Non- and semiparametric statistics

Stefan Lang

December 2015

Contents

1. Introduction
2. Distribution free statistical tests
3. Non- and semiparametric regression
4. Quantileregression

Introduction

Parametric versus nonparametric inference

Parametric versus nonparametric inference

Example: parametric density estimation

- Assume that the distribution family, e.g. normal distribution, is known.
- Only a few parameters, e.g. the mean and/or the variance, are unknown, i.e.

$$
f(x) \in\left\{f(x \mid \theta), \theta \subset \mathbb{R}^{p}\right\}
$$

- Once the unknown parameters θ are estimated through $\hat{\theta}$, the density f is fully specified.
- Advantage: estimators are often unbiased and efficient.
- Disadvantage: distribution family must be known in advance.

Parametric versus nonparametric inference

Example: nonparametric density estimation

- Do not assume a particular distribution family.
- Weak assumptions, e.g. assume only smoothness of the density.
- Advantage: very flexible.
- Disadvantage: loss of statistical efficiency compared to parametric density estimation.
- Examples: histogram or kernel density estimator.

Introduction

Nonparametric density estimators

The Histogram

- Divide the range of values starting from the origin x_{0} (e.g.
$x_{0}=0, x_{0}=x_{\text {min }}=x_{(1)}$) in intervals (so called bins) of equal length h (so called binwidth). For the j-th bin we have

$$
B_{j}:=\left[x_{0}+(j-1) h, x_{0}+j h\right]
$$

and

$$
P\left(X \in B_{j}\right)=\int_{x_{0}+(j-1) h}^{x_{0}+j h} f(x) d x
$$

- An estimator for $P\left(X \in B_{j}\right)$ is the relative frequency of x_{i} 's within B_{j}, i.e.

$$
P\left(\widehat{X \in B_{j}}\right)=\frac{1}{n}\left(\# x_{i} \text { in } B_{j}\right)=\frac{1}{n} \sum_{i=1}^{n} I_{B_{j}}\left(x_{i}\right) .
$$

The Histogram

- For continuous f the mean value theorem for integrals yields

$$
\int_{+(j-1) h}^{x_{0}+j h} f(x) d x=f(\xi) \cdot h
$$

for $\xi \in B_{j}$.

- Approximating f in B_{j} by a constant value, we obtain

$$
\hat{f}(x)=\frac{1}{n h} \sum_{i=1}^{n} I_{B_{j}}\left(x_{i}\right)
$$

for $x \in B_{j}$.

The Histogram

Definition histogram

Let x_{1}, \ldots, x_{n} be an i.i.d. sample of a continuous random variable X with density f. Then the estimator

$$
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} \sum_{j \in Z} I_{B_{j}}\left(x_{i}\right) I_{B_{j}}(x)
$$

is called histogram with binwidth $h>0$ and origin x_{0}.

The Histogram

Advantages of the histogram

- Can be easily computed and presented.
- Available in every statistical package (even in excel).

The Histogram

Disadvantages of the histogram

- Discontinuous estimator for a continuous density.
- Graphical representation is dependent on the origin x_{0}.
- There are situations, where $\hat{f}_{h}(x)$ depends more on observations that are far away from x than those that are close, compare the following figure.

Figure 1: Illustration of the dependence of the histogram on observations that are far away.

The histogram

Influence of the bandwidth

```
h->0 needleplot
h small quite wiggly fit
h large smooth fit
h->\infty\quaduniform distribution
```

In many statistical packages the number of intervals is specified rather than the binwidth h. The number of intervals induces a certain binwidth.

The histogram

Example: Munich rent index

Figure 2: Dependence of histograms on the number of intervals.

The histogram

Figure 3: Dependence of histograms on the number of intervals.

Kernel density estimators

- Define intervals $[x-h ; x+h]$ of width $2 h$ and move across the x-axis.
- This yields the estimator

$$
\hat{f}_{h}(x)=\frac{1}{2 n h}\left(\# x_{i} \text { within the interval }[x-h ; x+h]\right)
$$

- Using the "kernel"

$$
K(u)= \begin{cases}\frac{1}{2} & |u| \leq 1 \\ 0 & \text { else }\end{cases}
$$

we obtain

$$
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right)
$$

Kernels

Kernels

Illustration kernel density estimators

Expected value and variance

For fixed x we obtain for the expected value

$$
E\left(\hat{f}_{h}(x)\right)=\frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) d y
$$

and the variance

$$
\operatorname{Var}\left(\hat{f}_{h}(x)\right)=\frac{1}{n h^{2}} \int_{\mathbb{R}} K^{2}\left(\frac{x-y}{h}\right) f(y) d y-\frac{1}{n} E\left(\hat{f}_{h}(x)\right)^{2} .
$$

Bias and MSE

$$
\begin{aligned}
& \operatorname{Bias}\left(\hat{f}_{h}(x)\right)=E\left(\hat{f}_{h}(x)\right)-f(x)=\frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) d y-f(x) . \\
& M S E\left(\hat{f}_{h}(x)\right)= \operatorname{Var}\left(\hat{f}_{h}(x)\right)+\operatorname{Bias}^{2}\left(\hat{f}_{h}(x)\right) \\
&= \frac{1}{n h^{2}} \int_{\mathbb{R}} K^{2}\left(\frac{x-y}{h}\right) f(y) d y-\frac{1}{n} E\left(\hat{f}_{h}(x)\right)^{2} \\
&+\left(\frac{1}{h} \int_{\mathbb{R}} K\left(\frac{x-y}{h}\right) f(y) d y-f(x)\right)^{2}
\end{aligned}
$$

Consistency

Theorem Parzen

Let $R(x), x \in \mathbb{R}$ be a (measurable) function with properties

1. $\sup _{x \in \mathbb{R}}|R(x)|<\infty$ (d.h. $R(x)$ ist beschr"ankt)
2. $\int|R(x)| d x<\infty$
3. $|x| R(x) \rightarrow 0$.

Consistency

Theorem Parzen

Let $g(x), x \in \mathbb{R}$, be a (measurable) function with $\int|g(x)| d x<\infty$. Consider the series

$$
g_{n}(x)=\frac{1}{h_{n}} \int R\left(\frac{x-y}{h_{n}}\right) g(y) d y
$$

where h_{n} is a series with $\lim _{n \rightarrow \infty} h_{n}=0$. Then for every continuity point x of g we have

$$
g_{n}(x) \rightarrow g(x) \int R(s) d s
$$

for $n \rightarrow \infty$.

Consistency

Let f be continuous. Then

$$
E\left(\hat{f}_{h_{n}}(x)\right) \rightarrow f(x)
$$

provided that the bandwidth h_{n} converges to zero for $n \rightarrow \infty$.
For $n h_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we have

$$
\operatorname{Var}\left(\hat{f}_{h_{n}}(x)\right) \rightarrow 0
$$

i.e. $\hat{f}_{h_{n}}(x)$ is consistent.

Landau Symbols

Assume we are given two real valued sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with $n \in N$. We write

$$
a_{n}=O\left(b_{n}\right)
$$

if

$$
\left|\frac{a_{n}}{b_{n}}\right|
$$

is bounded for $n \rightarrow \infty$.
The sequence $\left\{a_{n}\right\}$ is roughly of the same order as $\left\{b_{n}\right\}$.
Obviously $a_{n}=O(1)$ says that a_{n} is bounded.

Landau Symbols

We write

$$
a_{n}=o\left(b_{n}\right)
$$

if

$$
\left|\frac{a_{n}}{b_{n}}\right|
$$

converges to zero for $n \rightarrow \infty$.
The series $\left\{a_{n}\right\}$ converges faster to zero than $\left\{b_{n}\right\}$.
Obviously $a_{n}=o(1)$ means

$$
\lim _{n \rightarrow \infty} a_{n}=0 .
$$

Mean integrated squared error

- Let f be at least 2 times continuously differentiable, $f^{\prime \prime}$ be bounded, f and $f^{\prime \prime}$ square integrable.
- Assume h_{n} is sequence with $h_{n} \rightarrow 0$.

Using $\int g^{2}(s) d s=\|g\|_{2}^{2}$ and $\mu_{2}(g)=\int g(s) s^{2} d s$ for a function g we obtain:

1. $\operatorname{Var}\left(\hat{f}_{h_{n}}(x)\right)=\frac{1}{n h_{n}}\|K\|_{2}^{2} f(x)+o\left(\frac{1}{n h_{n}}\right)$ respectively

$$
\int \operatorname{Var}\left(\hat{f}_{h_{n}}(x)\right) d x=\frac{1}{n h_{n}}\|K\|_{2}^{2}+o\left(\frac{1}{n h_{n}}\right) .
$$

Mean integrated squared error

2. $\operatorname{Bias}\left(\hat{f}_{h_{n}}(x)\right)=\frac{h_{n}{ }^{2}}{2} \mu_{2}(K) f^{\prime \prime}(x)+o\left(h_{n}{ }^{2}\right)$ respectively

$$
\int \operatorname{Bias}^{2}\left(\hat{f}_{h_{n}}(x)\right) d x=\frac{h_{n}^{4}}{4} \mu_{2}^{2}(K)\left\|f^{\prime \prime}\right\|_{2}^{2}+o\left(h_{n}^{4}\right)
$$

3. $\operatorname{MISE}\left(\hat{f}_{h_{n}}\right)=\frac{1}{n h_{n}}\|K\|_{2}^{2}+\frac{h_{n}{ }^{4}}{4} \mu_{2}^{2}(K)\left\|f^{\prime \prime}\right\|_{2}^{2}+o\left(\frac{1}{n h_{n}}+h_{n}{ }^{4}\right)$,
where $\operatorname{MISE}\left(\hat{f}_{h_{n}}\right)=\int \operatorname{MSE}\left(\hat{f}_{h_{n}}(x)\right) d x$

Bias variance trade off

- The bias decreases as h decreases.
- The variance decreases as h increases.
- The bias depends on $f^{\prime \prime}(x)$ as a measure for the curvature of f. Increased curvature corresponds with increased bias. The bias is positive at local maxima and negative at local minima.
- There is also a dependence of the bias und variance on the chosen kernel K.

AMISE optimal bandwidth

The idea is to optimze the AMISE (Asymptotic Mean Integrated Squared Error), which is obtained from MISE by deleting the o-terms, i.e.

$$
A M I S E\left(\hat{f}_{h}\right)=\frac{1}{n h}\|K\|_{2}^{2}+\frac{h^{4}}{4} \mu_{2}^{2}(K)\left\|f^{\prime \prime}\right\|_{2}^{2}
$$

The optimal bandwith is given by

$$
h_{0}=\left(\frac{\|K\|_{2}^{2}}{\left\|f^{\prime \prime}\right\|_{2}^{2} \mu_{2}^{2}(K) n}\right)^{\frac{1}{5}}
$$

AMISE optimal bandwidth

- Obviously, the optimal bandwidth depends on functionals of f (circulus virtuosis).
- In practice a reference density is inserted. Using e.g. a normal distribution and a normal kernel, we obtain

$$
\hat{h}_{0}=\left(\frac{4 \hat{\sigma}^{5}}{3 n}\right)^{\frac{1}{5}} \approx 1.06 \hat{\sigma} n^{-\frac{1}{5}}
$$

Distribution free statistical tests

Distribution free statistical tests Order statistics and ranks

Order statistics

- Assume we are given at least ordinal data x_{1}, \ldots, x_{n}.
- x_{1}, \ldots, x_{n} are realisations of an i.i.d. random sample X_{1}, \ldots, X_{n} with cdf F.
- Ordering the observations yields the vector $\left(x_{(1)}, \ldots, x_{(n)}\right)$ of the so called order statistics $\left(X_{(1)}, \ldots, X_{(n)}\right)$.
- The component $x_{(j)}$ is the value of the j-th order statistics $X_{(j)}$.

Example: children

Assume 10 children are given a puzzle to solve. The following table contains the time required to solve the puzzle:

child i	1	2	3	4	5	6	7	8	9	10
time x_{i} in seconds	78	58	60	82	83	85	65	72	70	61

Special cases of order statistics

- Special cases are $x_{(1)}$ (minimum), $x_{(n)}$ (maximum) and the median

$$
m= \begin{cases}x_{\left(\frac{n+1}{2}\right)} & n \text { uneven } \\ 0.5\left(x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n}{2}+1\right)}\right) & n \text { even }\end{cases}
$$

- The range of the data is given by

$$
d=x_{(n)}-x_{(1)} .
$$

Example: children

Empirical cumulative distribution function (cdf)

- For unordered observations x_{1}, \ldots, x_{n} the empirical cumulative distribution function F_{n} is defined for a real value x as

$$
F_{n}(x)=\frac{\#\left(x_{i} \leq x\right)}{n}
$$

- In terms of the ordered values $x_{(1)}, \ldots, x_{(n)}$ we obtain

$$
F_{n}(x)= \begin{cases}0 & x<x_{(1)} \\ \frac{m}{n} & x_{(m)} \leq x<x_{(m+1)} \\ 1 & x \geq x_{(n)}\end{cases}
$$

Properties of the empirical cdf

- F_{n} is a monotonic increasing step function with discontinuities at $x_{(1)}, \ldots, x_{(n)}$.
- For unbounded observations F_{n} increases in $x_{(j)}$ by $1 / n$, otherwise by k / n if there are k equal observations $x_{(j)}$.
- $\lim _{x \rightarrow-\infty} F_{n}(x)=0$ and $\lim _{x \rightarrow \infty} F_{n}(x)=1$.
- For fixed $x F_{n}(x)$ is a random variable because $F_{n}(x)$ depends on the random sample X_{1}, \ldots, X_{n}.
- $F_{n}(x)$ is discrete with possibles values m / n for $m=0,1, \ldots, n$.

Probability function of the cdf

- The probability function of $F_{n}(x)$ is given by

$$
P\left(F_{n}(x)=m / n\right)=\binom{n}{m}(F(x))^{m}(1-F(x))^{n-m}, \quad m=0,1, \ldots, n
$$

i.e., $n F_{n}(x)$ is binomial distributed with parameters n and $F(x)$.

The parameter $F(x)$ depends on the unknown cdf F.

- It follows

$$
E\left(F_{n}(x)\right)=F(x) \quad \operatorname{Var}\left(F_{n}(x)\right)=\frac{1}{n} F(x)(1-F(x)) .
$$

Asymptotic properties of the cdf

- $F_{n}(x)$ is unbiased for $F(x)$.
- Since $\operatorname{Var}\left(F_{n}(x)\right)$ converges to zero as n tends to infinity, $F_{n}(x)$ is consistent in mean square.
- It immediately follows that $F_{n}(x)$ converges also in probability to $F(x)$.

Definition ranks

- Let X_{1}, \ldots, X_{n} be a random sample of a continuous random variable X.
- If X_{i} has value $x_{(j)}$ within the order statistics, the rank of X_{i} is defined as $\operatorname{rank}\left(X_{i}\right)=R\left(X_{i}\right)=j$.
- The rank $R_{i}=R\left(X_{i}\right)$ is a discrete random variable with realisations $1,2 \ldots, n$.
- Obviously $X_{\left(R_{i}\right)}=X_{i}$ and

$$
R_{i}=\sum_{j=1}^{n} \chi\left(X_{i}-X_{j}\right)
$$

where

$$
\chi(x)= \begin{cases}1 & x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Example: children

Properties of the rank

1. $P\left(R_{1}=r_{1}, \ldots, R_{n}=r_{n}\right)=1 / n$!, where r_{1}, \ldots, r_{n} is a permutation of $1, \ldots, n$.
2. $P\left(R_{i}=j\right)=1 / n, i=1, \ldots, n$, where $j \in\{1, \ldots, n\}$.
3. $P\left(R_{i}=k, R_{j}=l\right)=\frac{1}{n(n-1)}$ for $1 \leq i, j, k, l \leq n, i \neq j, k \neq l$.
4. $E\left(R_{i}\right)=\frac{n+1}{2}, i=1, \ldots, n$
5. $\operatorname{Var}\left(R_{i}\right)=\frac{n^{2}-1}{12}, i=1, \ldots, n$.
6. $\operatorname{Cov}\left(R_{i}, R_{j}\right)=-\frac{n+1}{12}, 1 \leq i, j \leq n, i \neq j$.
7. $\operatorname{Corr}\left(R_{i}, R_{j}\right)=-\frac{1}{n-1}, 1 \leq i, j \leq n, i \neq j$.

Distribution of $F(X)$

- Note that $F(x)$ is a fixed number whereas $F(X)$ is a random variable.
- Assume X is a random variable with continuous cdf F. Then $F(X)$ is uniformly distributed within the unit interval $[0,1]$.
- For continuous $F F\left(X_{1}\right), \ldots, F\left(X_{n}\right)$ can be seen as a random sample according to the uniformly distributed random variable $F(X)$ $\left(F\left(X_{1}\right), \ldots, F\left(X_{n}\right)\right)$
- For continuous $F\left(F\left(X_{(1)}\right), \ldots, F\left(X_{(n)}\right)\right)$ can be regarded as order statistics from a uniformly distributed population.

Joint distribution of order statistics

- The joint distribution of the random sample X_{1}, \ldots, X_{n} is given by

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}\right) \ldots f\left(x_{n}\right),
$$

where f is the density of X.

- Define $Y_{i}=X_{(i)}$. Then $Y_{1}<Y_{2}<\cdots<Y_{n}$ and the order statistics $\left(Y_{1}, \ldots, Y_{n}\right)$ can be regarded as a transformation of $\left(X_{1}, \ldots, X_{n}\right)$.
- The joint distribution of the order statistic $\left(Y_{1}, \ldots, Y_{n}\right)$ is given by

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)= \begin{cases}n!f\left(y_{1}\right) f\left(y_{2}\right) \ldots f\left(y_{n}\right) & y_{1}<\cdots<y_{n} \\ 0 & \text { else }\end{cases}
$$

Distribution free statistical tests Goodness of fit tests

Kolomogorov-Smirnow-Test

Data

Cardinal measuring scale.

Assumptions

We assume an independent random sample X_{1}, \ldots, X_{n} with continuous cdf F.

Kolomogorov-Smirnow-Test

Test problem

- Case 1: Two-tailed

$$
H_{0}: F(x)=F_{0}(x) \quad \text { versus } \quad H_{1}: F(x) \neq F_{0}(x)
$$

- Case 2: One-tailed

$$
H_{0}: F(x) \geq F_{0}(x) \quad \text { versus } \quad H_{1}: F(x)<F_{0}(x)
$$

- Case 3: One-tailed

$$
H_{0}: F(x) \leq F_{0}(x) \quad \text { versus } \quad H_{1}: F(x)>F_{0}(x)
$$

Kolomogorov-Smirnow-Test

Test statistics

- Case 1: Two-tailed

$$
K_{n}=\sup _{x \in \mathbb{R}}\left|F_{0}(x)-F_{n}(x)\right|
$$

- Case 2: One-tailed

$$
K_{n}^{+}=\sup _{x \in \mathbb{R}}\left(F_{0}(x)-F_{n}(x)\right)
$$

- Case 3: One-tailed

$$
K_{n}^{-}=\sup _{x \in \mathbb{R}}\left(F_{n}(x)-F_{0}(x)\right)
$$

The test statistic $K_{n}=\sup _{x \in \mathbb{R}}\left|F_{0}(x)-F_{n}(x)\right|$ is for all continuous cdfs F_{0} distribution free, i.e. its distribution is independent of F_{0}.

Kolomogorov-Smirnow-Test

Test procedure

- Case 1: Two-tailed

Reject H_{0} if $K_{n} \geq k_{1-\alpha}$.

- Case 2: One-tailed

Reject H_{0} if $K_{n}^{+} \geq k_{1-\alpha}^{+}$.

- Case 3: One-tailed

Reject H_{0} if $K_{n}^{-} \geq k_{1-\alpha}^{-}$.

χ^{2}-test

Data

Any measuring scale. The data have to be grouped into k disjoint groups:

group	1	2	\ldots	k
number of observations	n_{1}	n_{2}	\cdots	n_{k}

Assumptions

The randon sample X_{1}, \ldots, X_{n} is independent.

Test problem

Let F be the unknown cdf and F_{0} a fully specified cdf.

$$
\begin{array}{ll}
H_{0}: F(x)=F_{0}(x) & \text { for all } x \in \mathbb{R} \\
H_{1}: F(x) \neq F_{0}(x) & \text { for at least one } x \in \mathbb{R}
\end{array}
$$

χ^{2}-test

Test statistics

Under H_{0}, let p_{i} be the probability that the random variable X takes a value in the i-th group. Then use the test statistic

$$
\chi^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n p_{i}\right)^{2}}{n p_{i}}
$$

Test procedure

H_{0} is rejected, if $\chi^{2} \leq \chi_{1-\alpha}^{2}(k-1)$ where $\chi_{1-\alpha}^{2}(k-1)$ is the $1-\alpha$ quantile of the χ^{2} distribution with $k-1$ degrees of freedom.

Binomial-Test

Data

Any measuring scale. The data are grouped into two disjoint groups.

Assumptions

- The random samples X_{1}, \ldots, X_{n} are independent.
- The probability for an observation belonging to class 1 is p for all n observations.

Binomial-Test

Test problem

- Case 1: Two-tailed

$$
H_{0}: p=p_{0} \quad \text { versus } \quad H_{1}: p \neq p_{0}
$$

- Case 2: One-tailed

$$
H_{0}: p \geq p_{0} \quad \text { versus } \quad H_{1}: p<p_{0}
$$

- Case 3: One-tailed

$$
H_{0}: p \leq p_{0} \quad \text { versus } \quad H_{1}: p>p_{0}
$$

Binomial-Test

Test statistics

Use the number of observations T belonging to class 1 . Under H_{0} we have $T \sim B\left(n, p_{0}\right)$.

Test procedure

- Case 1: Two-tailed

Reject H_{0} if $T \geq t_{1-\alpha_{1}}$ or $T \leq t_{\alpha_{2}}$
where $t_{1-\alpha_{1}}$ and $t_{\alpha_{2}}$ are defined through

$$
P\left(T \geq t_{1-\alpha_{1}}\right)=\alpha_{1} \quad P\left(T \leq t_{\alpha_{2}}\right)=\alpha_{2}
$$

with $\alpha_{1}+\alpha_{2}=\alpha$.

Binomial-Test

- Case 2: One-tailed

Reject H_{0} if $T \geq t_{1-\alpha}$ where

$$
P\left(T \geq t_{1-\alpha}\right)=\alpha
$$

- Case 3: One-tailed

Reject H_{0} if $T \leq t_{\alpha}$ where

$$
P\left(T \leq t_{\alpha}\right)=\alpha
$$

Example: Quality control

A manufacturer claims that a component is defect with probability 5 percent or less. A random sample of $n=20$ yields 3 defect components.

Distribution free statistical tests Linear rank tests

Initial situation

- Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with $X_{i} \sim F(x-\theta)$ for $i=1, \ldots, n$ where the cdf F is continuous with density f and symmetric about θ.
- θ is a location parameter, e.g. the median of F.
- We would like to test $H_{0}: \theta=\theta_{0}$ against the Alternatives $\theta<\theta_{0}, \theta>\theta_{0}$ or $\theta \neq \theta_{0}$.

Basic idea

- Idea: Use as the test statistic a function of the ranks rather than the observations.
- No loss of information if measuring scale is ordinal.
- Some loss of information for cardinal measuring scale, but surprisingly little loss of efficiency when using rank based statistics in hypothesis testing.

Definition of linear rank statistic

- In order to define the general linear rank statistic define the differences $D_{i}=X_{i}-\theta_{0}$ and their absolute values $\left|D_{i}\right|=\left|X_{i}-\theta_{0}\right|, i=1, \ldots, n$.
- Let $R_{i}^{+}=R\left(\left|D_{i}\right|\right)$ be the rank of $\left|D_{i}\right|$ and

$$
Z_{i}= \begin{cases}1 & D_{i}>0 \\ 0 & D_{i}<0 .\end{cases}
$$

- Then the linear rank statistic L_{n}^{+}has the general form

$$
L_{n}^{+}=\sum_{i=1}^{n} g\left(R_{i}^{+}\right) Z_{i},
$$

where $g\left(R_{i}^{+}\right) \in \mathbb{R}$ are suitable weights.

Alternative definition of the linear rank statistic

- Let $|D|_{(1)}<\cdots<|D|_{(n)}$ be the order statistics of $\left|D_{1}\right|, \ldots,\left|D_{n}\right|$.
- Define

$$
V_{i}= \begin{cases}1 & |D|_{(i)} \text { belongs to a positive difference } \\ 0 & |D|_{(i)} \text { belongs to a negative difference }\end{cases}
$$

- Then

$$
L_{n}^{+}=\sum_{i=1}^{n} g(i) V_{i}
$$

- For the expected value and the variance we have

$$
E\left(L_{n}^{+}\right)=\frac{1}{2} \sum_{i=1}^{n} g(i) \quad \operatorname{Var}\left(L_{n}^{+}\right) \sum_{i=1}^{n}(g(i))^{2}
$$

Sign test

Data

Cardinal measuring scale.

Assumptions

The random sample X_{1}, \ldots, X_{n} is independent with continuous cdf $F(x-\theta)$.

Sign test

Test problem

- Case 1: Two-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta \neq \theta_{0}
$$

- Case 2: One-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta>\theta_{0}
$$

- Case 3: One-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta<\theta_{0}
$$

Sign test

Test statistics

- The test statistic is given by

$$
V_{n}^{+}=\sum_{i=1}^{n} V_{i} .
$$

- V_{n}^{+}is a special case of L_{n}^{+}with $g(i)=1$.
- Hence V_{n}^{+}counts the observations that are larger than θ_{0}.
- Under H_{0} we have $V_{n}^{+} \sim B(n, 0.5)$.

Sign test

Test procedure

In analogy to the Binomial test.

- Case 1: Two-tailed

Reject H_{0} if $V_{n}^{+} \geq v_{1-\alpha / 2}^{+}$or $V_{n}^{+} \leq v_{\alpha / 2}^{+}$

- Case 2: One-tailed

Reject H_{0} if $V_{n}^{+} \geq v_{1-\alpha}^{+}$.

- Case 3: One-tailed

Reject H_{0} if $T \leq v_{\alpha}^{+}$.

Example: intelligence test

Wilcoxon test

Data

Cardinal measuring scale.

Assumptions

The random sample X_{1}, \ldots, X_{n} is independent with continuous cdf $F(x-\theta)$ that is symmetric around θ.

Wilcoxon test

Test problem

- Case 1: Two-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta \neq \theta_{0}
$$

- Case 2: One-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta>\theta_{0}
$$

- Case 3: One-tailed

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta<\theta_{0}
$$

Wilcoxon test

Test statistics

- The test statistic is given by

$$
W_{n}^{+}=\sum_{i=1}^{n} i V_{i}=\sum_{i=1}^{n} R_{i}^{+} Z_{i}
$$

- W_{n}^{+}is a special case of L_{n}^{+}with $g(i)=i$.
- W_{n}^{+}may be interpreted as the sum of the ranks of the absolute values $\left|D_{i}\right|$ with positive differences. In contrary to the sign test the size of the differences additionally enters the test statistic.
- Under $H_{0} W_{n}^{+}$is symmetric around $E\left(W_{n}^{+}\right)=n(n+1) / 4$ and we have

$$
P\left(W_{n}^{+}=w^{+}\right)=a\left(w^{+}\right) / 2^{n}
$$

Wilcoxon test

Test procedure

In analogy to the Binomial test.

- Case 1: Two-tailed

Reject H_{0} if $W_{n}^{+} \geq w_{1-\alpha / 2}^{+}$or $W_{n}^{+} \leq w_{\alpha / 2}^{+}$

- Case 2: One-tailed

Reject H_{0} if $W_{n}^{+} \geq w_{1-\alpha}^{+}$.

- Case 3: One-tailed

Reject H_{0} if $W \leq w_{\alpha}^{+}$.

Non- and semiparametric regression Univariate smoothing

Illustration: Malnutrition in Zambia

Figure 4: Malnutrition in Tanzania: scatter plot of the Z-score for chronic malnutrition versus the age of the child in months for one of the districts in Tanzania (Ruvuma).

Illustration: simulated data

Figure 5: Scatter plot of a simulated data set with nonlinear effect of the covariate: The right panel additionally shows the true covariate effect. The data have been simulated according to the model $y=f(x)+\varepsilon$ where $f(x)=\sin (2(4 x-2))+2 \exp \left(-\left(16^{2}\right)(x-0.5)^{2}\right)$ and $\varepsilon \sim \mathrm{N}\left(0,0.3^{2}\right)$.

Definition univariate smoothing

Data

Measurements $\left(y_{i}, z_{i}\right), i=1, \ldots, n$, for a continuous response variable y and a continuous covariate z.

Model

$$
y_{i}=f\left(z_{i}\right)+\varepsilon_{i}
$$

with independent and identically distributed errors and

$$
\mathrm{E}\left(\varepsilon_{i}\right)=0 \quad \text { and } \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} .
$$

In some cases, we additionally assume that the errors are i.i.d. normally distributed, so that

$$
\varepsilon_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right) .
$$

Polynomial splines

Polynomial regression

Figure 6: Polynomial regression models for the simulated data set.

Polynomial splines

Piecewise polynomial regression

Figure 7: Piecewise polynomial regression (left) and polynomial splines (right).

Polynomial splines

Definition

A function $f:[a, b] \rightarrow \mathbb{R}$ is called a polynomial spline of degree $l \geq 0$ with knots $a=\kappa_{1}<\ldots<\kappa_{m}=b$, if it fulfills the following conditions:

1. $f(z)$ is $(l-1)$-times continuously differentiable. The special case of $l=1$ corresponds to $f(z)$ being continuous (but not differentiable). We do not state any smoothness requirements for $f(z)$ when $l=0$.
2. $f(z)$ is a polynomial of degree l on the intervals $\left[\kappa_{j}, \kappa_{j+1}\right)$ defined by the knots.

Polynomial splines

Figure 8: Examples of polynomial splines of degree 0, 1, 2 and 3 with knots $\kappa_{1}=0, \kappa_{2}=0.25, \kappa_{3}=0.5, \kappa_{4}=0.75$ and $\kappa_{5}=1$.

Polynomial splines

Truncated power series

$$
y_{i}=\gamma_{1}+\gamma_{2} z_{i}+\ldots+\gamma_{l+1} z_{i}^{l}+\gamma_{l+2}\left(z_{i}-\kappa_{2}\right)_{+}^{l}+\ldots+\gamma_{l+m-1}\left(z_{i}-\kappa_{m-1}\right)_{+}^{l}+\varepsilon_{i}
$$

with

$$
\left(z-\kappa_{j}\right)_{+}^{l}= \begin{cases}\left(z-\kappa_{j}\right)^{l} & z \geq \kappa_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Polynomial splines

Figure 9: Polynomial spline fit with linear truncated polynomials.

Polynomial splines

Figure 10: TP basis for splines of degree 0 based on the knots $\{0,0.25,0.5,0.75,1\}$.

Polynomial splines

Figure 11: TP basis for splines of degree 2 based on the knots $\{0,0.25,0.5,0.75,1\}$.

Polynomial splines

Defining the vectors of the observed response variables \mathbf{y} and the errors ε, as well as the design matrix
$\mathbf{Z}=\left(\begin{array}{ccc}B_{1}\left(z_{1}\right) & \ldots & B_{d}\left(z_{1}\right) \\ \vdots & & \vdots \\ B_{1}\left(z_{n}\right) & \ldots & B_{d}\left(z_{n}\right)\end{array}\right)=\left(\begin{array}{ccccccc}1 & z_{1} & \ldots & z_{1}^{l} & \left(z_{1}-\kappa_{2}\right)_{+}^{l} & \ldots & \left(z_{1}-\kappa_{m-1}\right)_{+}^{l} \\ \vdots & & & & & \vdots \\ 1 & z_{n} & \ldots & z_{n}^{l} & \left(z_{n}-\kappa_{2}\right)_{+}^{l} & \ldots & \left(z_{n}-\kappa_{m-1}\right)_{+}^{l}\end{array}\right)$
we obtain the equation

$$
\mathbf{y}=\mathbf{Z} \gamma+\varepsilon
$$

with the coefficient vector $\gamma=\left(\gamma_{1}, \ldots, \gamma_{d}\right)^{\prime}$. The usual least squares estimate is thus

$$
\hat{\gamma}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
$$

and

$$
\hat{f}(z)=\mathbf{z}^{\prime} \hat{\gamma}
$$

with $\mathbf{z}=\left(\mathbf{B}_{\mathbf{1}}(\mathbf{z}), \ldots, \mathbf{B}_{\mathbf{d}}(\mathbf{z})\right)^{\prime}$ depending on the chosen covariate value z.

Polynomial splines

Example: Malnutrition in Tanzania

Figure 12: Nonparametric estimates for the age effect based on polynomial splines.

Polynomial splines

Figure 13: Nonparametric estimates for the age effect based on polynomial splines.

Polynomial splines

Figure 14: Nonparametric estimates for the age effect based on polynomial splines.

Polynomial splines

Influence of the knots

Figure 15: Impact of the number of knots on cubic spline fits: The estimated function is represented as a solid line while the true function is superimposed as a dashed line.

Polynomial splines

Influence of the knots

Figure 16: Impact of the number of knots on cubic spline fits: The estimated function is represented as a solid line while the true function is superimposed as a dashed line.

Polynomial splines

- Equidistant knots: The domain $[a, b]$ of z is split into $m-1$ intervals of width

$$
h=\frac{b-a}{m-1}
$$

in order to obtain the knots

$$
\kappa_{j}=a+(j-1) \cdot h, \quad j=1, \ldots, m,
$$

In all examples considered so far, we have always tacitly assumed equidistant knots.

- Quantile-based knots: Use the $(j-1) /(m-1)$-quantiles $(j=1, \ldots, m)$ of the observed covariate values z_{1}, \ldots, z_{n} as knots.
- Visual knot choice based on a scatter plot

Polynomial splines

B-splines

Figure 17: Single B-spline basis functions for degrees $l=0,1,2,3$ and equidistant knots.

Polynomial splines

Figure 18: B-spline bases of degree $l=1,2,3$ with equidistant knots (left panel) and unevenly distributed knots (right panel).

Polynomial splines

Figure 19: B-spline bases of degree $l=1,2,3$ with equidistant knots (left panel) and unevenly distributed knots (right panel).

Polynomial splines

Definition B-splines

The function $f(z)$ can again be represented through a linear combination of $d=m+l-1$ basis functions, i.e.

$$
f(z)=\sum_{j=1}^{d} \gamma_{j} B_{j}(z)
$$

B-splines of order $l=0$ are defined as

$$
B_{j}^{0}(z)=I\left(\kappa_{j} \leq z<\kappa_{j+1}\right)=\left\{\begin{array}{ll}
1 & \kappa_{j} \leq z<\kappa_{j+1} \\
0 & \text { otherwise }
\end{array} \quad j=1, \ldots, d-1\right.
$$

where $I(\cdot)$ denotes the indicator function.

Polynomial splines

We obtain the basis functions of degree $l=1$ as

$$
B_{j}^{1}(z)=\frac{z-\kappa_{j-1}}{\kappa_{j}-\kappa_{j-1}} I\left(\kappa_{j-1} \leq z<\kappa_{j}\right)+\frac{\kappa_{j+1}-z}{\kappa_{j+1}-\kappa_{j}} I\left(\kappa_{j} \leq z<\kappa_{j+1}\right)
$$

i.e. each basis function is defined by two linear segments on the intervals $\left[\kappa_{j-1}, \kappa_{j}\right)$ and $\left[\kappa_{j}, \kappa_{j+1}\right)$, which are continuously combined at the knot κ_{j}.

In general, higher order B-splines are defined recursively:

$$
B_{j}^{l}(z)=\frac{z-\kappa_{j-l}}{\kappa_{j}-\kappa_{j-l}} B_{j-1}^{l-1}(z)+\frac{\kappa_{j+1}-z}{\kappa_{j+1}-\kappa_{j+1-l}} B_{j}^{l-1}(z)
$$

Polynomial splines

Figure 20: Schematic representation of a nonparametric fit with cubic B-splines.

Polynomial splines

Design matrix and fit

$$
\mathbf{Z}=\left(\begin{array}{ccc}
B_{1}^{l}\left(z_{1}\right) & \ldots & B_{d}^{l}\left(z_{1}\right) \\
\vdots & & \vdots \\
B_{1}^{l}\left(z_{n}\right) & \ldots & B_{d}^{l}\left(z_{n}\right)
\end{array}\right) .
$$

The usual least squares estimate is thus

$$
\hat{\gamma}=\left(Z^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
$$

and

$$
\hat{f}(z)=\mathbf{z}^{\prime} \hat{\gamma}
$$

with $\mathbf{z}=\left(\mathbf{B}_{1}(\mathbf{z}), \ldots, \mathbf{B}_{\mathbf{d}}(\mathbf{z})\right)^{\prime}$ depending on the chosen covariate value z.

P- splines

The main idea of penalized splines (P-splines) can be summarized as follows:

- Approximate the function $f(z)$ with a polynomial spline that uses a generous number of knots (usually about 20 to 40). This ensures that $f(z)$ can be approximated with enough flexibility to represent even highly complex functions.
- Introduce an additional penalty term that prevents overfitting and minimize a penalized least squares criterion instead of the usual least squares criterion.

P- splines

P-splines based on TP basis

$$
f(z)=\gamma_{1}+\gamma_{2} z+\ldots+\gamma_{l+1} z^{l}+\gamma_{l+2}\left(z-\kappa_{2}\right)_{+}^{l}+\ldots+\gamma_{d}\left(z-\kappa_{m-1}\right)_{+}^{l} .
$$

Minimize the penalized residual sum of squares

$$
\operatorname{PLS}(\lambda)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} \gamma_{j} B_{j}\left(z_{i}\right)\right)^{2}+\lambda \sum_{j=l+2}^{d} \gamma_{j}^{2}
$$

P- splines

P-Splines based on B-Splines

Minimize the penalized residual sum of squares

$$
\operatorname{PLS}(\lambda)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{d} \gamma_{j} B_{j}\left(z_{i}\right)\right)^{2}+\lambda \sum_{j=r+1}^{d}\left(\Delta^{r} \gamma_{j}\right)^{2}
$$

where Δ^{r} denotes r th order differences, which are recursively defined by

$$
\begin{aligned}
\Delta^{1} \gamma_{j} & =\gamma_{j}-\gamma_{j-1} \\
\Delta^{2} \gamma_{j} & =\Delta^{1} \Delta^{1} \gamma_{j}=\Delta^{1} \gamma_{j}-\Delta^{1} \gamma_{j-1}=\gamma_{j}-2 \gamma_{j-1}+\gamma_{j-2} \\
& \vdots \\
\Delta^{r} \gamma_{j} & =\Delta^{r-1} \gamma_{j}-\Delta^{r-1} \gamma_{j-1}
\end{aligned}
$$

P- splines

Influence of the number of knots

Figure 21: Influence of the number of knots on estimated P-splines.

P- splines

Impact of the smoothing parameter

Figure 22: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

P- splines

Figure 23: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

P- splines

Figure 24: Malnutrition in Tanzania: impact of the smoothing parameter on estimated P-splines with second order difference penalty.

P- splines

Summary

Model

We approximate function f using polynomial splines so that we are able to write the nonparametric regression model as a linear model

$$
\mathbf{y}=\mathbf{Z} \gamma+\varepsilon
$$

Penalized Least Squares Criterion

Estimate γ by minimizing the penalized least squares criterion

$$
\operatorname{PLS}(\lambda)=(\mathbf{y}-\mathbf{Z} \gamma)^{\prime}(\mathbf{y}-\mathbf{Z} \gamma)+\lambda \gamma^{\prime} \mathbf{K} \gamma
$$

P- splines

Smoothing parameter

The smoothing parameter $\lambda \geq 0$ controls the compromise between fidelity to the data and smoothness of the resulting function estimate. For splines in a TP basis representation, we penalize the sum of squared coefficients of the truncated powers. For B-splines, we construct the penalty based on the sum of squared differences of neighboring coefficients or based on the integral of the function's squared second derivative.

Penalized Least Squares Estimation

In either case, the penalized least squares estimate has the form

$$
\hat{\gamma}=\left(\mathbf{Z}^{\prime} \mathbf{Z}+\lambda \mathbf{K}\right)^{-1} \mathbf{Z}^{\prime} \mathbf{y}
$$

Local smoothing procedures

Nearest neighbor estimates

For a time series $y_{t}, t=1, \ldots, T$, running means of order 3 are, for example, defined by

$$
\hat{y}_{t}=\frac{1}{3}\left(y_{t-1}+y_{t}+y_{t+1}\right)
$$

with appropriate modifications at the boundaries.
Nearest neighbor estimates extend the concept of running means into a more general framework. In general, a nearest neighbor estimate is defined by

$$
\hat{f}(z)=\underset{j \in N(z)}{\operatorname{Ave}} y_{j}
$$

where Ave defines some averaging operator and $N(z)$ is an appropriate neighborhood of z.

Local smoothing procedures

The following averaging operators are often used for the determination of nearest neighbor estimates:

1. Arithmetic mean (running mean): Determine the arithmetic mean of the response variable in the neighborhood of z, i.e.:

$$
\hat{f}(z)=\frac{1}{|N(z)|} \sum_{j \in N(z)} y_{j}
$$

where $|N(z)|$ is the number of neighbors of z.
2. Median (running median): Determine the median of the response variables in the neighborhood of z, i.e.

$$
\hat{f}(z)=\operatorname{Median}\left\{y_{j}, j \in N(z)\right\}
$$

Local smoothing procedures

3. Linear regression (running line): Estimate a linear regression based on the observations in the neighborhood of z and use the prediction from this model as the estimate, i.e.

$$
\hat{f}(z)=\hat{\gamma}_{0, z}+\hat{\gamma}_{1, z} z,
$$

where $\hat{\gamma}_{0, z}$ and $\hat{\gamma}_{1, z}$ are the least squares estimates using the data $\left\{\left(y_{j}, z_{j}\right), j \in N(z)\right\}$.

Commonly used neighborhood definitions are:

1. symmetric neighborhoods of order k or
2. neighborhoods that consist of k-nearest neighbors.

Local smoothing procedures

Example: Malnutrition in Zambia

Figure 25: Malnutrition in Tanzania: running mean with different bandwidths.

Local smoothing procedures

Local Polynomial Regression and the Nadaraya-Watson Estimator

We consider the (local) approximation of an l-times continuously differentiable function $f\left(z_{i}\right)$ using a Taylor series expansion around z, yielding

$$
f\left(z_{i}\right) \approx f(z)+\left(z_{i}-z\right) f^{\prime}(z)+\left(z_{i}-z\right)^{2} \frac{f^{\prime \prime}(z)}{2!}+\ldots+\left(z_{i}-z\right)^{l} \frac{f^{(l)}(z)}{l!}
$$

Hence, we approximate the function $f\left(z_{i}\right)$ with polynomials of the form $\left(z_{i}-z\right)^{j}$ in a neighborhood of z_{i}. The polynomials are weighted by the derivatives $f^{(j)}(z) / j$! evaluated at the expansion point z.

Local smoothing procedures

We obtain

$$
\begin{aligned}
y_{i} & =f\left(z_{i}\right)+\varepsilon_{i} \\
& \approx f(z)+\left(z_{i}-z\right) f^{\prime}(z)+\left(z_{i}-z\right)^{2} \frac{f^{\prime \prime}(z)}{2!}+\ldots+\left(z_{i}-z\right)^{l} \frac{f^{(l)}(z)}{l!}+\varepsilon_{i} \\
& =\gamma_{0}+\left(z_{i}-z\right) \gamma_{1}+\left(z_{i}-z\right)^{2} \gamma_{2}+\ldots+\left(z_{i}-z\right)^{l} \gamma_{l}+\varepsilon_{i}
\end{aligned}
$$

for each observation $\left(y_{i}, z_{i}\right)$ with expansion point z.
We obtain an implicit estimate for the function value $f(z)$ through $\hat{\gamma}_{0}=\hat{f}(z)$, and more generally, we even obtain estimates for the derivatives through $j!\hat{\gamma}_{j}=\hat{f}^{(j)}(z)$.

Local smoothing procedures

Since the Taylor series approximation is only valid locally, i.e. close to the expansion point z, estimation is based on a weighted version of the residual sum of squares:

$$
\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{l} \gamma_{j}\left(z_{i}-z\right)^{j}\right)^{2} w_{\lambda}\left(z, z_{i}\right)
$$

with weights $w_{\lambda}\left(z, z_{i}\right)$. These are typically constructed based on the distances $\left|z_{i}-z\right|$ such that larger weights result for observations with a small distance.

Local smoothing procedures

A general class of such weights results with the use of kernel functions K in

$$
w_{\lambda}\left(z, z_{i}\right)=K\left(\frac{z_{i}-z}{\lambda}\right)
$$

Typical examples of kernel functions include

$$
\begin{aligned}
K(u) & =\left\{\begin{array}{ll}
\frac{1}{2} & -1 \leq u \leq 1 \\
0 & \text { otherwise }
\end{array} \quad\right. \text { Uniform kernel, } \\
K(u) & =\left\{\begin{array}{ll}
\frac{3}{4}\left(1-u^{2}\right) & -1 \leq u \leq 1 \\
0 & \text { otherwise }
\end{array} \quad\right. \text { Epanechnikov kernel, } \\
K(u) & =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} u^{2}\right) \quad \text { Gaussian kernel, },
\end{aligned}
$$

Local smoothing procedures

Figure 26: Examples of kernel functions.

Choosing the smoothing parameter

Choice Based on Optimality Criteria

E.g. cross validation criterion

$$
\mathrm{CV}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}^{(-i)}\left(z_{i}\right)\right)^{2}
$$

or

$$
\mathrm{AIC}=n \log \left(\hat{\sigma}^{2}\right)+2(\mathrm{df}+1)
$$

Mixed Model Representation of Penalization Approaches
Bayesian approach

Choosing the smoothing parameter

Figure 27: Malnutrition in Tanzania: GCV and AIC (left panel) and cubic P-splines fits resulting with the corresponding optimal smoothing parameters (right panel).

Non- and semiparametric regression Additive models

Additive Models

Data

$\left(y_{i}, z_{i 1}, \ldots, z_{i q}, x_{i 1}, \ldots, x_{i k}\right), i=1, \ldots, n$, with y and x_{1}, \ldots, x_{k} as in the linear regression model and additional continuous covariates z_{1}, \ldots, z_{q}.

Model

$$
y_{i}=f_{1}\left(z_{i 1}\right)+\ldots+f_{q}\left(z_{i q}\right)+\beta_{0}+\beta_{1} x_{i 1}+\ldots+\beta_{k} x_{i k}+\varepsilon_{i} .
$$

The functions $f_{1}\left(z_{1}\right), \ldots, f_{q}\left(z_{q}\right)$ are assumed to be smooth nonlinear effects of the continuous covariates z_{1}, \ldots, z_{q}. The same assumptions are made for the errors ε_{i} as with the classical linear model.

Additive Models

Modeling nonlinear effects

The functions $f_{j}, j=1, \ldots, q$, will be approximated by

$$
f_{j}\left(z_{j}\right)=\sum_{l=1}^{d_{j}} \gamma_{j l} B_{l}\left(z_{j}\right)
$$

where the basis functions B_{l} represent TP- or B -spline bases of polynomial splines.
The vector $\mathbf{f}_{\mathbf{j}}=\left(\mathbf{f}_{\mathbf{j}}\left(\mathbf{z}_{1 \mathrm{j}}\right), \ldots, \mathbf{f}_{\mathbf{j}}\left(\mathbf{z}_{\mathbf{n j}}\right)\right)^{\prime}$ of function values evaluated at the observed covariate values $z_{1 j}, \ldots, z_{n j}$ can then be expressed as

$$
\mathrm{f}_{\mathrm{j}}=\mathrm{Z}_{\mathrm{j}} \gamma_{\mathrm{j}}
$$

where $\gamma_{j}=\left(\gamma_{j 1}, \ldots, \gamma_{j d_{j}}\right)^{\prime}$ is the vector of regression coefficients.

Additive Models

The design matrix $\mathbf{Z}_{\mathbf{j}}$ consists of the basis functions evaluated at the observed covariate values, i.e. $\mathbf{Z}_{\mathrm{j}}[\mathbf{i}, \mathbf{l}]=\mathbf{B}_{\mathbf{l}}\left(\mathbf{Z}_{\mathbf{i j}}\right)$.

The additive model can then be written in matrix notation in the form

$$
\mathbf{y}=\mathbf{Z}_{1} \gamma_{1}+\ldots+\mathbf{Z}_{\mathbf{q}} \gamma_{\mathbf{q}}+\mathbf{X} \beta+\varepsilon
$$

where the design matrices $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{\mathbf{q}}$ consist of the basis functions evaluated at the given covariate values. The design matrix \mathbf{X} is constructed as in the linear model.

Additive Models

Example: Munich rent index

Assume the additive model

$$
\text { rentsqm }=f_{1}(\text { area })+f_{2}(\text { yearc })+\beta_{0}+\beta_{1} \text { glocation }+\beta_{2} \text { tlocation }+\varepsilon,
$$

where the functions f_{1} and f_{2} are modeled by P -splines with 20 interior knots and second order difference penalties.

For the location, the model includes the dummy variables glocation for good locations, and tlocation for top location. The average location serves as the reference category.

Additive Models

Figure 28: Munich rent index: estimated nonlinear effects of area and year of construction.

Quantile regression Introduction

Basic Idea

Example: Munich rent index

Figure 29: Munich rent index: scatter plots of rents in Euro versus living area (left panel) and year of construction (right panel) together with a linear (left panel) and a quadratic (right panel) least squares fit.

Basis Idea

- Focus on the quantiles of the response distribution and relate these quantiles to covariate effects.
- The basic idea is that a dense set of quantiles completely describes any given distribution.

Advantages

- Quantile regression allows investigation of covariate effects, not only on the mean of a response variable, but on the complete conditional distribution of the response given covariates.
- Quantile regression avoids some of the restrictive assumptions of mean regression models. More specifically, we will not require homoscedasticity or a specific type of distribution for the responses (or equivalently the error terms).
- In applications, there often is a genuine interest in regression quantiles that describe "extreme" observations in terms of covariate.

Theoretical Quantiles

The theoretical quantiles $q_{\tau}, \tau \in(0,1)$, of a random variable y are commonly and implicitly defined by the equations

$$
\mathrm{P}\left(y \leq q_{\tau}\right) \geq \tau \quad \text { and } \quad \mathrm{P}\left(y \geq q_{\tau}\right) \geq 1-\tau,
$$

i.e. the probability of observing a value below (or equal to) q_{τ} should be (at least) τ while the probability of observing a value above (or equal to) q_{τ} should be (at least) $1-\tau$.

Theoretical Quantiles

Reformulate this implicit definition as the optimization problem

$$
q_{\tau}=\underset{q}{\arg \min } \mathrm{E}\left(w_{\tau}(y, q)|y-q|\right)
$$

with weights

$$
w_{\tau}(y, q)= \begin{cases}1-\tau & y<q \\ 0 & y=q \\ \tau & y>q\end{cases}
$$

Theoretical Quantiles

If y is continuous with strictly increasing cumulative distribution function $F(y)$ and density $f(y)$, the theoretical quantile is unique and is given by the inverse of the cumulative distribution function evaluated at τ, i.e.

$$
q_{\tau}=F^{-1}(\tau) \quad \text { and } \quad F\left(q_{\tau}\right)=\tau
$$

The function $Q(\tau)=F^{-1}(\tau)=q_{\tau}$ is also called the quantile function of the distribution of y.

Empirical Quantiles

Empirical quantiles correspond to the estimated quantiles \hat{q}_{τ} determined from an i.i.d. sample y_{1}, \ldots, y_{n} of observations from the corresponding distribution.

At least a fraction of τ observations should be smaller or equal than \hat{q}_{τ} and at least a fraction of $1-\tau$ observations should be larger or equal than \hat{q}_{τ}, i.e.

$$
\frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} \leq \hat{q}_{\tau}\right) \geq \tau \quad \text { and } \quad \frac{1}{n} \sum_{i=1}^{n} I\left(y_{i} \geq \hat{q}_{\tau}\right) \geq 1-\tau,
$$

where $I(\cdot)$ denotes the indicator function.
An equivalent definition is given as the solution of an optimization criterion

$$
\hat{q}_{\tau}=\underset{q}{\arg \min } \sum_{i=1}^{n} w_{\tau}\left(y_{i}, q\right)\left|y_{i}-q\right| .
$$

Quantile regression Linear quantile regression

Definition

Model

$$
y_{i}=\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}+\varepsilon_{\mathbf{i} \tau}, \quad \mathbf{i}=\mathbf{1}, \ldots, \mathbf{n}
$$

with assumptions

1. $F_{\varepsilon_{i \tau}}(0)=\tau$.
2. $\varepsilon_{1 \tau}, \ldots, \varepsilon_{n \tau}$ are independent.

Estimation of Regression Coefficients

The regression coefficients β_{τ} are determined by minimizing

$$
\sum_{i=1}^{n} w_{\tau}\left(y_{i}, \eta_{i \tau}\right)\left|y_{i}-\eta_{i \tau}\right|
$$

where $\eta_{i \tau}=\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}$.

Software

- R package quantreg: Implements linear programming for determining $\hat{\beta}_{\tau}$.
- R package mboost: Implements functional gradient descent boosting for determining $\hat{\beta}_{\tau}$. for details.
- Software package BayesX (see also the R interface R2BayesX).

Example: Munich rent index

Models

- Quantile regression: $y=\mathbf{x}^{\prime} \beta_{\tau}+\varepsilon_{\tau}$ as introduced in this chapter;
- Homoscedastic linear model with i.i.d. Gaussian error terms: $y=\mathbf{x}^{\prime} \beta+\varepsilon$, $\varepsilon \sim \mathrm{N}\left(0, \sigma^{2}\right)$;
- Heteroscedastic linear model with independent Gaussian error terms: $y=\mathbf{x}^{\prime} \beta+\exp \left(\mathbf{x}^{\prime} \tilde{\alpha}\right) \varepsilon, \varepsilon \sim \mathrm{N}(0,1)$.

In each case determine the 11 quantiles $\tau=0.01,0.1,0.2, \ldots, 0.8,0.9,0.99$ of the net rent distribution.

Example: Munich rent index

Figure 30: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with linear/quadratic quantile regression fits for 11 quantiles.

Example: Munich rent index

Figure 31: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with quantiles determined from a homoscedastic linear model.

Example: Munich rent index

Figure 32: Munich rent index: scatter plots of the rents in Euro versus living area (left column) and year of construction (right panel) together with quantiles determined from a heteroscedastic linear model.

Example: Munich rent index

Figure 33: Munich rent index: estimated effects of year of construction together with partial residuals for different quantiles.

Example: Munich rent index

Figure 34: Munich rent index: paths of estimated coefficients (solid line) together with 95% confidence intervals (dashed lines) obtained from inverting a rank-based test for various quantiles τ. The horizontal dotted line corresponds to the least squares estimate.

Properties

- Invariance under monotonic transformations: If $\mathbf{x}^{\prime} \hat{\beta}_{\tau}$ is an estimate for the τ-quantile of the distribution of the response y, given covariates \mathbf{x}, then for any monotonically increasing transformation h the transformed estimate $h\left(\mathbf{x}^{\prime} \hat{\beta}_{\tau}\right)$ is an estimate for the τ-quantile of the distribution of $h(y)$.
- Asymptotic distribution: In case of i.i.d. errors, the asymptotic distribution of $\hat{\beta}_{\tau}$ is given by

$$
\hat{\beta}_{\tau} \stackrel{a}{\sim} \mathrm{~N}\left(\beta_{\tau}, \frac{\tau(\mathbf{1}-\tau)}{\mathbf{f}_{\varepsilon_{\tau}}(\mathbf{0})^{2}}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

Properties

- In theory, the quantiles of the distribution of a response should be ordered such that

$$
\mathbf{x}^{\prime} \beta_{\tau_{1}} \leq \mathbf{x}^{\prime} \beta_{\tau_{2}} \quad \text { for } \quad \tau_{1} \leq \tau_{2}
$$

holds for any covariate vector \mathbf{x}. It can be shown that the ordering is preserved for the average covariate vector

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{\mathbf{i}}
$$

when replacing the theoretical quantiles with estimated quantiles, i.e.

$$
\overline{\mathbf{x}}^{\prime} \hat{\beta}_{\tau_{1}} \leq \overline{\mathbf{x}}^{\prime} \hat{\beta}_{\tau_{2}} \quad \text { for } \quad \tau_{1} \leq \tau_{2}
$$

- In general this results will not transfer to arbitrary vectors \mathbf{x} and will not even hold for all observed covariate vectors.

Quantile regression Bayesian quantile regression

Model

Observation model

The observations $y_{i}, i=1, \ldots, n$, are conditionally independent following an asymmetric Laplace distribution, i.e. y_{i} i.i.d. $\operatorname{ALD}\left(\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}, \sigma^{2}, \tau\right)$. The scale mixture representation of the asymmetric Laplace distribution yields

$$
y_{i} \mid z_{i}, \beta_{\tau}, \sigma^{2} \sim \mathbf{N}\left(\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}+\xi \mathbf{z}_{\mathbf{i}}, \sigma^{2} / \mathbf{w}_{\mathbf{i}}\right)
$$

where

$$
\xi=\frac{1-2 \tau}{\tau(1-\tau)}, \quad w_{i}=\frac{1}{\delta^{2} z_{i}}, \quad \delta^{2}=\frac{2}{\tau(1-\tau)}
$$

Priors

$$
\begin{aligned}
\beta_{\tau} & \propto \text { const } \\
z_{i} \mid \sigma^{2} & \sim \operatorname{Expo}\left(1 / \sigma^{2}\right) \\
\sigma^{2} & \sim \operatorname{IG}(a, b)
\end{aligned}
$$

Gibbs sampler

- Full conditional for the regression coefficients: $\beta_{\tau} \mid \cdot \mathrm{N}\left(\mu_{\beta_{\tau}}, \boldsymbol{\Sigma}_{\beta_{\tau}}\right)$ with

$$
\boldsymbol{\Sigma}_{\beta_{\tau}}=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1}, \quad \mu_{\beta_{\tau}}=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W}(\mathbf{y}-\xi \mathbf{z})
$$

where $\mathbf{W}=\operatorname{diag}\left(\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right)$ and $\mathbf{z}=\left(\mathbf{z}_{\mathbf{1}}, \ldots, \mathbf{z}_{\mathbf{n}}\right)^{\prime}$.

- Full conditional for the scale parameters:

$$
z_{i}^{-1} \left\lvert\, \cdot \sim \operatorname{InvGauss}\left(\sqrt{\frac{\xi^{2}+2 \delta^{2}}{\left(y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}\right)^{2}}}, \frac{\xi^{2}+2 \delta^{2}}{\sigma^{2} \delta^{2}}\right)\right.
$$

- Full conditional for the error variance:

$$
\sigma^{2} \left\lvert\, \cdot \sim \mathrm{IG}\left(a+\frac{3 n}{2}, b+\frac{1}{2} \sum_{i=1}^{n} w_{i}\left(y_{i}-\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{\tau}-\xi \mathbf{z}_{\mathbf{i}}\right)^{2}+\sum_{\mathbf{i}=1}^{\mathbf{n}} \mathbf{z}_{\mathbf{i}}\right)\right.
$$

Quantile regression Additive quantile regression

Models

- An approach for estimating nonlinear quantile functions $f_{\tau}\left(z_{i}\right)$ of continuous covariates z_{i} in the scatter plot smoothing model

$$
y_{i}=f_{\tau}\left(z_{i}\right)+\varepsilon_{i \tau}
$$

relies on the fitting criterion

$$
\underset{f_{\tau}}{\arg \min } \sum_{i=1}^{n} w_{\tau}\left(y_{i}, f_{\tau}\left(z_{i}\right)\right)\left|y_{i}-f_{\tau}\left(z_{i}\right)\right|+\lambda V\left(f_{\tau}^{\prime}\right)
$$

Models

- $V\left(f_{\tau}^{\prime}\right)$ denotes the total variation of the derivative f_{τ}^{\prime} defined as

$$
V\left(f_{\tau}^{\prime}\right)=\sup \sum_{i=1}^{n}\left|f_{\tau}^{\prime}\left(z_{i+1}\right)-f_{\tau}^{\prime}\left(z_{i}\right)\right|
$$

where the sup is taken over all partitions $a \leq z_{1}<\ldots<z_{n}<b$. For twice continuously differentiable functions f_{τ}, the total variation penalty can be written as

$$
V\left(f_{\tau}^{\prime}\right)=\int\left|f_{\tau}^{\prime \prime}(z)\right| d z
$$

- The approach can be extended to additive models. However, it is typically difficult to determine the smoothing parameters along with the estimated functions in an automatic and data-driven way.

Models

- For Bayesian additive quantile regression, we can easily extend the Gibbs sampler outlined in the previous section.
- Most importantly, the full conditionals for nonparametric effects represented as $\mathrm{V}_{\mathrm{j}} \gamma_{\mathrm{j}}$ are now given by

$$
\gamma_{j} \mid \cdot \sim N\left(\mathbf{m}_{\mathbf{j}}, \boldsymbol{\Sigma}_{\mathbf{j}}\right)
$$

with expectation and covariance matrix

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{j}}=\mathrm{E}\left(\gamma_{j} \mid \cdot\right)=\left(\mathbf{V}_{\mathbf{j}}^{\prime} \mathbf{W} \mathbf{V}_{\mathbf{j}}+\frac{\sigma^{2}}{\tau_{\mathbf{j}}^{2}} \mathbf{K}_{\mathbf{j}}\right)^{-1} \mathbf{V}_{\mathbf{j}} \mathbf{W}^{\prime}\left(\mathbf{y}-\eta_{-\mathbf{j}}^{\text {struct }}-\xi \mathbf{z}\right) \\
& \boldsymbol{\Sigma}_{\mathbf{j}}=\operatorname{Cov}\left(\gamma_{j} \mid \cdot\right)=\sigma^{2}\left(\mathbf{V}_{\mathbf{j}}^{\prime} \mathbf{W} \mathbf{V}_{\mathbf{j}}+\frac{\sigma^{2}}{\tau_{\mathbf{j}}^{2}} \mathbf{K}_{\mathbf{j}}\right)^{-1}
\end{aligned}
$$

where $\mathbf{W}=\operatorname{diag}\left(\mathbf{w}_{\mathbf{1}}, \ldots, \mathbf{w}_{\mathbf{n}}\right)$ and $\mathbf{z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{\mathbf{n}}\right)^{\prime}$.

- Similarly, the full conditional for the error variance has to be adjusted while the full conditionals for the smoothing variances remain unchanged.

References

Nonparametric density estimation

- Lang, S., (2004): Lecture notes Computerintensive Verfahren (in German).
- Pruscha, H., 2000: Vorlesungen über Mathematische Statistik. Teubner, Stuttgart (in German).

Semiparametric regression

- Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models, methods and applications. Springer
- Wood, S. N. (2006): Generalized Additive Models: An Introduction with R, Chapman \& Hall / CRC.

Quantile regression

- Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015): Bayesian Structured Additive Distributional Regression with an Application to Regional Income Inequality in Germany. The Annals of Applied Statistics, 9, 1024-1052.
- Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models, methods and applications. Springer
- Koenker, R. (2005): Quantile Regression. New York, Cambridge University Press.

