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Introduction

Parametric versus nonparametric inference

Example: parametric density estimation

• Assume that the distribution family, e.g. normal distribution, is known.

• Only a few parameters, e.g. the mean and/or the variance, are unknown, i.e.

f(x) ∈ {f(x | θ), θ ⊂ Rp}.

• Once the unknown parameters θ are estimated through θ̂, the density f is fully
specified.

• Advantage: estimators are often unbiased and efficient.

• Disadvantage: distribution family must be known in advance.
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Introduction

Parametric versus nonparametric inference

Example: nonparametric density estimation

• Do not assume a particular distribution family.

• Weak assumptions, e.g. assume only smoothness of the density.

• Advantage: very flexible.

• Disadvantage: loss of statistical efficiency compared to parametric density
estimation.

• Examples: histogram or kernel density estimator.
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Introduction

Introduction

Nonparametric density estimators
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Introduction Nonparametric density estimators

The Histogram

• Divide the range of values starting from the origin x0 (e.g.
x0 = 0, x0 = xmin = x(1)) in intervals (so called bins) of equal length h (so
called binwidth). For the j-th bin we have

Bj := [x0 + (j − 1)h, x0 + jh]

and

P (X ∈ Bj) =

x0+jh
∫

x0+(j−1)h

f(x) dx.

• An estimator for P (X ∈ Bj) is the relative frequency of xi’s within Bj, i.e.

̂P (X ∈ Bj) =
1

n
(#xi in Bj) =

1

n

n
∑

i=1

IBj
(xi).
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Introduction Nonparametric density estimators

The Histogram

• For continuous f the mean value theorem for integrals yields

x0+jh
∫

x0+(j−1)h

f(x)dx = f(ξ) · h

for ξ ∈ Bj.

• Approximating f in Bj by a constant value, we obtain

f̂(x) =
1

nh

n
∑

i=1

IBj
(xi),

for x ∈ Bj.
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Introduction Nonparametric density estimators

The Histogram

Definition histogram

Let x1, . . . , xn be an i.i.d. sample of a continuous random variable X with density
f . Then the estimator

f̂h(x) =
1

nh

n
∑

i=1

∑

j∈Z

IBj
(xi)IBj

(x)

is called histogram with binwidth h > 0 and origin x0.
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Introduction Nonparametric density estimators

The Histogram

Advantages of the histogram

• Can be easily computed and presented.

• Available in every statistical package (even in excel).
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Introduction Nonparametric density estimators

The Histogram

Disadvantages of the histogram

• Discontinuous estimator for a continuous density.

• Graphical representation is dependent on the origin x0.

• There are situations, where f̂h(x) depends more on observations that are far
away from x than those that are close, compare the following figure.
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Figure 1: Illustration of the dependence of the histogram on observations
that are far away.
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Introduction Nonparametric density estimators

The histogram

Influence of the bandwidth

h → 0 needleplot
h small quite wiggly fit
h large smooth fit
h → ∞ uniform distribution

In many statistical packages the number of intervals is specified rather than the
binwidth h. The number of intervals induces a certain binwidth.
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Introduction Nonparametric density estimators

The histogram

Example: Munich rent index
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Figure 2: Dependence of histograms on the number of intervals.
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Introduction Nonparametric density estimators

The histogram
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Figure 3: Dependence of histograms on the number of intervals.
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Introduction Nonparametric density estimators

Kernel density estimators

• Define intervals [x− h;x+ h] of width 2h and move across the x-axis.

• This yields the estimator

f̂h(x) =
1

2nh
(#xi within the interval[x− h;x+ h])

• Using the “ kernel”

K(u) =

{

1
2 |u| ≤ 1
0 else

we obtain

f̂h(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

.
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Introduction Nonparametric density estimators

Kernels
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Introduction Nonparametric density estimators

Kernels
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Introduction Nonparametric density estimators

Illustration kernel density estimators
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Introduction Nonparametric density estimators

Expected value and variance

For fixed x we obtain for the expected value

E(f̂h(x)) =
1

h

∫

R

K

(

x− y

h

)

f(y) dy

and the variance

V ar(f̂h(x)) =
1

nh2

∫

R

K2

(

x− y

h

)

f(y) dy − 1

n
E(f̂h(x))

2.
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Introduction Nonparametric density estimators

Bias and MSE

Bias(f̂h(x)) = E(f̂h(x))− f(x) =
1

h

∫

R

K

(

x− y

h

)

f(y) dy − f(x).

MSE(f̂h(x)) = V ar(f̂h(x)) +Bias2(f̂h(x))

=
1

nh2

∫

R

K2

(

x− y

h

)

f(y) dy − 1

n
E(f̂h(x))

2

+





1

h

∫

R

K

(

x− y

h

)

f(y) dy − f(x)





2
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Introduction Nonparametric density estimators

Consistency

Theorem Parzen

Let R(x), x ∈ R be a (measurable) function with properties

1. sup
x∈R

|R(x)| < ∞ (d.h. R(x) ist beschr”ankt)

2.

∫

|R(x)| dx < ∞

3. |x|R(x) → 0.
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Introduction Nonparametric density estimators

Consistency

Theorem Parzen

Let g(x), x ∈ R, be a (measurable) function with
∫

|g(x)| dx < ∞. Consider the
series

gn(x) =
1

hn

∫

R

(

x− y

hn

)

g(y) dy

where hn is a series with limn→∞ hn = 0. Then for every continuity point x of g
we have

gn(x) → g(x)

∫

R(s) ds

for n → ∞.
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Introduction Nonparametric density estimators

Consistency

Let f be continuous. Then

E(f̂hn(x)) → f(x)

provided that the bandwidth hn converges to zero for n → ∞.

For nhn → ∞ as n → ∞, we have

V ar(f̂hn(x)) → 0,

i.e. f̂hn(x) is consistent.

22



Introduction Nonparametric density estimators

Landau Symbols

Assume we are given two real valued sequences {an} and {bn} with n ∈ N . We
write

an = O(bn)

if
∣

∣

∣

∣

an
bn

∣

∣

∣

∣

is bounded for n → ∞.

The sequence {an} is roughly of the same order as {bn}.

Obviously an = O(1) says that an is bounded.
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Introduction Nonparametric density estimators

Landau Symbols

We write
an = o(bn)

if ∣

∣

∣

∣

an
bn

∣

∣

∣

∣

converges to zero for n → ∞.

The series {an} converges faster to zero than {bn}.

Obviously an = o(1) means
lim
n→∞

an = 0.
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Introduction Nonparametric density estimators

Mean integrated squared error

• Let f be at least 2 times continuously differentiable, f ′′ be bounded, f and f ′′

square integrable.

• Assume hn is sequence with hn → 0.

Using
∫

g2(s) ds = ||g||22 and µ2(g) =
∫

g(s)s2 ds for a function g we obtain:

1. V ar(f̂hn(x)) =
1

nhn
||K||22f(x) + o

(

1

nhn

)

respectively

∫

V ar(f̂hn(x)) dx =
1

nhn
||K||22 + o

(

1

nhn

)

.
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Introduction Nonparametric density estimators

Mean integrated squared error

2. Bias(f̂hn(x)) =
hn

2

2
µ2(K)f ′′(x) + o(hn

2) respectively

∫

Bias2(f̂hn(x)) dx =
hn

4

4
µ2
2(K)||f ′′||22 + o(hn

4).

3. MISE(f̂hn) =
1

nhn
||K||22 +

hn
4

4
µ2
2(K)||f ′′||22 + o(

1

nhn
+ hn

4),

where MISE(f̂hn) =
∫

MSE(f̂hn(x))dx
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Introduction Nonparametric density estimators

Bias variance trade off

• The bias decreases as h decreases.

• The variance decreases as h increases.

• The bias depends on f ′′(x) as a measure for the curvature of f . Increased
curvature corresponds with increased bias. The bias is positive at local maxima
and negative at local minima.

• There is also a dependence of the bias und variance on the chosen kernel K.
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Introduction Nonparametric density estimators

AMISE optimal bandwidth

The idea is to optimze the AMISE (Asymptotic Mean Integrated Squared Error),
which is obtained from MISE by deleting the o-terms, i.e.

AMISE(f̂h) =
1

nh
||K||22 +

h4

4
µ2
2(K)||f ′′||22

The optimal bandwith is given by

h0 =

( ‖K‖22
‖f ′′‖22µ2

2(K)n

)
1
5

.
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Introduction Nonparametric density estimators

AMISE optimal bandwidth

• Obviously, the optimal bandwidth depends on functionals of f(circulus
virtuosis).

• In practice a reference density is inserted. Using e.g. a normal distribution and
a normal kernel, we obtain

ĥ0 =

(

4σ̂5

3n

)
1
5

≈ 1.06 σ̂ n−1
5 .
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Distribution free statistical tests
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Distribution free statistical tests
Order statistics and ranks
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Distribution free statistical tests Order statistics and ranks

Order statistics

• Assume we are given at least ordinal data x1, . . . , xn.

• x1, . . . , xn are realisations of an i.i.d. random sample X1, . . . , Xn with cdf F .

• Ordering the observations yields the vector (x(1), . . . , x(n)) of the so called
order statistics (X(1), . . . ,X(n)).

• The component x(j) is the value of the j-th order statistics X(j).
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Distribution free statistical tests Order statistics and ranks

Example: children

Assume 10 children are given a puzzle to solve. The following table contains the
time required to solve the puzzle:

child i 1 2 3 4 5 6 7 8 9 10
time xi in seconds 78 58 60 82 83 85 65 72 70 61
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Distribution free statistical tests Order statistics and ranks

Special cases of order statistics

• Special cases are x(1) (minimum), x(n) (maximum) and the median

m =

{

x(n+1
2 ) n uneven

0.5(x(n2 )
+ x(n2+1)) n even.

• The range of the data is given by

d = x(n) − x(1).
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Distribution free statistical tests Order statistics and ranks

Example: children
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Distribution free statistical tests Order statistics and ranks

Empirical cumulative distribution function (cdf)

• For unordered observations x1, . . . , xn the empirical cumulative distribution
function Fn is defined for a real value x as

Fn(x) =
#(xi ≤ x)

n

• In terms of the ordered values x(1), . . . , x(n) we obtain

Fn(x) =











0 x < x(1)

m
n x(m) ≤ x < x(m+1)

1 x ≥ x(n).
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Distribution free statistical tests Order statistics and ranks

Properties of the empirical cdf

• Fn is a monotonic increasing step function with discontinuities at
x(1), . . . , x(n).

• For unbounded observations Fn increases in x(j) by 1/n, otherwise by k/n if
there are k equal observations x(j).

• lim
x→−∞

Fn(x) = 0 and lim
x→∞

Fn(x) = 1.

• For fixed x Fn(x) is a random variable because Fn(x) depends on the random
sample X1, . . . ,Xn.

• Fn(x) is discrete with possibles values m/n for m = 0, 1, . . . , n.
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Distribution free statistical tests Order statistics and ranks

Probability function of the cdf

• The probability function of Fn(x) is given by

P (Fn(x) = m/n) =

(

n

m

)

(F (x))m (1− F (x))n−m , m = 0, 1, . . . , n,

i.e., nFn(x) is binomial distributed with parameters n and F (x).

The parameter F (x) depends on the unknown cdf F .

• It follows

E(Fn(x)) = F (x) V ar(Fn(x)) =
1

n
F (x)(1− F (x)).
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Distribution free statistical tests Order statistics and ranks

Asymptotic properties of the cdf

• Fn(x) is unbiased for F (x).

• Since V ar(Fn(x)) converges to zero as n tends to infinity, Fn(x) is consistent
in mean square.

• It immediately follows that Fn(x) converges also in probability to F (x).
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Distribution free statistical tests Order statistics and ranks

Definition ranks

• Let X1, . . . ,Xn be a random sample of a continuous random variable X .

• If Xi has value x(j) within the order statistics, the rank of Xi is defined as
rank(Xi) = R(Xi) = j.

• The rank Ri = R(Xi) is a discrete random variable with realisations 1, 2 . . . , n.

• Obviously X(Ri) = Xi and

Ri =
n
∑

j=1

χ(Xi −Xj)

where

χ(x) =

{

1 x ≥ 0

0 else
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Distribution free statistical tests Order statistics and ranks

Example: children
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Distribution free statistical tests Order statistics and ranks

Properties of the rank

1. P (R1 = r1, . . . , Rn = rn) = 1/n!, where r1, . . . , rn is a permutation of
1, . . . , n.

2. P (Ri = j) = 1/n, i = 1, . . . , n, where j ∈ {1, . . . , n}.

3. P (Ri = k,Rj = l) = 1
n(n−1) for 1 ≤ i, j, k, l ≤ n, i 6= j, k 6= l.

4. E(Ri) =
n+1
2 , i = 1, . . . , n

5. V ar(Ri) =
n2−1
12 , i = 1, . . . , n.

6. Cov(Ri, Rj) = −n+1
12 , 1 ≤ i, j ≤ n, i 6= j.

7. Corr(Ri, Rj) = − 1
n−1, 1 ≤ i, j ≤ n, i 6= j.
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Distribution free statistical tests Order statistics and ranks

Distribution of F (X)

• Note that F (x) is a fixed number whereas F (X) is a random variable.

• Assume X is a random variable with continuous cdf F . Then F (X) is
uniformly distributed within the unit interval [0, 1].

• For continuous F F (X1), . . . , F (Xn) can be seen as a random sample
according to the uniformly distributed random variable F (X)
(F (X1), . . . , F (Xn))

• For continuous F (F (X(1)), . . . , F (X(n))) can be regarded as order statistics
from a uniformly distributed population.
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Distribution free statistical tests Order statistics and ranks

Joint distribution of order statistics

• The joint distribution of the random sample X1, . . . , Xn is given by

fX1,...,Xn(x1, . . . , xn) = f(x1) . . . f(xn),

where f is the density of X .

• Define Yi = X(i). Then Y1 < Y2 < · · · < Yn and the order statistics
(Y1, . . . , Yn) can be regarded as a transformation of (X1, . . . , Xn).

• The joint distribution of the order statistic (Y1, . . . , Yn) is given by

fY1,...,Yn(y1, . . . , yn) =

{

n!f(y1)f(y2) . . . f(yn) y1 < · · · < yn

0 else.
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Distribution free statistical tests
Goodness of fit tests
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Distribution free statistical tests Goodness of fit tests

Kolomogorov-Smirnow-Test

Data

Cardinal measuring scale.

Assumptions

We assume an independent random sample X1, . . . , Xn with continuous cdf F .
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Distribution free statistical tests Goodness of fit tests

Kolomogorov-Smirnow-Test

Test problem

• Case 1: Two-tailed

H0 : F (x) = F0(x) versus H1 : F (x) 6= F0(x)

• Case 2: One-tailed

H0 : F (x) ≥ F0(x) versus H1 : F (x) < F0(x)

• Case 3: One-tailed

H0 : F (x) ≤ F0(x) versus H1 : F (x) > F0(x)
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Distribution free statistical tests Goodness of fit tests

Kolomogorov-Smirnow-Test

Test statistics

• Case 1: Two-tailed
Kn = sup

x∈R
|F0(x)− Fn(x)|

• Case 2: One-tailed
K+

n = sup
x∈R

(F0(x)− Fn(x))

• Case 3: One-tailed
K−

n = sup
x∈R

(Fn(x)− F0(x))

The test statistic Kn = supx∈R |F0(x)− Fn(x)| is for all continuous cdfs F0

distribution free, i.e. its distribution is independent of F0.
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Distribution free statistical tests Goodness of fit tests

Kolomogorov-Smirnow-Test

Test procedure

• Case 1: Two-tailed

Reject H0 if Kn ≥ k1−α.

• Case 2: One-tailed

Reject H0 if K+
n ≥ k+1−α.

• Case 3: One-tailed

Reject H0 if K−
n ≥ k−1−α.
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Distribution free statistical tests Goodness of fit tests

χ2-test

Data

Any measuring scale. The data have to be grouped into k disjoint groups:

group 1 2 . . . k

number of observations n1 n2 . . . nk

Assumptions

The randon sample X1, . . . , Xn is independent.

Test problem

Let F be the unknown cdf and F0 a fully specified cdf.

H0 : F (x) = F0(x) for all x ∈ R
H1 : F (x) 6= F0(x) for at least one x ∈ R
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Distribution free statistical tests Goodness of fit tests

χ2-test

Test statistics

Under H0, let pi be the probability that the random variable X takes a value in
the i-th group. Then use the test statistic

χ2 =
k
∑

i=1

(ni − npi)
2

npi

Test procedure

H0 is rejected, if χ2 ≤ χ2
1−α(k − 1) where χ2

1−α(k − 1) is the 1− α quantile of
the χ2 distribution with k − 1 degrees of freedom.
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Distribution free statistical tests Goodness of fit tests

Binomial-Test

Data

Any measuring scale. The data are grouped into two disjoint groups.

Assumptions

• The random samples X1, . . . ,Xn are independent.

• The probability for an observation belonging to class 1 is p for all n
observations.
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Distribution free statistical tests Goodness of fit tests

Binomial-Test

Test problem

• Case 1: Two-tailed

H0 : p = p0 versus H1 : p 6= p0

• Case 2: One-tailed

H0 : p ≥ p0 versus H1 : p < p0

• Case 3: One-tailed

H0 : p ≤ p0 versus H1 : p > p0
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Distribution free statistical tests Goodness of fit tests

Binomial-Test

Test statistics

Use the number of observations T belonging to class 1. Under H0 we have
T ∼ B(n, p0).

Test procedure

• Case 1: Two-tailed

Reject H0 if T ≥ t1−α1 or T ≤ tα2

where t1−α1 and tα2 are defined through

P (T ≥ t1−α1) = α1 P (T ≤ tα2) = α2

with α1 + α2 = α.
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Distribution free statistical tests Goodness of fit tests

Binomial-Test

• Case 2: One-tailed

Reject H0 if T ≥ t1−α where

P (T ≥ t1−α) = α.

• Case 3: One-tailed

Reject H0 if T ≤ tα where

P (T ≤ tα) = α.
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Distribution free statistical tests Goodness of fit tests

Example: Quality control

A manufacturer claims that a component is defect with probability 5 percent or
less. A random sample of n = 20 yields 3 defect components.
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Distribution free statistical tests
Linear rank tests
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Distribution free statistical tests Linear rank tests

Initial situation

• Let X1, . . . ,Xn be independent and identically distributed random variables
with Xi ∼ F (x− θ) for i = 1, . . . , n where the cdf F is continuous with
density f and symmetric about θ.

• θ is a location parameter, e.g. the median of F .

• We would like to test H0 : θ = θ0 against the Alternatives θ < θ0, θ > θ0 or
θ 6= θ0.
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Distribution free statistical tests Linear rank tests

Basic idea

• Idea: Use as the test statistic a function of the ranks rather than the
observations.

• No loss of information if measuring scale is ordinal.

• Some loss of information for cardinal measuring scale, but surprisingly little
loss of efficiency when using rank based statistics in hypothesis testing.
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Distribution free statistical tests Linear rank tests

Definition of linear rank statistic

• In order to define the general linear rank statistic define the differences
Di = Xi − θ0 and their absolute values |Di| = |Xi − θ0|, i = 1, . . . , n.

• Let R+
i = R(|Di|) be the rank of |Di| and

Zi =

{

1 Di > 0
0 Di < 0.

• Then the linear rank statistic L+
n has the general form

L+
n =

n
∑

i=1

g(R+
i )Zi,

where g(R+
i ) ∈ R are suitable weights.
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Distribution free statistical tests Linear rank tests

Alternative definition of the linear rank statistic

• Let |D|(1) < · · · < |D|(n) be the order statistics of |D1|, . . . , |Dn|.

• Define

Vi =

{

1 |D|(i) belongs to a positive difference

0 |D|(i) belongs to a negative difference

• Then

L+
n =

n
∑

i=1

g(i)Vi

• For the expected value and the variance we have

E(L+
n ) =

1

2

n
∑

i=1

g(i) V ar(L+
n )

n
∑

i=1

(g(i))2.
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Distribution free statistical tests Linear rank tests

Sign test

Data

Cardinal measuring scale.

Assumptions

The random sample X1, . . . , Xn is independent with continuous cdf F (x− θ).
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Distribution free statistical tests Linear rank tests

Sign test

Test problem

• Case 1: Two-tailed

H0 : θ = θ0 versus H1 : θ 6= θ0

• Case 2: One-tailed

H0 : θ = θ0 versus H1 : θ > θ0

• Case 3: One-tailed

H0 : θ = θ0 versus H1 : θ < θ0
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Distribution free statistical tests Linear rank tests

Sign test

Test statistics

• The test statistic is given by

V +
n =

n
∑

i=1

Vi.

• V +
n is a special case of L+

n with g(i) = 1.

• Hence V +
n counts the observations that are larger than θ0.

• Under H0 we have V +
n ∼ B(n, 0.5).
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Distribution free statistical tests Linear rank tests

Sign test

Test procedure

In analogy to the Binomial test.

• Case 1: Two-tailed

Reject H0 if V +
n ≥ v+1−α/2 or V +

n ≤ v+α/2

• Case 2: One-tailed

Reject H0 if V +
n ≥ v+1−α.

• Case 3: One-tailed

Reject H0 if T ≤ v+α .
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Distribution free statistical tests Linear rank tests

Example: intelligence test
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Distribution free statistical tests Linear rank tests

Wilcoxon test

Data

Cardinal measuring scale.

Assumptions

The random sample X1, . . . , Xn is independent with continuous cdf F (x− θ)
that is symmetric around θ.
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Distribution free statistical tests Linear rank tests

Wilcoxon test

Test problem

• Case 1: Two-tailed

H0 : θ = θ0 versus H1 : θ 6= θ0

• Case 2: One-tailed

H0 : θ = θ0 versus H1 : θ > θ0

• Case 3: One-tailed

H0 : θ = θ0 versus H1 : θ < θ0
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Distribution free statistical tests Linear rank tests

Wilcoxon test

Test statistics

• The test statistic is given by

W+
n =

n
∑

i=1

iVi =
n
∑

i=1

R+
i Zi

• W+
n is a special case of L+

n with g(i) = i.

• W+
n may be interpreted as the sum of the ranks of the absolute values |Di|

with positive differences. In contrary to the sign test the size of the differences
additionally enters the test statistic.

• Under H0 W+
n is symmetric around E(W+

n ) = n(n+ 1)/4 and we have

P (W+
n = w+) = a(w+)/2n.
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Distribution free statistical tests Linear rank tests

Wilcoxon test

Test procedure

In analogy to the Binomial test.

• Case 1: Two-tailed

Reject H0 if W+
n ≥ w+

1−α/2 or W+
n ≤ w+

α/2

• Case 2: One-tailed

Reject H0 if W+
n ≥ w+

1−α.

• Case 3: One-tailed

Reject H0 if W ≤ w+
α .
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Non- and semiparametric regression

Univariate smoothing
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Illustration: Malnutrition in Zambia
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Figure 4: Malnutrition in Tanzania: scatter plot of the Z-score for chronic
malnutrition versus the age of the child in months for one of the districts in
Tanzania (Ruvuma).
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Illustration: simulated data
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Figure 5: Scatter plot of a simulated data set with nonlinear effect of
the covariate: The right panel additionally shows the true covariate effect.
The data have been simulated according to the model y = f(x) + ε where
f(x) = sin(2(4x− 2)) + 2 exp(−(162)(x− 0.5)2) and ε ∼ N(0, 0.32).
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Non- and semiparametric regression Univariate Smoothing

Definition univariate smoothing

Data

Measurements (yi, zi), i = 1, . . . , n, for a continuous response variable y and a
continuous covariate z.

Model
yi = f(zi) + εi

with independent and identically distributed errors and

E(εi) = 0 and Var(εi) = σ2.

In some cases, we additionally assume that the errors are i.i.d. normally
distributed, so that

εi ∼ N(0, σ2).
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Polynomial splines

Polynomial regression
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Figure 6: Polynomial regression models for the simulated data set.
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Polynomial splines

Piecewise polynomial regression
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Figure 7: Piecewise polynomial regression (left) and polynomial splines
(right).
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Polynomial splines

Definition

A function f : [a, b] → R is called a polynomial spline of degree l ≥ 0 with knots
a = κ1 < . . . < κm = b, if it fulfills the following conditions:

1. f(z) is (l − 1)-times continuously differentiable. The special case of l = 1
corresponds to f(z) being continuous (but not differentiable). We do not state
any smoothness requirements for f(z) when l = 0.

2. f(z) is a polynomial of degree l on the intervals [κj, κj+1) defined by the knots.
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Polynomial splines
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Figure 8: Examples of polynomial splines of degree 0, 1, 2 and 3 with knots
κ1 = 0, κ2 = 0.25, κ3 = 0.5, κ4 = 0.75 and κ5 = 1.
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Polynomial splines

Truncated power series

yi = γ1 + γ2zi + . . .+ γl+1z
l
i + γl+2(zi − κ2)

l
+ + . . .+ γl+m−1(zi − κm−1)

l
+ + εi

with

(z − κj)
l
+ =

{

(z − κj)
l z ≥ κj,

0 otherwise.
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Polynomial splines
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Figure 9: Polynomial spline fit with linear truncated polynomials.
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Polynomial splines
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Figure 10: TP basis for splines of degree 0 based on the knots
{0,0.25,0.5,0.75,1}.
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Polynomial splines
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Figure 11: TP basis for splines of degree 2 based on the knots
{0,0.25,0.5,0.75,1}.

82



Non- and semiparametric regression Univariate Smoothing

Polynomial splines

Defining the vectors of the observed response variables y and the errors ε, as well
as the design matrix

Z =





B1(z1) . . . Bd(z1)
... ...

B1(zn) . . . Bd(zn)



 =





1 z1 . . . zl1 (z1 − κ2)
l
+ . . . (z1 − κm−1)

l
+

... ...
1 zn . . . zln (zn − κ2)

l
+ . . . (zn − κm−1)

l
+



 ,

we obtain the equation
y = Zγ + ε,

with the coefficient vector γ = (γ1, . . . , γd)
′. The usual least squares estimate is

thus
γ̂ = (Z′Z)−1Z′y

and
f̂(z) = z′γ̂

with z = (B1(z), . . . ,Bd(z))
′ depending on the chosen covariate value z.
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Polynomial splines

Example: Malnutrition in Tanzania
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Figure 12: Nonparametric estimates for the age effect based on polynomial
splines.
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Polynomial splines
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Figure 13: Nonparametric estimates for the age effect based on polynomial
splines.
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Polynomial splines
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Figure 14: Nonparametric estimates for the age effect based on polynomial
splines.
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Polynomial splines

Influence of the knots
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Figure 15: Impact of the number of knots on cubic spline fits: The estimated
function is represented as a solid line while the true function is superimposed
as a dashed line.
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Polynomial splines

Influence of the knots
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Figure 16: Impact of the number of knots on cubic spline fits: The estimated
function is represented as a solid line while the true function is superimposed
as a dashed line.
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Polynomial splines

• Equidistant knots: The domain [a, b] of z is split into m− 1 intervals of width

h =
b− a

m− 1

in order to obtain the knots

κj = a+ (j − 1) · h, j = 1, . . . ,m,

In all examples considered so far, we have always tacitly assumed equidistant
knots.

• Quantile-based knots: Use the (j − 1)/(m− 1)-quantiles (j = 1, . . . ,m) of the
observed covariate values z1, . . . , zn as knots.

• Visual knot choice based on a scatter plot
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Polynomial splines

B-splines
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Figure 17: Single B-spline basis functions for degrees l = 0, 1, 2, 3 and
equidistant knots.
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Polynomial splines
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Figure 18: B-spline bases of degree l = 1, 2, 3 with equidistant knots (left
panel) and unevenly distributed knots (right panel).
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Polynomial splines
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Figure 19: B-spline bases of degree l = 1, 2, 3 with equidistant knots (left
panel) and unevenly distributed knots (right panel).

92



Non- and semiparametric regression Univariate Smoothing

Polynomial splines

Definition B-splines

The function f(z) can again be represented through a linear combination of
d = m+ l − 1 basis functions, i.e.

f(z) =
d
∑

j=1

γjBj(z).

B-splines of order l = 0 are defined as

B0
j (z) = I(κj ≤ z < κj+1) =

{

1 κj ≤ z < κj+1

0 otherwise
j = 1, . . . , d− 1,

where I(·) denotes the indicator function.
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Polynomial splines

We obtain the basis functions of degree l = 1 as

B1
j (z) =

z − κj−1

κj − κj−1
I(κj−1 ≤ z < κj) +

κj+1 − z

κj+1 − κj
I(κj ≤ z < κj+1),

i.e. each basis function is defined by two linear segments on the intervals
[κj−1, κj) and [κj, κj+1), which are continuously combined at the knot κj.

In general, higher order B-splines are defined recursively:

Bl
j(z) =

z − κj−l

κj − κj−l
Bl−1

j−1(z) +
κj+1 − z

κj+1 − κj+1−l
Bl−1

j (z).
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Polynomial splines
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Figure 20: Schematic representation of a nonparametric fit with cubic
B-splines.
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Polynomial splines

Design matrix and fit

Z =





Bl
1(z1) . . . Bl

d(z1)
... ...

Bl
1(zn) . . . Bl

d(zn)



 .

The usual least squares estimate is thus

γ̂ = (Z′Z)−1Z′y

and
f̂(z) = z′γ̂

with z = (B1(z), . . . ,Bd(z))
′ depending on the chosen covariate value z.
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P- splines

The main idea of penalized splines (P-splines) can be summarized as follows:

• Approximate the function f(z) with a polynomial spline that uses a generous
number of knots (usually about 20 to 40). This ensures that f(z) can be
approximated with enough flexibility to represent even highly complex
functions.

• Introduce an additional penalty term that prevents overfitting and minimize a
penalized least squares criterion instead of the usual least squares criterion.
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P- splines

P-splines based on TP basis

f(z) = γ1 + γ2z + . . .+ γl+1z
l + γl+2(z − κ2)

l
+ + . . .+ γd(z − κm−1)

l
+.

Minimize the penalized residual sum of squares

PLS(λ) =

n
∑

i=1



yi −
d
∑

j=1

γjBj(zi)





2

+ λ

d
∑

j=l+2

γ2
j .
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P- splines

P-Splines based on B-Splines

Minimize the penalized residual sum of squares

PLS(λ) =
n
∑

i=1



yi −
d
∑

j=1

γjBj(zi)





2

+ λ
d
∑

j=r+1

(∆rγj)
2,

where ∆r denotes rth order differences, which are recursively defined by

∆1γj = γj − γj−1,

∆2γj = ∆1∆1γj = ∆1γj −∆1γj−1 = γj − 2γj−1 + γj−2,

...

∆rγj = ∆r−1γj −∆r−1γj−1.
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P- splines

Influence of the number of knots
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Figure 21: Influence of the number of knots on estimated P-splines.
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P- splines

Impact of the smoothing parameter
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Figure 22: Malnutrition in Tanzania: impact of the smoothing parameter
on estimated P-splines with second order difference penalty.
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P- splines
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Figure 23: Malnutrition in Tanzania: impact of the smoothing parameter
on estimated P-splines with second order difference penalty.
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P- splines
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Figure 24: Malnutrition in Tanzania: impact of the smoothing parameter
on estimated P-splines with second order difference penalty.
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P- splines

Summary

Model

We approximate function f using polynomial splines so that we are able to write
the nonparametric regression model as a linear model

y = Zγ + ε.

Penalized Least Squares Criterion

Estimate γ by minimizing the penalized least squares criterion

PLS(λ) = (y − Zγ)′(y − Zγ) + λγ ′Kγ.
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P- splines

Smoothing parameter

The smoothing parameter λ ≥ 0 controls the compromise between fidelity to the
data and smoothness of the resulting function estimate. For splines in a TP basis
representation, we penalize the sum of squared coefficients of the truncated
powers. For B-splines, we construct the penalty based on the sum of squared
differences of neighboring coefficients or based on the integral of the function’s
squared second derivative.

Penalized Least Squares Estimation

In either case, the penalized least squares estimate has the form

γ̂ = (Z′Z+ λK)−1Z′y.
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Local smoothing procedures

Nearest neighbor estimates

For a time series yt, t = 1, . . . , T , running means of order 3 are, for example,
defined by

ŷt =
1

3
(yt−1 + yt + yt+1),

with appropriate modifications at the boundaries.

Nearest neighbor estimates extend the concept of running means into a more
general framework. In general, a nearest neighbor estimate is defined by

f̂(z) = Ave
j∈N(z)

yj,

where Ave defines some averaging operator and N(z) is an appropriate
neighborhood of z.
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Local smoothing procedures

The following averaging operators are often used for the determination of nearest
neighbor estimates:

1. Arithmetic mean (running mean): Determine the arithmetic mean of the
response variable in the neighborhood of z, i.e.:

f̂(z) =
1

|N(z)|
∑

j∈N(z)

yj,

where |N(z)| is the number of neighbors of z.

2. Median (running median): Determine the median of the response variables in
the neighborhood of z, i.e.

f̂(z) = Median{yj, j ∈ N(z)}.
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Local smoothing procedures

3. Linear regression (running line): Estimate a linear regression based on the
observations in the neighborhood of z and use the prediction from this model
as the estimate, i.e.

f̂(z) = γ̂0,z + γ̂1,zz,

where γ̂0,z and γ̂1,z are the least squares estimates using the data
{(yj, zj), j ∈ N(z)}.

Commonly used neighborhood definitions are:

1. symmetric neighborhoods of order k or

2. neighborhoods that consist of k-nearest neighbors.
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Local smoothing procedures

Example: Malnutrition in Zambia
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Figure 25: Malnutrition in Tanzania: running mean with different
bandwidths.
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Local smoothing procedures

Local Polynomial Regression and the Nadaraya-Watson Estimator

We consider the (local) approximation of an l-times continuously differentiable
function f(zi) using a Taylor series expansion around z, yielding

f(zi) ≈ f(z) + (zi − z)f ′(z) + (zi − z)2
f ′′(z)

2!
+ . . .+ (zi − z)l

f (l)(z)

l!
.

Hence, we approximate the function f(zi) with polynomials of the form (zi − z)j

in a neighborhood of zi. The polynomials are weighted by the derivatives
f (j)(z)/j! evaluated at the expansion point z.
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Local smoothing procedures

We obtain

yi = f(zi) + εi

≈ f(z) + (zi − z)f ′(z) + (zi − z)2
f ′′(z)

2!
+ . . .+ (zi − z)l

f (l)(z)

l!
+ εi

= γ0 + (zi − z)γ1 + (zi − z)2γ2 + . . .+ (zi − z)lγl + εi,

for each observation (yi, zi) with expansion point z.

We obtain an implicit estimate for the function value f(z) through γ̂0 = f̂(z),
and more generally, we even obtain estimates for the derivatives through
j!γ̂j = f̂ (j)(z).
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Local smoothing procedures

Since the Taylor series approximation is only valid locally, i.e. close to the
expansion point z, estimation is based on a weighted version of the residual sum
of squares:

n
∑

i=1



yi −
l
∑

j=0

γj(zi − z)j





2

wλ(z, zi)

with weights wλ(z, zi). These are typically constructed based on the distances
|zi − z| such that larger weights result for observations with a small distance.
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Local smoothing procedures

A general class of such weights results with the use of kernel functions K in

wλ(z, zi) = K

(

zi − z

λ

)

Typical examples of kernel functions include

K(u) =

{

1
2 −1 ≤ u ≤ 1

0 otherwise
Uniform kernel,

K(u) =

{

3
4(1− u2) −1 ≤ u ≤ 1

0 otherwise
Epanechnikov kernel,

K(u) =
1√
2π

exp

(

−1

2
u2

)

Gaussian kernel, ,
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Non- and semiparametric regression Univariate Smoothing

Local smoothing procedures
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Figure 26: Examples of kernel functions.
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Non- and semiparametric regression Univariate Smoothing

Choosing the smoothing parameter

Choice Based on Optimality Criteria

E.g. cross validation criterion

CV =
1

n

n
∑

i=1

(yi − f̂ (−i)(zi))
2

or
AIC = n log(σ̂2) + 2(df+ 1).

Mixed Model Representation of Penalization Approaches

Bayesian approach
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Non- and semiparametric regression Univariate Smoothing

Choosing the smoothing parameter
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Figure 27: Malnutrition in Tanzania: GCV and AIC (left panel) and cubic
P-splines fits resulting with the corresponding optimal smoothing parameters
(right panel).
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Additive models
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Non- and semiparametric regression Additive Models

Additive Models

Data

(yi, zi1, . . . , ziq, xi1, . . . , xik), i = 1, . . . , n, with y and x1, . . . , xk as in the linear
regression model and additional continuous covariates z1, . . . , zq.

Model

yi = f1 (zi1) + . . .+ fq (ziq) + β0 + β1xi1 + . . .+ βkxik + εi.

The functions f1(z1), . . ., fq(zq) are assumed to be smooth nonlinear effects of
the continuous covariates z1, . . . , zq. The same assumptions are made for the
errors εi as with the classical linear model.
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Non- and semiparametric regression Additive Models

Additive Models

Modeling nonlinear effects

The functions fj, j = 1, . . . , q, will be approximated by

fj(zj) =

dj
∑

l=1

γjlBl(zj),

where the basis functions Bl represent TP- or B-spline bases of polynomial splines.

The vector fj = (fj(z1j), . . . , fj(znj))
′ of function values evaluated at the observed

covariate values z1j, . . . , znj can then be expressed as

fj = Zjγj,

where γj = (γj1, . . . , γjdj)
′ is the vector of regression coefficients.
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Non- and semiparametric regression Additive Models

Additive Models

The design matrix Zj consists of the basis functions evaluated at the observed
covariate values, i.e. Zj[i, l] = Bl(zij).

The additive model can then be written in matrix notation in the form

y = Z1γ1 + . . .+ Zqγq +Xβ + ε,

where the design matrices Z1, . . . ,Zq consist of the basis functions evaluated at
the given covariate values. The design matrix X is constructed as in the linear
model.
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Non- and semiparametric regression Additive Models

Additive Models

Example: Munich rent index

Assume the additive model

rentsqm = f1(area) + f2(yearc) + β0 + β1glocation + β2tlocation + ε,

where the functions f1 and f2 are modeled by P-splines with 20 interior knots and
second order difference penalties.

For the location, the model includes the dummy variables glocation for good
locations, and tlocation for top location. The average location serves as the
reference category.
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Additive Models
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Figure 28: Munich rent index: estimated nonlinear effects of area and year
of construction.
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Introduction
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Quantile regression Introduction

Basic Idea

Example: Munich rent index
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Figure 29: Munich rent index: scatter plots of rents in Euro versus living
area (left panel) and year of construction (right panel) together with a linear
(left panel) and a quadratic (right panel) least squares fit.
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Quantile regression Introduction

Basis Idea

• Focus on the quantiles of the response distribution and relate these quantiles
to covariate effects.

• The basic idea is that a dense set of quantiles completely describes any given
distribution.
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Quantile regression Introduction

Advantages

• Quantile regression allows investigation of covariate effects, not only on the
mean of a response variable, but on the complete conditional distribution of
the response given covariates.

• Quantile regression avoids some of the restrictive assumptions of mean
regression models. More specifically, we will not require homoscedasticity or a
specific type of distribution for the responses (or equivalently the error terms).

• In applications, there often is a genuine interest in regression quantiles that
describe “extreme” observations in terms of covariate.
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Quantile regression Introduction

Theoretical Quantiles

The theoretical quantiles qτ , τ ∈ (0, 1), of a random variable y are commonly and
implicitly defined by the equations

P(y ≤ qτ) ≥ τ and P(y ≥ qτ) ≥ 1− τ,

i.e. the probability of observing a value below (or equal to) qτ should be (at least)
τ while the probability of observing a value above (or equal to) qτ should be (at
least) 1− τ .
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Quantile regression Introduction

Theoretical Quantiles

Reformulate this implicit definition as the optimization problem

qτ = argmin
q

E (wτ(y, q)|y − q|)

with weights

wτ(y, q) =











1− τ y < q

0 y = q

τ y > q.
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Quantile regression Introduction

Theoretical Quantiles

If y is continuous with strictly increasing cumulative distribution function F (y)
and density f(y), the theoretical quantile is unique and is given by the inverse of
the cumulative distribution function evaluated at τ , i.e.

qτ = F−1(τ) and F (qτ) = τ.

The function Q(τ) = F−1(τ) = qτ is also called the quantile function of the
distribution of y.
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Quantile regression Introduction

Empirical Quantiles

Empirical quantiles correspond to the estimated quantiles q̂τ determined from an
i.i.d. sample y1, . . . , yn of observations from the corresponding distribution.

At least a fraction of τ observations should be smaller or equal than q̂τ and at
least a fraction of 1− τ observations should be larger or equal than q̂τ , i.e.

1

n

n
∑

i=1

I(yi ≤ q̂τ) ≥ τ and
1

n

n
∑

i=1

I(yi ≥ q̂τ) ≥ 1− τ,

where I(·) denotes the indicator function.

An equivalent definition is given as the solution of an optimization criterion

q̂τ = argmin
q

n
∑

i=1

wτ(yi, q)|yi − q|.
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Linear quantile regression

131



Quantile regression Linear quantile regression

Definition

Model
yi = x′

iβτ + εiτ , i = 1, . . . ,n,

with assumptions

1. Fεiτ(0) = τ .

2. ε1τ , . . . , εnτ are independent.

Estimation of Regression Coefficients

The regression coefficients βτ are determined by minimizing

n
∑

i=1

wτ(yi, ηiτ)|yi − ηiτ |,

where ηiτ = x′
iβτ .
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Quantile regression Linear quantile regression

Software

• R package quantreg: Implements linear programming for determining β̂τ .

• R package mboost: Implements functional gradient descent boosting for
determining β̂τ . for details.

• Software package BayesX (see also the R interface R2BayesX).
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Quantile regression Linear quantile regression

Example: Munich rent index

Models

• Quantile regression: y = x′βτ + ετ as introduced in this chapter;

• Homoscedastic linear model with i.i.d. Gaussian error terms: y = x′β + ε,
ε ∼ N(0, σ2);

• Heteroscedastic linear model with independent Gaussian error terms:
y = x′β + exp(x′α̃)ε, ε ∼ N(0, 1).

In each case determine the 11 quantiles τ = 0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99 of the
net rent distribution.
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Example: Munich rent index
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Figure 30: Munich rent index: scatter plots of the rents in Euro versus
living area (left column) and year of construction (right panel) together
with linear/quadratic quantile regression fits for 11 quantiles.
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Example: Munich rent index
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Figure 31: Munich rent index: scatter plots of the rents in Euro versus
living area (left column) and year of construction (right panel) together
with quantiles determined from a homoscedastic linear model.
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Example: Munich rent index
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Figure 32: Munich rent index: scatter plots of the rents in Euro versus
living area (left column) and year of construction (right panel) together
with quantiles determined from a heteroscedastic linear model.
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Example: Munich rent index
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Figure 33: Munich rent index: estimated effects of year of construction
together with partial residuals for different quantiles.
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Example: Munich rent index
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Figure 34: Munich rent index: paths of estimated coefficients (solid
line) together with 95% confidence intervals (dashed lines) obtained from
inverting a rank-based test for various quantiles τ . The horizontal dotted
line corresponds to the least squares estimate.
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Quantile regression Linear quantile regression

Properties

• Invariance under monotonic transformations: If x′β̂τ is an estimate for the
τ -quantile of the distribution of the response y, given covariates x, then for
any monotonically increasing transformation h the transformed estimate
h(x′β̂τ) is an estimate for the τ -quantile of the distribution of h(y).

• Asymptotic distribution: In case of i.i.d. errors, the asymptotic distribution of
β̂τ is given by

β̂τ
a∼ N

(

βτ ,
τ(1− τ)

fετ (0)
2
(X′X)−1

)

.
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Quantile regression Linear quantile regression

Properties

• In theory, the quantiles of the distribution of a response should be ordered such
that

x′βτ1 ≤ x′βτ2 for τ1 ≤ τ2,

holds for any covariate vector x. It can be shown that the ordering is preserved
for the average covariate vector

x̄ =
1

n

n
∑

i=1

xi,

when replacing the theoretical quantiles with estimated quantiles, i.e.

x̄′β̂τ1 ≤ x̄′β̂τ2 for τ1 ≤ τ2.

• In general this results will not transfer to arbitrary vectors x and will not even
hold for all observed covariate vectors.
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Bayesian quantile regression
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Quantile regression Bayesian quantile regression

Model

Observation model

The observations yi, i = 1, . . . , n, are conditionally independent following an
asymmetric Laplace distribution, i.e. yi i.i.d. ALD(x′

iβτ , σ
2, τ). The scale

mixture representation of the asymmetric Laplace distribution yields

yi | zi, βτ , σ
2 ∼ N(x′

iβτ + ξzi, σ
2/wi),

where

ξ =
1− 2τ

τ(1− τ)
, wi =

1

δ2zi
, δ2 =

2

τ(1− τ)
.

Priors

βτ ∝ const

zi |σ2 ∼ Expo(1/σ2)

σ2 ∼ IG(a, b)
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Gibbs sampler

• Full conditional for the regression coefficients: βτ | ·N(µβτ ,Σβτ ) with

Σβτ = σ2(X′WX)−1, µβτ = (X′WX)−1X′W(y− ξz),

where W = diag(w1, . . . ,wn) and z = (z1, . . . , zn)
′.

• Full conditional for the scale parameters:

z−1
i | · ∼ InvGauss

(
√

ξ2 + 2δ2

(yi − x′
iβτ)2

,
ξ2 + 2δ2

σ2δ2

)

,

• Full conditional for the error variance:

σ2 | · ∼ IG

(

a+
3n

2
, b+

1

2

n
∑

i=1

wi(yi − x′
iβτ − ξzi)

2 +
n
∑

i=1

zi

)

.
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Additive quantile regression
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Quantile regression Additive quantile regression

Models

• An approach for estimating nonlinear quantile functions fτ(zi) of continuous
covariates zi in the scatter plot smoothing model

yi = fτ(zi) + εiτ

relies on the fitting criterion

argmin
fτ

n
∑

i=1

wτ(yi, fτ(zi))|yi − fτ(zi)|+ λV (f ′
τ).
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Quantile regression Additive quantile regression

Models

• V (f ′
τ) denotes the total variation of the derivative f ′

τ defined as

V (f ′
τ) = sup

n
∑

i=1

|f ′
τ(zi+1)− f ′

τ(zi)|,

where the sup is taken over all partitions a ≤ z1 < . . . < zn < b. For twice
continuously differentiable functions fτ , the total variation penalty can be
written as

V (f ′
τ) =

∫

|f ′′
τ (z)|dz

• The approach can be extended to additive models. However, it is typically
difficult to determine the smoothing parameters along with the estimated
functions in an automatic and data-driven way.
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Quantile regression Additive quantile regression

Models

• For Bayesian additive quantile regression, we can easily extend the Gibbs
sampler outlined in the previous section.

• Most importantly, the full conditionals for nonparametric effects represented as
Vjγj are now given by

γj | · ∼ N(mj,Σj)

with expectation and covariance matrix

mj = E(γj | ·) =
(

V′
jWVj +

σ2

τ2j
Kj

)−1

VjW
′(y − ηstruct−j − ξz)

Σj = Cov(γj | ·) = σ2

(

V′
jWVj +

σ2

τ2j
Kj

)−1

where W = diag(w1, . . . ,wn) and z = (z1, . . . , zn)
′.
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Quantile regression Additive quantile regression

• Similarly, the full conditional for the error variance has to be adjusted while the
full conditionals for the smoothing variances remain unchanged.

149



References

150



References

Nonparametric density estimation

• Lang, S., (2004): Lecture notes Computerintensive Verfahren (in German).

• Pruscha, H., 2000: Vorlesungen über Mathematische Statistik. Teubner,
Stuttgart (in German).

151



References

Semiparametric regression

• Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models,
methods and applications. Springer

• Wood, S. N. (2006): Generalized Additive Models: An Introduction with R,
Chapman & Hall / CRC.

152



References

Quantile regression

• Klein, N., Kneib, T., Lang, S. and Sohn, A. (2015): Bayesian Structured
Additive Distributional Regression with an Application to Regional Income
Inequality in Germany. The Annals of Applied Statistics, 9, 1024-1052.

• Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013): Regression: models,
methods and applications. Springer

• Koenker, R. (2005): Quantile Regression. New York, Cambridge University
Press.

153


