Non- and semiparametric statistics

Stefan Lang

December 2015

Contents

- 1. Introduction
- 2. Distribution free statistical tests
- 3. Non- and semiparametric regression
- 4. Quantileregression

Introduction

Parametric versus nonparametric inference

Parametric versus nonparametric inference

Example: parametric density estimation

- Assume that the distribution family, e.g. normal distribution, is known.
- Only a few parameters, e.g. the mean and/or the variance, are unknown, i.e.

 $f(x) \in \{ f(x \mid \theta), \theta \subset \mathbb{R}^p \}.$

- Once the unknown parameters θ are estimated through $\hat{\theta}$, the density f is fully specified.
- Advantage: estimators are often unbiased and efficient.
- Disadvantage: distribution family must be known in advance.

Parametric versus nonparametric inference

Example: nonparametric density estimation

- Do not assume a particular distribution family.
- Weak assumptions, e.g. assume only smoothness of the density.
- Advantage: very flexible.
- Disadvantage: loss of statistical efficiency compared to parametric density estimation.
- Examples: histogram or kernel density estimator.

Introduction Nonparametric density estimators

• Divide the range of values starting from the origin x_0 (e.g. $x_0 = 0, x_0 = x_{min} = x_{(1)}$) in intervals (so called bins) of equal length h (so called binwidth). For the *j*-th bin we have

$$B_j := [x_0 + (j-1)h, x_0 + jh]$$

and

$$P(X \in B_j) = \int_{x_0 + (j-1)h}^{x_0 + jh} f(x) \, dx.$$

• An estimator for $P(X \in B_j)$ is the relative frequency of x_i 's within B_j , i.e.

$$P(\widehat{X \in B_j}) = \frac{1}{n} (\#x_i \text{ in } B_j) = \frac{1}{n} \sum_{i=1}^n I_{B_j}(x_i).$$

• For continuous f the mean value theorem for integrals yields

$$\int_{x_0+(j-1)h}^{x_0+jh} f(x)dx = f(\xi) \cdot h$$

for $\xi \in B_j$.

• Approximating f in B_j by a constant value, we obtain

$$\hat{f}(x) = \frac{1}{nh} \sum_{i=1}^{n} I_{B_j}(x_i),$$

for $x \in B_j$.

Definition histogram

Let x_1, \ldots, x_n be an i.i.d. sample of a continuous random variable X with density f. Then the estimator

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n \sum_{j \in Z} I_{B_j}(x_i) I_{B_j}(x)$$

is called histogram with binwidth h > 0 and origin x_0 .

Advantages of the histogram

- Can be easily computed and presented.
- Available in every statistical package (even in excel).

Disadvantages of the histogram

- Discontinuous estimator for a continuous density.
- Graphical representation is dependent on the origin x_0 .
- There are situations, where $\hat{f}_h(x)$ depends more on observations that are far away from x than those that are close, compare the following figure.

Figure 1: Illustration of the dependence of the histogram on observations that are far away.

Influence of the bandwidth

$h \to 0$	needleplot
h small	quite wiggly fit
h large	smooth fit
$h \to \infty$	uniform distributior

In many statistical packages the *number of intervals* is specified rather than the binwidth h. The number of intervals induces a certain binwidth.

Example: Munich rent index

Figure 2: Dependence of histograms on the number of intervals.

Figure 3: Dependence of histograms on the number of intervals.

Kernel density estimators

- Define intervals [x h; x + h] of width 2h and move across the x-axis.
- This yields the estimator

$$\hat{f}_h(x) = \frac{1}{2nh}(\#x_i \text{ within the interval}[x-h;x+h])$$

• Using the "kernel"

$$K(u) = \begin{cases} \frac{1}{2} & |u| \le 1\\ 0 & \text{else} \end{cases}$$

we obtain

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\left(\frac{x - x_i}{h}\right).$$

Kernels

Kernels

Illustration kernel density estimators

Expected value and variance

For fixed x we obtain for the expected value

$$E(\hat{f}_h(x)) = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) \, dy$$

and the variance

$$Var(\hat{f}_h(x)) = \frac{1}{nh^2} \int_{\mathbb{R}} K^2\left(\frac{x-y}{h}\right) f(y) \, dy - \frac{1}{n} E(\hat{f}_h(x))^2.$$

Bias and MSE

$$Bias(\hat{f}_h(x)) = E(\hat{f}_h(x)) - f(x) = \frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) \, dy - f(x).$$

$$\begin{split} MSE(\hat{f}_h(x)) &= Var(\hat{f}_h(x)) + Bias^2(\hat{f}_h(x)) \\ &= \frac{1}{nh^2} \int_{\mathbb{R}} K^2 \left(\frac{x-y}{h}\right) f(y) \, dy - \frac{1}{n} E(\hat{f}_h(x))^2 \\ &+ \left(\frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) \, dy - f(x)\right)^2 \end{split}$$

Consistency

Theorem Parzen

Let R(x), $x \in \mathbb{R}$ be a (measurable) function with properties

1. $\sup_{x \in \mathbb{R}} |R(x)| < \infty$ (d.h. R(x) ist beschr"ankt)

$$2. \quad \int |R(x)| \, dx < \infty$$

3. $|x|R(x) \to 0$.

Consistency

Theorem Parzen

Let g(x), $x \in \mathbb{R}$, be a (measurable) function with $\int |g(x)| dx < \infty$. Consider the series

$$g_n(x) = \frac{1}{h_n} \int R\left(\frac{x-y}{h_n}\right) g(y) \, dy$$

where h_n is a series with $\lim_{n\to\infty} h_n = 0$. Then for every continuity point x of g we have

$$g_n(x) \to g(x) \int R(s) \, ds$$

for $n \to \infty$.

Consistency

Let f be continuous. Then

$$E(\hat{f}_{h_n}(x)) \to f(x)$$

provided that the bandwidth h_n converges to zero for $n \to \infty$.

For $nh_n \to \infty$ as $n \to \infty$, we have

 $Var(\hat{f}_{h_n}(x)) \to 0,$

i.e. $\hat{f}_{h_n}(x)$ is consistent.

Landau Symbols

Assume we are given two real valued sequences $\{a_n\}$ and $\{b_n\}$ with $n \in N$. We write

$$a_n = O(b_n)$$

 $\frac{a_n}{b_n}$

if

is bounded for $n \to \infty$.

The sequence $\{a_n\}$ is roughly of the same order as $\{b_n\}$.

Obviously $a_n = O(1)$ says that a_n is bounded.

Landau Symbols

We write

if

 $a_n = o(b_n)$ $\left|\frac{a_n}{b_n}\right|$

converges to zero for $n \to \infty$.

The series $\{a_n\}$ converges faster to zero than $\{b_n\}$.

Obviously $a_n = o(1)$ means

 $\lim_{n \to \infty} a_n = 0.$

Mean integrated squared error

- Let f be at least 2 times continuously differentiable, f'' be bounded, f and f'' square integrable.
- Assume h_n is sequence with $h_n \to 0$.

Using $\int g^2(s) ds = ||g||_2^2$ and $\mu_2(g) = \int g(s)s^2 ds$ for a function g we obtain:

1.
$$Var(\hat{f}_{h_n}(x)) = \frac{1}{nh_n} ||K||_2^2 f(x) + o\left(\frac{1}{nh_n}\right)$$
 respectively
$$\int Var(\hat{f}_{h_n}(x)) \, dx = \frac{1}{nh_n} ||K||_2^2 + o\left(\frac{1}{nh_n}\right).$$

Mean integrated squared error

2.
$$Bias(\hat{f}_{h_n}(x)) = \frac{{h_n}^2}{2} \mu_2(K) f''(x) + o({h_n}^2)$$
 respectively
$$\int Bias^2(\hat{f}_{h_n}(x)) \, dx = \frac{{h_n}^4}{4} \mu_2^2(K) ||f''||_2^2 + o({h_n}^4).$$

3.
$$MISE(\hat{f}_{h_n}) = \frac{1}{nh_n} ||K||_2^2 + \frac{h_n^4}{4} \mu_2^2(K) ||f''||_2^2 + o(\frac{1}{nh_n} + h_n^4),$$

where $MISE(\hat{f}_{h_n}) = \int MSE(\hat{f}_{h_n}(x))dx$

Bias variance trade off

- $\bullet\,$ The bias decreases as h decreases.
- The variance decreases as *h* increases.
- The bias depends on f''(x) as a measure for the curvature of f. Increased curvature corresponds with increased bias. The bias is positive at local maxima and negative at local minima.
- There is also a dependence of the bias und variance on the chosen kernel K.

AMISE optimal bandwidth

The idea is to optimze the AMISE (Asymptotic Mean Integrated Squared Error), which is obtained from MISE by deleting the *o*-terms, i.e.

$$AMISE(\hat{f}_h) = \frac{1}{nh} ||K||_2^2 + \frac{h^4}{4} \mu_2^2(K) ||f''||_2^2$$

The optimal bandwith is given by

$$h_0 = \left(\frac{\|K\|_2^2}{\|f''\|_2^2 \mu_2^2(K)n}\right)^{\frac{1}{5}}.$$

AMISE optimal bandwidth

- Obviously, the optimal bandwidth depends on functionals of f(circulus virtuosis).
- In practice a reference density is inserted. Using e.g. a normal distribution and a normal kernel, we obtain

$$\hat{h}_0 = \left(\frac{4\hat{\sigma}^5}{3n}\right)^{\frac{1}{5}} \approx 1.06 \ \hat{\sigma} \ n^{-\frac{1}{5}}.$$

Distribution free statistical tests

Distribution free statistical tests Order statistics and ranks

Order statistics

- Assume we are given at least ordinal data x_1, \ldots, x_n .
- x_1, \ldots, x_n are realisations of an i.i.d. random sample X_1, \ldots, X_n with cdf F.
- Ordering the observations yields the vector $(x_{(1)}, \ldots, x_{(n)})$ of the so called order statistics $(X_{(1)}, \ldots, X_{(n)})$.
- The component $x_{(j)}$ is the value of the *j*-th order statistics $X_{(j)}$.

Example: children

Assume 10 children are given a puzzle to solve. The following table contains the time required to solve the puzzle:

child <i>i</i>	1	2	3	4	5	6	7	8	9	10
time x_i in seconds	78	58	60	82	83	85	65	72	70	61

Special cases of order statistics

• Special cases are $x_{(1)}$ (minimum), $x_{(n)}$ (maximum) and the median

$$m = \left\{ \begin{array}{ll} x_{(\frac{n+1}{2})} & n \text{ uneven} \\ 0.5(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & n \text{ even.} \end{array} \right.$$

• The range of the data is given by

$$d = x_{(n)} - x_{(1)}.$$

Example: children
Empirical cumulative distribution function (cdf)

• For unordered observations x_1, \ldots, x_n the empirical cumulative distribution function F_n is defined for a real value x as

$$F_n(x) = \frac{\#(x_i \le x)}{n}$$

• In terms of the ordered values $x_{(1)}, \ldots, x_{(n)}$ we obtain

$$F_n(x) = \begin{cases} 0 & x < x_{(1)} \\ \frac{m}{n} & x_{(m)} \le x < x_{(m+1)} \\ 1 & x \ge x_{(n)}. \end{cases}$$

Properties of the empirical cdf

- F_n is a monotonic increasing step function with discontinuities at $x_{(1)}, \ldots, x_{(n)}$.
- For unbounded observations F_n increases in $x_{(j)}$ by 1/n, otherwise by k/n if there are k equal observations $x_{(j)}$.
- $\lim_{x \to -\infty} F_n(x) = 0$ and $\lim_{x \to \infty} F_n(x) = 1$.
- For fixed $x F_n(x)$ is a random variable because $F_n(x)$ depends on the random sample X_1, \ldots, X_n .
- $F_n(x)$ is discrete with possibles values m/n for m = 0, 1, ..., n.

Probability function of the cdf

• The probability function of $F_n(x)$ is given by

$$P(F_n(x) = m/n) = \binom{n}{m} (F(x))^m (1 - F(x))^{n-m}, \qquad m = 0, 1, \dots, n,$$

i.e., $nF_n(x)$ is binomial distributed with parameters n and F(x). The parameter F(x) depends on the unknown cdf F.

• It follows

$$E(F_n(x)) = F(x)$$
 $Var(F_n(x)) = \frac{1}{n}F(x)(1 - F(x)).$

Asymptotic properties of the cdf

- $F_n(x)$ is unbiased for F(x).
- Since $Var(F_n(x))$ converges to zero as n tends to infinity, $F_n(x)$ is consistent in mean square.
- It immediately follows that $F_n(x)$ converges also in probability to F(x).

Definition ranks

- Let X_1, \ldots, X_n be a random sample of a continuous random variable X.
- If X_i has value $x_{(j)}$ within the order statistics, the rank of X_i is defined as $rank(X_i) = R(X_i) = j$.
- The rank $R_i = R(X_i)$ is a discrete random variable with realisations 1, 2..., n.
- Obviously $X_{(R_i)} = X_i$ and

$$R_i = \sum_{j=1}^n \chi(X_i - X_j)$$

where

$$\chi(x) = \begin{cases} 1 & x \ge 0\\ 0 & \text{else} \end{cases}$$

Example: children

Properties of the rank

- 1. $P(R_1 = r_1, ..., R_n = r_n) = 1/n!$, where $r_1, ..., r_n$ is a permutation of 1, ..., n.
- 2. $P(R_i = j) = 1/n$, i = 1, ..., n, where $j \in \{1, ..., n\}$.
- 3. $P(R_i = k, R_j = l) = \frac{1}{n(n-1)}$ for $1 \le i, j, k, l \le n, i \ne j, k \ne l$.
- 4. $E(R_i) = \frac{n+1}{2}, i = 1, ..., n$
- 5. $Var(R_i) = \frac{n^2 1}{12}, i = 1, \dots, n.$
- 6. $Cov(R_i, R_j) = -\frac{n+1}{12}, 1 \le i, j \le n, i \ne j.$
- 7. $Corr(R_i, R_j) = -\frac{1}{n-1}, 1 \le i, j \le n, i \ne j.$

Distribution of F(X)

- Note that F(x) is a fixed number whereas F(X) is a random variable.
- Assume X is a random variable with continuous cdf F. Then F(X) is uniformly distributed within the unit interval [0, 1].
- For continuous $F F(X_1), \ldots, F(X_n)$ can be seen as a random sample according to the uniformly distributed random variable F(X) $(F(X_1), \ldots, F(X_n))$
- For continuous $F(F(X_{(1)}), \ldots, F(X_{(n)}))$ can be regarded as order statistics from a uniformly distributed population.

Joint distribution of order statistics

• The joint distribution of the random sample X_1, \ldots, X_n is given by

$$f_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = f(x_1)\ldots f(x_n),$$

where f is the density of X.

- Define $Y_i = X_{(i)}$. Then $Y_1 < Y_2 < \cdots < Y_n$ and the order statistics (Y_1, \ldots, Y_n) can be regarded as a transformation of (X_1, \ldots, X_n) .
- The joint distribution of the order statistic (Y_1, \ldots, Y_n) is given by

$$f_{Y_1,...,Y_n}(y_1,...,y_n) = \begin{cases} n! f(y_1) f(y_2) \dots f(y_n) & y_1 < \dots < y_n \\ 0 & \text{else.} \end{cases}$$

Distribution free statistical tests Goodness of fit tests

Data

Cardinal measuring scale.

Assumptions

We assume an independent random sample X_1, \ldots, X_n with continuous cdf F.

Test problem

• Case 1: Two-tailed

 $H_0: F(x) = F_0(x)$ versus $H_1: F(x) \neq F_0(x)$

• Case 2: One-tailed

 $H_0: F(x) \ge F_0(x)$ versus $H_1: F(x) < F_0(x)$

• Case 3: One-tailed

 $H_0: F(x) \le F_0(x)$ versus $H_1: F(x) > F_0(x)$

Test statistics

• Case 1: Two-tailed

$$K_n = \sup_{x \in \mathbb{R}} |F_0(x) - F_n(x)|$$

• Case 2: One-tailed

$$K_n^+ = \sup_{x \in \mathbb{R}} (F_0(x) - F_n(x))$$

• Case 3: One-tailed

$$K_n^- = \sup_{x \in \mathbb{R}} (F_n(x) - F_0(x))$$

The test statistic $K_n = \sup_{x \in \mathbb{R}} |F_0(x) - F_n(x)|$ is for all continuous cdfs F_0 distribution free, i.e. its distribution is independent of F_0 .

Test procedure

• Case 1: Two-tailed

Reject H_0 if $K_n \ge k_{1-\alpha}$.

• Case 2: One-tailed

Reject H_0 if $K_n^+ \ge k_{1-\alpha}^+$.

• Case 3: One-tailed

Reject H_0 if $K_n^- \ge k_{1-\alpha}^-$.

χ^2 -test

Data

Any measuring scale. The data have to be grouped into k disjoint groups:

group	1	2	•••	k
number of observations	n_1	n_2		n_k

Assumptions

The random sample X_1, \ldots, X_n is independent.

Test problem

Let F be the unknown cdf and F_0 a fully specified cdf.

 $H_0: F(x) = F_0(x) \qquad \text{for all } x \in \mathbb{R}$ $H_1: F(x) \neq F_0(x) \qquad \text{for at least one } x \in \mathbb{R}$

χ^2 -test

Test statistics

Under H_0 , let p_i be the probability that the random variable X takes a value in the *i*-th group. Then use the test statistic

$$\chi^{2} = \sum_{i=1}^{k} \frac{(n_{i} - np_{i})^{2}}{np_{i}}$$

Test procedure

 H_0 is rejected, if $\chi^2 \leq \chi^2_{1-\alpha}(k-1)$ where $\chi^2_{1-\alpha}(k-1)$ is the $1-\alpha$ quantile of the χ^2 distribution with k-1 degrees of freedom.

Data

Any measuring scale. The data are grouped into two disjoint groups.

Assumptions

- The random samples X_1, \ldots, X_n are independent.
- The probability for an observation belonging to class 1 is p for all n observations.

Test problem

• Case 1: Two-tailed

$$H_0: p = p_0$$
 versus $H_1: p \neq p_0$

• Case 2: One-tailed

$$H_0: p \ge p_0$$
 versus $H_1: p < p_0$

• Case 3: One-tailed

$$H_0: p \le p_0$$
 versus $H_1: p > p_0$

Test statistics

Use the number of observations T belonging to class 1. Under H_0 we have $T \sim B(n, p_0)$.

Test procedure

• Case 1: Two-tailed

Reject H_0 if $T \ge t_{1-\alpha_1}$ or $T \le t_{\alpha_2}$

where $t_{1-\alpha_1}$ and t_{α_2} are defined through

$$P(T \ge t_{1-\alpha_1}) = \alpha_1 \qquad P(T \le t_{\alpha_2}) = \alpha_2$$

with $\alpha_1 + \alpha_2 = \alpha$.

• Case 2: One-tailed

Reject H_0 if $T \ge t_{1-\alpha}$ where

$$P(T \ge t_{1-\alpha}) = \alpha.$$

• Case 3: One-tailed

Reject H_0 if $T \leq t_{\alpha}$ where

$$P(T \le t_{\alpha}) = \alpha.$$

Example: Quality control

A manufacturer claims that a component is defect with probability 5 percent or less. A random sample of n = 20 yields 3 defect components.

Distribution free statistical tests Linear rank tests

Initial situation

- Let X₁,..., X_n be independent and identically distributed random variables with X_i ~ F(x − θ) for i = 1,..., n where the cdf F is continuous with density f and symmetric about θ.
- θ is a location parameter, e.g. the median of F.
- We would like to test $H_0: \theta = \theta_0$ against the Alternatives $\theta < \theta_0, \ \theta > \theta_0$ or $\theta \neq \theta_0$.

Basic idea

- Idea: Use as the test statistic a function of the ranks rather than the observations.
- No loss of information if measuring scale is ordinal.
- Some loss of information for cardinal measuring scale, but surprisingly little loss of efficiency when using rank based statistics in hypothesis testing.

Definition of linear rank statistic

- In order to define the general linear rank statistic define the differences $D_i = X_i \theta_0$ and their absolute values $|D_i| = |X_i \theta_0|$, i = 1, ..., n.
- Let $R_i^+ = R(|D_i|)$ be the rank of $|D_i|$ and

$$Z_i = \begin{cases} 1 & D_i > 0\\ 0 & D_i < 0. \end{cases}$$

• Then the linear rank statistic L_n^+ has the general form

$$L_n^+ = \sum_{i=1}^n g(R_i^+) Z_i,$$

where $g(R_i^+) \in \mathbb{R}$ are suitable weights.

Alternative definition of the linear rank statistic

• Let
$$|D|_{(1)} < \cdots < |D|_{(n)}$$
 be the order statistics of $|D_1|, \ldots, |D_n|$.

• Define

 $V_i = \begin{cases} 1 & |D|_{(i)} \text{ belongs to a positive difference} \\ 0 & |D|_{(i)} \text{ belongs to a negative difference} \end{cases}$

• Then

$$L_n^+ = \sum_{i=1}^n g(i)V_i$$

• For the expected value and the variance we have

$$E(L_n^+) = \frac{1}{2} \sum_{i=1}^n g(i) \qquad Var(L_n^+) \sum_{i=1}^n (g(i))^2.$$

Data

Cardinal measuring scale.

Assumptions

The random sample X_1, \ldots, X_n is independent with continuous cdf $F(x - \theta)$.

Test problem

• Case 1: Two-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

• Case 2: One-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta > \theta_0$

• Case 3: One-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta < \theta_0$

Test statistics

• The test statistic is given by

$$V_n^+ = \sum_{i=1}^n V_i.$$

- V_n^+ is a special case of L_n^+ with g(i) = 1.
- Hence V_n^+ counts the observations that are larger than θ_0 .
- Under H_0 we have $V_n^+ \sim B(n, 0.5)$.

Test procedure

In analogy to the Binomial test.

• Case 1: Two-tailed

Reject H_0 if $V_n^+ \ge v_{1-\alpha/2}^+$ or $V_n^+ \le v_{\alpha/2}^+$

• Case 2: One-tailed

Reject H_0 if $V_n^+ \ge v_{1-\alpha}^+$.

• Case 3: One-tailed

Reject H_0 if $T \leq v_{\alpha}^+$.

Linear rank tests

Example: intelligence test

Data

Cardinal measuring scale.

Assumptions

The random sample X_1, \ldots, X_n is independent with continuous cdf $F(x - \theta)$ that is symmetric around θ .

Test problem

• Case 1: Two-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

• Case 2: One-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta > \theta_0$

• Case 3: One-tailed

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta < \theta_0$

Test statistics

• The test statistic is given by

$$W_n^+ = \sum_{i=1}^n iV_i = \sum_{i=1}^n R_i^+ Z_i$$

- W_n^+ is a special case of L_n^+ with g(i) = i.
- W_n^+ may be interpreted as the sum of the ranks of the absolute values $|D_i|$ with positive differences. In contrary to the sign test the size of the differences additionally enters the test statistic.
- Under $H_0 W_n^+$ is symmetric around $E(W_n^+) = n(n+1)/4$ and we have

$$P(W_n^+ = w^+) = a(w^+)/2^n.$$

Test procedure

In analogy to the Binomial test.

• Case 1: Two-tailed

Reject H_0 if $W_n^+ \ge w_{1-\alpha/2}^+$ or $W_n^+ \le w_{\alpha/2}^+$

• Case 2: One-tailed

Reject H_0 if $W_n^+ \ge w_{1-\alpha}^+$.

• Case 3: One-tailed

Reject H_0 if $W \leq w_{\alpha}^+$.

Non- and semiparametric regression Univariate smoothing
Illustration: Malnutrition in Zambia

Figure 4: Malnutrition in Tanzania: scatter plot of the Z-score for chronic malnutrition versus the age of the child in months for one of the districts in Tanzania (Ruvuma).

Illustration: simulated data

Figure 5: Scatter plot of a simulated data set with nonlinear effect of the covariate: The right panel additionally shows the true covariate effect. The data have been simulated according to the model $y = f(x) + \varepsilon$ where $f(x) = \sin(2(4x-2)) + 2\exp(-(16^2)(x-0.5)^2)$ and $\varepsilon \sim N(0, 0.3^2)$.

Definition univariate smoothing

Data

Measurements (y_i, z_i) , i = 1, ..., n, for a continuous response variable y and a continuous covariate z.

Model

$$y_i = f(z_i) + \varepsilon_i$$

with independent and identically distributed errors and

$$\mathsf{E}(\varepsilon_i) = 0$$
 and $\mathsf{Var}(\varepsilon_i) = \sigma^2$.

In some cases, we additionally assume that the errors are i.i.d. normally distributed, so that

$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2).$$

Polynomial regression

Figure 6: Polynomial regression models for the simulated data set.

Piecewise polynomial regression

Figure 7: *Piecewise polynomial regression (left) and polynomial splines (right).*

Definition

A function $f : [a, b] \to \mathbb{R}$ is called a polynomial spline of degree $l \ge 0$ with knots $a = \kappa_1 < \ldots < \kappa_m = b$, if it fulfills the following conditions:

- 1. f(z) is (l-1)-times continuously differentiable. The special case of l = 1 corresponds to f(z) being continuous (but not differentiable). We do not state any smoothness requirements for f(z) when l = 0.
- 2. f(z) is a polynomial of degree l on the intervals $[\kappa_j, \kappa_{j+1})$ defined by the knots.

Figure 8: Examples of polynomial splines of degree 0, 1, 2 and 3 with knots $\kappa_1 = 0$, $\kappa_2 = 0.25$, $\kappa_3 = 0.5$, $\kappa_4 = 0.75$ and $\kappa_5 = 1$.

Truncated power series

$$y_{i} = \gamma_{1} + \gamma_{2} z_{i} + \ldots + \gamma_{l+1} z_{i}^{l} + \gamma_{l+2} (z_{i} - \kappa_{2})_{+}^{l} + \ldots + \gamma_{l+m-1} (z_{i} - \kappa_{m-1})_{+}^{l} + \varepsilon_{i}$$

with

$$(z - \kappa_j)_+^l = \begin{cases} (z - \kappa_j)^l & z \ge \kappa_j, \\ 0 & \text{otherwise.} \end{cases}$$

Figure 9: Polynomial spline fit with linear truncated polynomials.

Figure 10: TP basis for splines of degree 0 based on the knots $\{0, 0.25, 0.5, 0.75, 1\}$.

Figure 11: TP basis for splines of degree 2 based on the knots $\{0, 0.25, 0.5, 0.75, 1\}$.

Defining the vectors of the observed response variables y and the errors ε , as well as the design matrix

$$\mathbf{Z} = \begin{pmatrix} B_1(z_1) & \dots & B_d(z_1) \\ \vdots & & \vdots \\ B_1(z_n) & \dots & B_d(z_n) \end{pmatrix} = \begin{pmatrix} 1 & z_1 & \dots & z_1^l & (z_1 - \kappa_2)_+^l & \dots & (z_1 - \kappa_{m-1})_+^l \\ \vdots & & & \vdots \\ 1 & z_n & \dots & z_n^l & (z_n - \kappa_2)_+^l & \dots & (z_n - \kappa_{m-1})_+^l \end{pmatrix}$$

we obtain the equation

$$\mathbf{y} = \mathbf{Z}\boldsymbol{\gamma} + \boldsymbol{\varepsilon},$$

with the coefficient vector $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_d)'$. The usual least squares estimate is thus

$$\hat{oldsymbol{\gamma}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

and

$$\hat{f}(z) = \mathbf{z}' \hat{\boldsymbol{\gamma}}$$

with $\mathbf{z} = (\mathbf{B}_1(\mathbf{z}), \dots, \mathbf{B}_d(\mathbf{z}))'$ depending on the chosen covariate value z.

,

Example: Malnutrition in Tanzania

Figure 12: Nonparametric estimates for the age effect based on polynomial splines.

Figure 13: Nonparametric estimates for the age effect based on polynomial splines.

Figure 14: Nonparametric estimates for the age effect based on polynomial splines.

Influence of the knots

Figure 15: Impact of the number of knots on cubic spline fits: The estimated function is represented as a solid line while the true function is superimposed as a dashed line.

Influence of the knots

Figure 16: Impact of the number of knots on cubic spline fits: The estimated function is represented as a solid line while the true function is superimposed as a dashed line.

• Equidistant knots: The domain [a, b] of z is split into m - 1 intervals of width

$$h = \frac{b-a}{m-1}$$

in order to obtain the knots

$$\kappa_j = a + (j-1) \cdot h, \quad j = 1, \dots, m,$$

In all examples considered so far, we have always tacitly assumed equidistant knots.

- Quantile-based knots: Use the (j − 1)/(m − 1)-quantiles (j = 1,...,m) of the observed covariate values z₁,..., z_n as knots.
- Visual knot choice based on a scatter plot

B-splines

Figure 17: Single B-spline basis functions for degrees l = 0, 1, 2, 3 and equidistant knots.

Figure 18: B-spline bases of degree l = 1, 2, 3 with equidistant knots (left panel) and unevenly distributed knots (right panel).

Figure 19: B-spline bases of degree l = 1, 2, 3 with equidistant knots (left panel) and unevenly distributed knots (right panel).

Definition B-splines

The function f(z) can again be represented through a linear combination of d = m + l - 1 basis functions, i.e.

$$f(z) = \sum_{j=1}^{d} \gamma_j B_j(z).$$

B-splines of order l = 0 are defined as

$$B_j^0(z) = I(\kappa_j \le z < \kappa_{j+1}) = \begin{cases} 1 & \kappa_j \le z < \kappa_{j+1} \\ 0 & \text{otherwise} \end{cases} \quad j = 1, \dots, d-1,$$

where $I(\cdot)$ denotes the indicator function.

We obtain the basis functions of degree l = 1 as

$$B_{j}^{1}(z) = \frac{z - \kappa_{j-1}}{\kappa_{j} - \kappa_{j-1}} I(\kappa_{j-1} \le z < \kappa_{j}) + \frac{\kappa_{j+1} - z}{\kappa_{j+1} - \kappa_{j}} I(\kappa_{j} \le z < \kappa_{j+1}),$$

i.e. each basis function is defined by two linear segments on the intervals $[\kappa_{j-1}, \kappa_j)$ and $[\kappa_j, \kappa_{j+1})$, which are continuously combined at the knot κ_j . In general, higher order B-splines are defined recursively:

$$B_{j}^{l}(z) = \frac{z - \kappa_{j-l}}{\kappa_{j} - \kappa_{j-l}} B_{j-1}^{l-1}(z) + \frac{\kappa_{j+1} - z}{\kappa_{j+1} - \kappa_{j+1-l}} B_{j}^{l-1}(z).$$

Figure 20: Schematic representation of a nonparametric fit with cubic *B-splines*.

Design matrix and fit

$$\mathbf{Z} = \begin{pmatrix} B_1^l(z_1) & \dots & B_d^l(z_1) \\ \vdots & & \vdots \\ B_1^l(z_n) & \dots & B_d^l(z_n) \end{pmatrix}.$$

The usual least squares estimate is thus

$$\hat{\boldsymbol{\gamma}} = (\mathbf{Z}'\mathbf{Z})^{-1}\mathbf{Z}'\mathbf{y}$$

 and

$$\hat{f}(z) = \mathbf{z}' \hat{\boldsymbol{\gamma}}$$

with $\mathbf{z} = (\mathbf{B}_1(\mathbf{z}), \dots, \mathbf{B}_d(\mathbf{z}))'$ depending on the chosen covariate value z.

The main idea of *penalized splines* (*P-splines*) can be summarized as follows:

- Approximate the function f(z) with a polynomial spline that uses a generous number of knots (usually about 20 to 40). This ensures that f(z) can be approximated with enough flexibility to represent even highly complex functions.
- Introduce an additional penalty term that prevents overfitting and minimize a *penalized least squares criterion* instead of the usual least squares criterion.

P-splines based on TP basis

$$f(z) = \gamma_1 + \gamma_2 z + \ldots + \gamma_{l+1} z^l + \gamma_{l+2} (z - \kappa_2)^l_+ + \ldots + \gamma_d (z - \kappa_{m-1})^l_+.$$

Minimize the penalized residual sum of squares

$$PLS(\lambda) = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \gamma_j B_j(z_i) \right)^2 + \lambda \sum_{j=l+2}^{d} \gamma_j^2.$$

P-Splines based on B-Splines

Minimize the penalized residual sum of squares

$$PLS(\lambda) = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{d} \gamma_j B_j(z_i) \right)^2 + \lambda \sum_{j=r+1}^{d} (\Delta^r \gamma_j)^2,$$

where Δ^r denotes $r{\rm th}$ order differences, which are recursively defined by

$$\begin{aligned} \Delta^{1} \gamma_{j} &= \gamma_{j} - \gamma_{j-1}, \\ \Delta^{2} \gamma_{j} &= \Delta^{1} \Delta^{1} \gamma_{j} = \Delta^{1} \gamma_{j} - \Delta^{1} \gamma_{j-1} = \gamma_{j} - 2\gamma_{j-1} + \gamma_{j-2}, \\ &\vdots \\ \Delta^{r} \gamma_{j} &= \Delta^{r-1} \gamma_{j} - \Delta^{r-1} \gamma_{j-1}. \end{aligned}$$

Influence of the number of knots

Figure 21: Influence of the number of knots on estimated P-splines.

Impact of the smoothing parameter

Figure 22: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

Figure 23: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

Figure 24: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

Summary

Model

We approximate function f using polynomial splines so that we are able to write the nonparametric regression model as a linear model

$$\mathbf{y} = \mathbf{Z} \boldsymbol{\gamma} + \boldsymbol{\varepsilon}.$$

Penalized Least Squares Criterion

Estimate γ by minimizing the penalized least squares criterion

$$\mathsf{PLS}(\lambda) = (\mathbf{y} - \mathbf{Z}\boldsymbol{\gamma})'(\mathbf{y} - \mathbf{Z}\boldsymbol{\gamma}) + \lambda \boldsymbol{\gamma}' \mathbf{K} \boldsymbol{\gamma}.$$

Smoothing parameter

The smoothing parameter $\lambda \geq 0$ controls the compromise between fidelity to the data and smoothness of the resulting function estimate. For splines in a TP basis representation, we penalize the sum of squared coefficients of the truncated powers. For B-splines, we construct the penalty based on the sum of squared differences of neighboring coefficients or based on the integral of the function's squared second derivative.

Penalized Least Squares Estimation

In either case, the penalized least squares estimate has the form

$$\hat{\boldsymbol{\gamma}} = (\mathbf{Z}'\mathbf{Z} + \lambda \mathbf{K})^{-1}\mathbf{Z}'\mathbf{y}.$$

Local smoothing procedures

Nearest neighbor estimates

For a time series y_t , t = 1, ..., T, running means of order 3 are, for example, defined by

$$\hat{y}_t = \frac{1}{3}(y_{t-1} + y_t + y_{t+1}),$$

with appropriate modifications at the boundaries.

Nearest neighbor estimates extend the concept of running means into a more general framework. In general, a nearest neighbor estimate is defined by

$$\hat{f}(z) = \operatorname{Ave}_{j \in N(z)} y_j,$$

where Ave defines some averaging operator and N(z) is an appropriate neighborhood of z.

Local smoothing procedures

The following averaging operators are often used for the determination of nearest neighbor estimates:

1. Arithmetic mean (running mean): Determine the arithmetic mean of the response variable in the neighborhood of z, i.e.:

$$\hat{f}(z) = \frac{1}{|N(z)|} \sum_{j \in N(z)} y_j,$$

where |N(z)| is the number of neighbors of z.

2. Median (running median): Determine the median of the response variables in the neighborhood of z, i.e.

$$\hat{f}(z) = \text{Median}\{y_j, j \in N(z)\}.$$
3. Linear regression (running line): Estimate a linear regression based on the observations in the neighborhood of z and use the prediction from this model as the estimate, i.e.

$$\hat{f}(z) = \hat{\gamma}_{0,z} + \hat{\gamma}_{1,z}z,$$

where $\hat{\gamma}_{0,z}$ and $\hat{\gamma}_{1,z}$ are the least squares estimates using the data $\{(y_j, z_j), j \in N(z)\}.$

Commonly used neighborhood definitions are:

- 1. symmetric neighborhoods of order \boldsymbol{k} or
- 2. neighborhoods that consist of k-nearest neighbors.

Example: Malnutrition in Zambia

Figure 25: *Malnutrition in Tanzania: running mean with different bandwidths.*

Local Polynomial Regression and the Nadaraya-Watson Estimator

We consider the (local) approximation of an *l*-times continuously differentiable function $f(z_i)$ using a *Taylor series expansion* around *z*, yielding

$$f(z_i) \approx f(z) + (z_i - z)f'(z) + (z_i - z)^2 \frac{f''(z)}{2!} + \dots + (z_i - z)^l \frac{f^{(l)}(z)}{l!}$$

Hence, we approximate the function $f(z_i)$ with polynomials of the form $(z_i - z)^j$ in a neighborhood of z_i . The polynomials are weighted by the derivatives $f^{(j)}(z)/j!$ evaluated at the expansion point z.

We obtain

$$y_{i} = f(z_{i}) + \varepsilon_{i}$$

$$\approx f(z) + (z_{i} - z)f'(z) + (z_{i} - z)^{2} \frac{f''(z)}{2!} + \dots + (z_{i} - z)^{l} \frac{f^{(l)}(z)}{l!} + \varepsilon_{i}$$

$$= \gamma_{0} + (z_{i} - z)\gamma_{1} + (z_{i} - z)^{2}\gamma_{2} + \dots + (z_{i} - z)^{l}\gamma_{l} + \varepsilon_{i},$$

for each observation (y_i, z_i) with expansion point z.

We obtain an implicit estimate for the function value f(z) through $\hat{\gamma}_0 = \hat{f}(z)$, and more generally, we even obtain estimates for the derivatives through $j!\hat{\gamma}_j = \hat{f}^{(j)}(z)$.

Since the Taylor series approximation is only valid locally, i.e. close to the expansion point z, estimation is based on a weighted version of the residual sum of squares:

$$\sum_{i=1}^{n} \left(y_i - \sum_{j=0}^{l} \gamma_j (z_i - z)^j \right)^2 w_\lambda(z, z_i)$$

with weights $w_{\lambda}(z, z_i)$. These are typically constructed based on the distances $|z_i - z|$ such that larger weights result for observations with a small distance.

A general class of such weights results with the use of kernel functions K in

$$w_{\lambda}(z, z_i) = K\left(\frac{z_i - z}{\lambda}\right)$$

Typical examples of kernel functions include

$$\begin{split} K(u) &= \begin{cases} \frac{1}{2} & -1 \leq u \leq 1\\ 0 & \text{otherwise} \end{cases} & \text{Uniform kernel,} \\ K(u) &= \begin{cases} \frac{3}{4}(1-u^2) & -1 \leq u \leq 1\\ 0 & \text{otherwise} \end{cases} & \text{Epanechnikov kernel,} \\ K(u) &= \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right) & \text{Gaussian kernel, }, \end{split}$$

Figure 26: Examples of kernel functions.

Choosing the smoothing parameter

Choice Based on Optimality Criteria

E.g. cross validation criterion

$$\mathsf{CV} = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}^{(-i)}(z_i))^2$$

or

$$\mathsf{AIC} = n\log(\hat{\sigma}^2) + 2(\mathsf{df} + 1).$$

Mixed Model Representation of Penalization Approaches

Bayesian approach

Choosing the smoothing parameter

Figure 27: Malnutrition in Tanzania: GCV and AIC (left panel) and cubic P-splines fits resulting with the corresponding optimal smoothing parameters (right panel).

Non- and semiparametric regression Additive models

Data

 $(y_i, z_{i1}, \ldots, z_{iq}, x_{i1}, \ldots, x_{ik}), i = 1, \ldots, n$, with y and x_1, \ldots, x_k as in the linear regression model and additional continuous covariates z_1, \ldots, z_q .

Model

$$y_i = f_1(z_{i1}) + \ldots + f_q(z_{iq}) + \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \varepsilon_i.$$

The functions $f_1(z_1), \ldots, f_q(z_q)$ are assumed to be smooth nonlinear effects of the continuous covariates z_1, \ldots, z_q . The same assumptions are made for the errors ε_i as with the classical linear model.

Modeling nonlinear effects

The functions f_j , $j = 1, \ldots, q$, will be approximated by

$$f_j(z_j) = \sum_{l=1}^{d_j} \gamma_{jl} B_l(z_j),$$

where the basis functions B_l represent TP- or B-spline bases of polynomial splines.

The vector $\mathbf{f_j} = (\mathbf{f_j}(\mathbf{z_{1j}}), \dots, \mathbf{f_j}(\mathbf{z_{nj}}))'$ of function values evaluated at the observed covariate values z_{1j}, \dots, z_{nj} can then be expressed as

$$\mathbf{f_j} = \mathbf{Z_j} \boldsymbol{\gamma_j},$$

where $\gamma_j = (\gamma_{j1}, \ldots, \gamma_{jd_j})'$ is the vector of regression coefficients.

The design matrix \mathbf{Z}_j consists of the basis functions evaluated at the observed covariate values, i.e. $\mathbf{Z}_j[\mathbf{i},\mathbf{l}]=\mathbf{B}_l(\mathbf{z_{ij}}).$

The additive model can then be written in matrix notation in the form

$$\mathbf{y} = \mathbf{Z}_1 \boldsymbol{\gamma}_1 + \ldots + \mathbf{Z}_q \boldsymbol{\gamma}_q + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

where the design matrices $\mathbf{Z}_1, \ldots, \mathbf{Z}_q$ consist of the basis functions evaluated at the given covariate values. The design matrix \mathbf{X} is constructed as in the linear model.

Example: Munich rent index

Assume the additive model

$$rentsqm = f_1(area) + f_2(yearc) + \beta_0 + \beta_1 glocation + \beta_2 tlocation + \varepsilon,$$

where the functions f_1 and f_2 are modeled by P-splines with 20 interior knots and second order difference penalties.

For the location, the model includes the dummy variables *glocation* for good locations, and *tlocation* for top location. The average location serves as the reference category.

Figure 28: *Munich rent index: estimated nonlinear effects of area and year of construction.*

Quantile regression Introduction

Basic Idea

Figure 29: Munich rent index: scatter plots of rents in Euro versus living area (left panel) and year of construction (right panel) together with a linear (left panel) and a quadratic (right panel) least squares fit.

Basis Idea

- Focus on the quantiles of the response distribution and relate these quantiles to covariate effects.
- The basic idea is that a dense set of quantiles completely describes any given distribution.

Advantages

- Quantile regression allows investigation of covariate effects, not only on the mean of a response variable, but on the complete conditional distribution of the response given covariates.
- Quantile regression avoids some of the restrictive assumptions of mean regression models. More specifically, we will not require homoscedasticity or a specific type of distribution for the responses (or equivalently the error terms).
- In applications, there often is a genuine interest in regression quantiles that describe "extreme" observations in terms of covariate.

Theoretical Quantiles

The theoretical quantiles q_{τ} , $\tau \in (0, 1)$, of a random variable y are commonly and implicitly defined by the equations

$$\mathsf{P}(y \le q_{\tau}) \ge \tau$$
 and $\mathsf{P}(y \ge q_{\tau}) \ge 1 - \tau$,

i.e. the probability of observing a value below (or equal to) q_{τ} should be (at least) τ while the probability of observing a value above (or equal to) q_{τ} should be (at least) $1 - \tau$.

Theoretical Quantiles

Reformulate this implicit definition as the optimization problem

$$q_{\tau} = \operatorname*{arg\,min}_{q} \mathsf{E}\left(w_{\tau}(y,q)|y-q|\right)$$

with weights

$$w_{\tau}(y,q) = \begin{cases} 1-\tau & y < q\\ 0 & y = q\\ \tau & y > q. \end{cases}$$

Theoretical Quantiles

If y is continuous with strictly increasing cumulative distribution function F(y)and density f(y), the theoretical quantile is unique and is given by the inverse of the cumulative distribution function evaluated at τ , i.e.

$$q_{\tau} = F^{-1}(\tau)$$
 and $F(q_{\tau}) = \tau$.

The function $Q(\tau) = F^{-1}(\tau) = q_{\tau}$ is also called the quantile function of the distribution of y.

Empirical Quantiles

Empirical quantiles correspond to the estimated quantiles \hat{q}_{τ} determined from an i.i.d. sample y_1, \ldots, y_n of observations from the corresponding distribution.

At least a fraction of τ observations should be smaller or equal than \hat{q}_{τ} and at least a fraction of $1 - \tau$ observations should be larger or equal than \hat{q}_{τ} , i.e.

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \le \hat{q}_{\tau}) \ge \tau \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^{n} I(y_i \ge \hat{q}_{\tau}) \ge 1 - \tau,$$

where $I(\cdot)$ denotes the indicator function.

An equivalent definition is given as the solution of an optimization criterion

$$\hat{q}_{\tau} = \arg\min_{q} \sum_{i=1}^{n} w_{\tau}(y_i, q) |y_i - q|.$$

Quantile regression Linear quantile regression

Definition

Model

$$y_i = \mathbf{x}'_i \beta_\tau + \varepsilon_{i\tau}, \quad \mathbf{i} = \mathbf{1}, \dots, \mathbf{n},$$

with assumptions

1.
$$F_{\varepsilon_{i\tau}}(0) = \tau$$
.

2. $\varepsilon_{1\tau}, \ldots, \varepsilon_{n\tau}$ are independent.

Estimation of Regression Coefficients

The regression coefficients β_{τ} are determined by minimizing

$$\sum_{i=1}^{n} w_{\tau}(y_i, \eta_{i\tau}) |y_i - \eta_{i\tau}|,$$

where $\eta_{i\tau} = \mathbf{x}'_{\mathbf{i}} \beta_{\tau}$.

Software

- R package quantreg: Implements linear programming for determining $\hat{\beta}_{\tau}$.
- R package mboost: Implements functional gradient descent boosting for determining $\hat{\beta}_{\tau}$. for details.
- Software package BayesX (see also the R interface R2BayesX).

Models

- Quantile regression: $y = \mathbf{x}' \beta_{\tau} + \varepsilon_{\tau}$ as introduced in this chapter;
- Homoscedastic linear model with i.i.d. Gaussian error terms: $y = \mathbf{x}'\beta + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$;
- Heteroscedastic linear model with independent Gaussian error terms: $y = \mathbf{x}'\beta + \exp(\mathbf{x}'\tilde{\alpha})\varepsilon$, $\varepsilon \sim N(0, 1)$.

In each case determine the 11 quantiles $\tau = 0.01, 0.1, 0.2, \ldots, 0.8, 0.9, 0.99$ of the net rent distribution.

Figure 30: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with linear/quadratic quantile regression fits for 11 quantiles.

Figure 31: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with quantiles determined from a homoscedastic linear model.

Figure 32: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with quantiles determined from a heteroscedastic linear model.

Figure 33: Munich rent index: estimated effects of year of construction together with partial residuals for different quantiles.

Figure 34: Munich rent index: paths of estimated coefficients (solid line) together with 95% confidence intervals (dashed lines) obtained from inverting a rank-based test for various quantiles τ . The horizontal dotted line corresponds to the least squares estimate.

Properties

- Invariance under monotonic transformations: If $\mathbf{x}'\hat{\beta}_{\tau}$ is an estimate for the τ -quantile of the distribution of the response y, given covariates \mathbf{x} , then for any monotonically increasing transformation h the transformed estimate $h(\mathbf{x}'\hat{\beta}_{\tau})$ is an estimate for the τ -quantile of the distribution of h(y).
- Asymptotic distribution: In case of i.i.d. errors, the asymptotic distribution of $\hat{\beta}_{\tau}$ is given by

$$\hat{\beta}_{\tau} \stackrel{a}{\sim} \mathrm{N}\left(\beta_{\tau}, \frac{\tau(1-\tau)}{\mathbf{f}_{\varepsilon_{\tau}}(\mathbf{0})^2} (\mathbf{X}'\mathbf{X})^{-1}\right).$$

Properties

• In theory, the quantiles of the distribution of a response should be ordered such that

$$\mathbf{x}' \beta_{\tau_1} \leq \mathbf{x}' \beta_{\tau_2}$$
 for $\tau_1 \leq \tau_2$,

holds for any covariate vector \mathbf{x} . It can be shown that the ordering is preserved for the average covariate vector

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}},$$

when replacing the theoretical quantiles with estimated quantiles, i.e.

$$\bar{\mathbf{x}}'\hat{\beta}_{\tau_1} \leq \bar{\mathbf{x}}'\hat{\beta}_{\tau_2} \quad \text{for} \quad \tau_1 \leq \tau_2.$$

• In general this results will not transfer to arbitrary vectors x and will not even hold for all observed covariate vectors.

Quantile regression Bayesian quantile regression

Model

Observation model

The observations y_i , i = 1, ..., n, are conditionally independent following an asymmetric Laplace distribution, i.e. y_i i.i.d. $ALD(\mathbf{x}'_i\beta_{\tau}, \sigma^2, \tau)$. The scale mixture representation of the asymmetric Laplace distribution yields

$$y_i | z_i, \beta_{\tau}, \sigma^2 \sim \mathbf{N}(\mathbf{x}'_i \beta_{\tau} + \xi \mathbf{z}_i, \sigma^2 / \mathbf{w}_i),$$

where

$$\xi = \frac{1 - 2\tau}{\tau(1 - \tau)}, \qquad w_i = \frac{1}{\delta^2 z_i}, \qquad \delta^2 = \frac{2}{\tau(1 - \tau)}.$$

Priors

$$\beta_{\tau} \propto \text{const}$$

$$z_i \mid \sigma^2 \sim \text{Expo}(1/\sigma^2)$$

$$\sigma^2 \sim \text{IG}(a, b)$$
Gibbs sampler

• Full conditional for the regression coefficients: $\beta_{\tau} | \cdot N(\mu_{\beta_{\tau}}, \Sigma_{\beta_{\tau}})$ with

 $\boldsymbol{\Sigma}_{\beta_{\tau}} = \sigma^{2} (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1}, \qquad \mu_{\beta_{\tau}} = (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} \mathbf{X}' \mathbf{W} (\mathbf{y} - \xi \mathbf{z}),$

where $\mathbf{W} = \mathsf{diag}(\mathbf{w_1}, \dots, \mathbf{w_n})$ and $\mathbf{z} = (\mathbf{z_1}, \dots, \mathbf{z_n})'.$

• Full conditional for the scale parameters:

$$z_i^{-1} | \cdot \sim \text{InvGauss}\left(\sqrt{\frac{\xi^2 + 2\delta^2}{(y_i - \mathbf{x}'_i \beta_\tau)^2}}, \frac{\xi^2 + 2\delta^2}{\sigma^2 \delta^2}\right),$$

• Full conditional for the error variance:

$$\sigma^2 \mid \cdot \sim \mathrm{IG}\left(a + \frac{3n}{2}, b + \frac{1}{2}\sum_{i=1}^n w_i(y_i - \mathbf{x}'_i\beta_\tau - \xi \mathbf{z}_i)^2 + \sum_{i=1}^n \mathbf{z}_i\right).$$

Quantile regression Additive quantile regression

Models

• An approach for estimating nonlinear quantile functions $f_{\tau}(z_i)$ of continuous covariates z_i in the scatter plot smoothing model

$$y_i = f_\tau(z_i) + \varepsilon_{i\tau}$$

relies on the fitting criterion

$$\underset{f_{\tau}}{\operatorname{arg\,min}} \sum_{i=1}^{n} w_{\tau}(y_i, f_{\tau}(z_i)) |y_i - f_{\tau}(z_i)| + \lambda V(f_{\tau}').$$

Models

• $V(f'_{\tau})$ denotes the total variation of the derivative f'_{τ} defined as

$$V(f'_{\tau}) = \sup \sum_{i=1}^{n} |f'_{\tau}(z_{i+1}) - f'_{\tau}(z_{i})|,$$

where the sup is taken over all partitions $a \leq z_1 < \ldots < z_n < b$. For twice continuously differentiable functions f_{τ} , the total variation penalty can be written as

$$V(f'_{\tau}) = \int |f''_{\tau}(z)| dz$$

• The approach can be extended to additive models. However, it is typically difficult to determine the smoothing parameters along with the estimated functions in an automatic and data-driven way.

Models

- For Bayesian additive quantile regression, we can easily extend the Gibbs sampler outlined in the previous section.
- Most importantly, the full conditionals for nonparametric effects represented as $V_j\gamma_i$ are now given by

$$oldsymbol{\gamma}_j \mid \cdot \ \sim \operatorname{N}(\mathbf{m_j}, \mathbf{\Sigma_j})$$

with expectation and covariance matrix

$$\mathbf{m}_{\mathbf{j}} = \mathsf{E}(\boldsymbol{\gamma}_{j} | \cdot) = \left(\mathbf{V}_{\mathbf{j}}' \mathbf{W} \mathbf{V}_{\mathbf{j}} + \frac{\sigma^{2}}{\tau_{\mathbf{j}}^{2}} \mathbf{K}_{\mathbf{j}}\right)^{-1} \mathbf{V}_{\mathbf{j}} \mathbf{W}'(\mathbf{y} - \eta_{-\mathbf{j}}^{struct} - \xi \mathbf{z})$$

$$\mathbf{\Sigma}_{\mathbf{j}} = \mathsf{Cov}(\boldsymbol{\gamma}_{j} | \cdot) = \sigma^{2} \left(\mathbf{V}_{\mathbf{j}}' \mathbf{W} \mathbf{V}_{\mathbf{j}} + \frac{\sigma^{2}}{\tau_{\mathbf{j}}^{2}} \mathbf{K}_{\mathbf{j}}\right)^{-1}$$

where $\mathbf{W} = \mathsf{diag}(\mathbf{w_1}, \dots, \mathbf{w_n})$ and $\mathbf{z} = (\mathbf{z_1}, \dots, \mathbf{z_n})'.$

• Similarly, the full conditional for the error variance has to be adjusted while the full conditionals for the smoothing variances remain unchanged.

References

Nonparametric density estimation

- Lang, S., (2004): Lecture notes Computerintensive Verfahren (in German).
- Pruscha, H., 2000: Vorlesungen über Mathematische Statistik. Teubner, Stuttgart (in German).

Semiparametric regression

- Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models, methods and applications. Springer
- Wood, S. N. (2006): Generalized Additive Models: An Introduction with R, Chapman & Hall / CRC.

References

Quantile regression

- Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015): Bayesian Structured Additive Distributional Regression with an Application to Regional Income Inequality in Germany. The Annals of Applied Statistics, 9, 1024-1052.
- Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models, methods and applications. Springer
- Koenker, R. (2005): Quantile Regression. New York, Cambridge University Press.