw2,a=1,b=0.00005)
+ agc(psplinerw2,a=1,b=0.00005) + district(spatial,map=m,a=1,b=0.00005)
+ district(random,a=1,b=0.00005), family=gaussian iterations=12000 burnin=2000
step=10 predict using d

Figure 17 and 18 contain the results for the nonparametric effects for the two choices of hyperpa-
rameters.
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