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Abstract9

The recently developed computer program BayesX provides a Bayesian approach to the estima-10

tion of non-parametric additive models. Such models can be useful in applications when the effect11

of metrical covariates (such as time) are to be estimated while controlling for other factors. In an12

application of this methodology, trends in the height of West Point cadets in the 19th century are13

estimated. The results indicate that the biological standard of living of the “middle class” increased14

relative to the rest of the American society during the Antebellum years.15
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1. Introduction19

We introduce a recently developed software for the estimation of flexible additive models20

within a Bayesian framework. The focus is on models in which a usual OLS regression could21

be used and in which some of the covariates are metrical. A typical example is a time trend.22

The OLS model imposes linearity of the influence of independent variables which might23

be too restrictive in many cases. There are several ways to relax this assumption, including24

specification with dummy variables coding distinct intervals of the variable. However, this25

specification entails arbitrary time interval lengths and the estimated variances of the re-26

gression parameters are often quite large due to an overparameterization of the model. An27

alternative is to use non-parametric methods, such as penalized least squares (Hastie and28
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Tibshirani, 1990). The impact of metrical covariates can be non-linear in such a framework,29

but the effects are assumed to be smooth, thereby avoiding the problem of large variances de-30

scribed above. An overview of non-parametric regression can be found inFahrmeir and Tutz31

(2001). In this paper, we describe a Bayesian approach to non-parametric regression and an32

easy-to-use implementation of these techniques in the software package BayesX. The free-33

ware program can be downloaded for Windows athttp://www.stat.uni-muenchen.de/∼lang.34

We illustrate the approach and the use of BayesX with an application to human stature in35

19th century America. In this application, the height of West Point cadets is used as an36

indicator of net-nutritional attainment during childhood and adolescence. A time trend, the37

effect of age and other covariates on the height of the cadets is estimated using BayesX.38

2. Methodological background39

2.1. Penalized regression40

Suppose we have given observationsyi, xi, i = 1, . . . , n, of a metrical response variable41

y (in our case the height of a cadet) and a metrical explanatory variablex (e.g. the age of42

the cadet or the calendar time). Traditionally, the effect ofx is modeled using a Gaussian43

linear regression model, i.e.44

yi = β0 + β1xi + εi, (1)45

where the errors are assumed to be independent and Gaussianεi∼N(0,σ2) with a common46

varianceσ2 across subjects. A requirement is that a linear relationship betweeny andx is47

reasonable. In many historical applications, the effect ofx is modeled by a set of dummy48

variablesxij, j = 1, . . . , J (e.g. yearly dummies ifx corresponds to calendar time) to take49

possible non-linearities into account. This leads to a linear regression model of the form50

yi = β1xi1 + · · · + βJxiJ + εi, (2)51

whereβj is the regression parameter of thejth dummy. The model can be estimated by52

minimizing the residual sum of squares53

S(β) =
n∑
i=1

(yi − β1xi1 − · · · − βJxiJ)
2 =

n∑
i=1


yi −

J∑
j=1

βjxij




2

, (3)
54

with respect toβ = (β1, . . . , βJ ). The approach, however, suffers from dramatically in-55

creased variances for the estimated parameters due to the overparameterization of the model.56

To regularize the problem (i.e. to decrease the variances), a common approach is to replace57

ordinary least squares (3) bypenalized least squares where strong jumps between neigh-58

boring regression parameters are penalized (e.g. parameters of age dummies ifx is covariate59

age). Possible penalizations are given for example by either60

S1(β) =
n∑
i=1


yi −

J∑
j=1

βjxij




2

+ λ

J∑
j=2

(βj − βj−1)
2 → min

β
, (4)

61

http://www.stat.uni-muenchen.de/~lang
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or6263

S2(β) =
n∑
i=1


yi −

J∑
j=1

βjxij




2

+ λ

J∑
j=3

((βj − βj−1)− (βj−1 − βj−2))
2 → min

β
,

64

(5)65

The additional terms introduced are first- (4) or second-order (5)difference penalties.66

First-order differences penalize abrupt jumpsβj − βj−1 between successive regression pa-67

rameters and second-order differences penalize deviations from the linear trend 2βj−βj−2.68

The trade-off between fidelity to the data and smoothness is controlled by thesmoothing69

parameter λ > 0. Small values ofλ give large weight to the first terms in (4) and (5).70

Accordingly, large differences between neighboring parameters are allowed. In the limit71

(λ → 0) the data are interpolated and ordinary least squares is obtained as a special case.72

Large values ofλ give large weight to the penalty terms in (4) and (5) and only small jumps73

between neighboring parameters are allowed.174

We follow Bayesian2 versions of the penalized least squares approaches (4) and (5),75

described in detail inFahrmeir and Lang (2001a,b). A Bayesian approach has several ad-76

vantages over the specification (4) or (5). For instance, the amount of smoothness controlled77

by λ can be estimatedsimultaneously with the regression coefficientsβj which is usually78

quite difficult within the traditional frequentist methodology. In the Bayesian approach, all79

unknown parameters are assumed to be stochastic and appropriate prior distributions must80

be specified. The direct stochastic analogue to the penalty term in (4) is a first-order random81

walk for the regression coefficients, i.e.82

βj = βj−1 + uj, j = 2, . . . , J, (6)83

with uj∼N(0, τ2). For the initial valueβ1 we assume a diffuse prior, i.e.βj ∝ const. The84

analogue to the penalty term in (5) is a second-order random walk, i.e.85

βj = 2βj−1 − βj−2 + uj, j = 3, . . . , J, (7)86

with uj∼N(0, τ2) and diffuse priors for the initial valuesβ1 andβ2. The analogue to the87

smoothing parameterλ in (4) and (5) is the variance parameterτ2. More (less) smoothness88

is obtained with decreasing (increasing) varianceτ2. To be able to estimate the amount of89

smoothing (i.e.τ2) simultaneously with the regression parameters an additional priorp(τ2)90

is specified forτ2. Mainly for mathematical simplicity, the conjugate prior3 for τ2 is usually91

assumed. It is an inverse gamma distribution, i.e.τ2 ∝ IG (a, b) with fixed (non-stochastic)92

hyperparametersa andb.4 A possible choice isa = 1 andb = 0.005 ora = 0.001 and93

b = 0.001 resulting in relatively non-informative priors forτ2. Bayesian inference for the94

unknown parametersβ andτ2 is based on the posterior distributionp(β, τ2|y). According95

1 In the limit (λ → ∞), estimated parametersβj are all equal, i.e.βj = c, if (4) is used. If (5) is used the
parametersβj follow a straight line.

2 For a comprehensive introduction to Bayesian estimation and inference written for social scientists, see Simon
Jackman’s website:http://jackman.stanford.edu/mcmc.

3 A prior is conjugate if the posterior follows the same distribution family as the prior.
4 Theχ2 distribution is a special case of the gamma distribution.

http://jackman.stanford.edu/mcmc
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Fig. 1. Estimated effects of cadets age on height (in.), relative to 18-year-old cadets, based on an ordinary dummy
variables approach (a) and penalized dummies (b).

to Bayes’ theorem it is given by96

p
(
β, τ2|y

)
= cL(y|β)p(β|τ2)pτ2, (8)97

wherec is a normalizing constant andL(y|β) is the likelihood. Because of independence98

assumptions about the errorsεi in (1), the likelihood is simply a product of normal densities.99

Point estimators forβ are obtained by the posterior meanE(β|y) or the posterior mode.100

Credible intervals (the Bayesian analogue to confidence intervals) for the parametersβj101

with a nominal level of 1− α are obtained by computing their posteriorα/2 and 1− α/2102

quantiles.103

In many practical situations, however, the posterior distribution is numerically intractable.104

A common technique to overcome these problems are Markov Chain Monte Carlo (MCMC)105

simulation methods. These allow the drawing ofrandom numbers from the numerically106

intractable posterior distribution and in this way, the estimation of characteristics of the107

posterior like means, standard deviations or quantiles via theirempirical analogies. The108

main idea is that instead of drawing directly from the posterior (which is impossible in109

most cases anyway) a Markov Chain is created, whose iterations of the transition kernel110

coverage to the posterior distribution. In this way a sample of dependent random numbers111

of the posterior is obtained. As a rule, the first drawings from this sample of parameter112

values is discarded to take into account the time the algorithm needs for convergence to the113

posterior. This part is known as burn-in period.5114

To demonstrate the usefulness of the penalization, we contrast inFig. 1the estimated effect115

of the age on the cadets’ height based on a simple dummy variable approach (Fig. 1a) and on116

(Bayesian) penalized dummies (Fig. 1b). We see that the penalization results in much more117

stable estimates, which are also easier to interpret. However, the sudden drop of the effect at118

5 A nice introduction to MCMC methods can be found inGreen (2001).
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the age of 20 years is somewhat unreliable because we would expect a monotonic increase119

of height with age. This comes about obviously due to the small number of observations120

after age 20 (the number of observations is only 10–44 per month). We will investigate121

further improvements of our approach in the next section.122

2.2. Penalized splines123

In the previous section possible non-linearities of the effect of a covariatex are modeled124

with a dummy variable approach. If we think of the effect ofx as a (non-linear) functionf125

of x we can write (2) as126

yi = f(xi)+ εi, (9)127

wheref(xi) = β1xi1 + · · · + βJxiJ is piecewise constant. In this section, we generalize our128

approach by assuming more general functionsf. More specifically, we assume thatf is a129

polynomial spline. Suppose that the range ofx is divided into non-overlapping intervals with130

equal length throughr + l cutpointsζj with xmin = ζ0 < ζ1 < · · · < ζr−1 < ζr = xmax.131

A polynomial spline of degreed with respect to the cutpointsζj is a functionf with the132

following properties:133

• On each of the intervals(ζ0, ζ1), . . . , (ζr−1, ζr), f is a polynomial of degreed.134

• At the cutpointsζj the splinef is d − 1 times continuously differentiable.135

Usually, the cutpointsζj are called the knots of the spline.136

Every spline can be written in terms of a linear combination ofJ basis functionsBj(x)137

spanning the spline space,6 i.e.138

f(x)=β1B1(x)+ · · · + βJBJ(x),139

and we can replace (9) by140

yi = β1B1(xi)+ · · · + βJBJ(xi)+ εi. (10)141

With d = 0 we obtain the dummy variable approach from the previous section as a special142

case. Here, the basis functions are given byBj(xi) = xij. Model (10) can be estimated143

by ordinary least squares. However, the choice of thenumber of knots is crucial. For a144

small number of knots the resulting spline space may be not flexible enough to capture the145

variability of the data. For a large number of knots, estimated curves may tend to overfit146

the data. As a solution to these problems, we followEilers and Marx (1996)andLang and147

Brezger (in press)who suggest a moderately large number of knots (usually between 20 and148

40) to ensure enough flexibility. In complete analogy to the dummy variable approach of the149

previous section we define a roughness penalty based on differences of adjacent regression150

coefficients to guarantee sufficient smoothness of the fitted curves.151

6 Splines represent a finite dimensional vector space. Hence, every spline can be written in terms of a finite
set of basis vectors, which are functions in our case. The basis functions are not unique. For numerical reasons
and to make sure that the penalization of the regression coefficients is meaningful, we use a local B-spline basis.
A comprehensive treatment of polynomial splines is inDe Boor (1978), an easy to read introduction is given in
Green and Silverman (1994).
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As an example, compareFig. 2awhich shows the estimated effect of age on the cadets’152

height based on a P(enalized) spline of degree 3 with 20 knots and a second-order random153

walk penalty. Compared to penalized dummies inFig. 1b, we obtain a smoother estimate154

where the buckle around age 20 years has disappeared almost completely. Note that esti-155

mated effects are usually more or less unaffected by varying the number of knots provided156

that there are enough knots.157

2.3. Additive and varying coefficient models158

So far, we have considered only one metrical covariatex. In many applications, how-159

ever, two or more metrical covariates are considered. We demonstrate possible exten-160

sions of the simple model with an example on the physical stature of West point cadets.161

The effect we are most interested in is a possible time trend in the height of the cadets.162

In an additive model (Hastie and Tibshirani (1990)) with the two covariates ‘time’ and163

‘age’ we assume that the effect of both covariates is additively composed of two (non-164

linear) functions f1(time) and f2(age), i.e. the height of theith cadet is modeled165

by166

heighti = f1(timei)+ f2(agei)+ εi. (11)167

Similar to the previous section, we can assume polynomial splines for the two functionsf1168

andf2 and penalize the regression coefficients to prevent overfitting. If an additional vector169

of q categorical covariates (dummy variables)w exists, we can easily extend our model by170

assuming usual linear effects on the heights and we obtain171

heighti = f1(timei)+ f2(agei)+ γ ′wi + εi. (12)172

whereγ = (γ1, . . . , γq) is a vector of further regression coefficients.173

The West point cadets are divided into three occupational groups: farmers, cadets of the174

“middle class”, and others. It is reasonable to assumedifferent time trends for the three175

occupational groups. Defining the dummy variables farmeri and middleclassi, we obtain176

thevarying coefficient model (Hastie and Tibshirani, 1993)177178

heighti = f1(timei)+ f2(timei)× farmeri + f3(timei)× middleclassi179

+ f4(agei)+ γ ′wi + εi. (13)180

In this model, the functionfi(time) captures the time trend for the occupational group181

“others”. The functionsf2(time) andf3 (time) are deviations from the time trend of the182

group “others”. Hence,f1 + f2 corresponds to the time trend for the farmers andf1 + f3183

to the trend for the middle class. The model is called a varying coefficient model because184

the effects of the dummy variables farmer and middleclassi vary smoothly over the course185

of the covariate time.186

Bayesian inference for additive or varying coefficient models is done by MCMC methods187

in a similar way as described inSection 2.1. Details can be found inFahrmeir and Lang188

(2001a,b); Lang and Brezger (in press)and inBrezger et al. (2002).189
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Fig. 2. Estimation results for non-linear functions. Depicted are the mean and the 10th/90th percentile: (a) age
effect; (b) baseline effect; (c) farmer effect; (d) middle class effect.
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2.4. Modeling spatial heterogeneity190

In many applications, observations pertain to different locations. For instance, for the191

West Point cadets we know the state where they were born. In such situations, it may192

be necessary to control for possible spatial heterogeneity caused by unobserved location193

specific covariates, e.g. different economic conditions. BayesX allows to take spatial het-194

erogeneity into account by amixed model approach (Fahrmeir and Tutz, 2001). Thereby, the195

strategy is similar to the smoothing techniques described above. In analogy to the dummy196

variable approach for metrical covariates, we estimate for every locationl ∈ {1, . . . , L}197

(e.g. every state in the West Point example) one parameterbl and penalize parameters to198

prevent overfitting. A possible assumption is that the location specific parametersbl are199

independent and Gaussian with a common variance200

bl∼N(0, v2),201

implying only weak smoothing conditions. Because of the common variancev2, parameters202

are shrunk towards zero. For the variancev2 we assume, similar to random walks, an inverse203

gamma prior. Much stronger smoothing is implied if we assume that the location specific204

parameters are spatially correlated, i.e. that neighboring parameters are more alike than205

others. A prior for the parameters can be defined by generalizations of one dimensional206

random walks to two dimensions. Such a prior is called a Markov random field (Besag207

et al., 1991) and is also supported by BayesX. Details on non-parametric regression models208

with spatially correlated effects and examples are inFahrmeir and Lang (2001a)andLang209

and Brezger (in press).210

3. An application to the heights of West Point cadets211

3.1. The data and the model212

We provide a brief demonstration of the methods described above by revisiting the phys-213

ical stature of cadets of the West Point academy in the 19th century.7 These data were first214

analyzed byKomlos (1987, 1996)andCuff (1993),8 and they provide one of the pillars215

of the “Antebellum Puzzle:” as human height is an indicator of net-nutritional attainment216

during childhood and adolescence (Steckel, 1995), it is astounding that a decline in physical217

stature of the (non-slave) American male population occurred at a time of increasing per218

capita incomes (Komlos, 1998). Other evidence is provided by data on Union Army soldiers219

(Margo and Steckel, 1983; A’Hearn, 1998; Haines et al., 2000; Lauderdale and Rathouz,220

1999; Cuff, 1998). Similar patterns have been documented among European societies at the221

same time. The explanation suggested byKomlos (1987, 1998)includes the adverse effects222

of urbanization that accompanied industrialization. The number of city dwellers who statis-223

tically depended on a farmer for nutrition was rising faster than productivity in agriculture.224

7 Data are available from ICPSR data archive (http://www.icpsr.umich.edu), data set no. 9468.
8 Woitek (in press)analyzed the time series properties of this sample.

http://www.icpsr.umich.edu
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Many farmers switched from self-sufficiency to serving the new urban markets. Prior to225

refrigerating however, some foodstuffs could not be transported over large distances, e.g.226

skimmed milk as a by-product of making cheese. With an inelastic world supply of food,227

this led to an increase in the (relative) price of food compared to other goods. To be sure, An-228

tebellum towns additionally suffered from deficient sanitation and a demanding epidemio229

logical environment (Costa and Steckel, 1997).230

The West Point sample comprises approximately 4200 cadets who entered the academy231

between 1843 and 1894. We include in our analysis only individuals born in the US between232

1825 and 1875 and aged 16–21 years. Of the remaining 3973 records, information on 2721233

persons was matched with characteristics on family background (Komlos, 1987, p. 899).234

Our analysis is restricted to this matched subsample which has information on the size of the235

place of residence and on father’s occupation, thus permitting a rough social stratification.9236

We distinguish between sons of farmers, cadets of the “middle class”, and others, mainly237

sons of blue collar workers (Komlos, 1996, p. 204). Based on the deliberations of the238

previous section we estimate the model239240

heighti = γ0 + fi(timei)+ f2(timei)× farmeri + f3(timei)× middleclassi241

+ f4(agei)+ γ1 × urbani + bstatei + εi. (14)242

The functionsf1–f4 are assumed to be smooth, and we choose P-splines of degree 3 and243

a second-order random walk penalty to approximate them. In addition, spatial effects are244

considered by including a dummy variable for urban residence and uncorrelated spatial245

effectsbstatei that pertain to the state where theith cadet was born.246

3.2. Estimation in BayesX247

BayesX is command line oriented. To estimate the model (14) in BayesX we either have248

to write a batch file containing all necessary commands or the commands could be entered249

and executed directly in BayesX. In our example, the batch file consists of the following250

statements:dataset w251

w.infile using c:\data\westpoint.raw bayesreg b252

b.regress height = time (psplinerw2) + farmer∗time(psplinerw2)253

+ middleclass∗time (psolinerw2) + age (psplinerw2) + urban + state (random),254

family = gaussian iterations = 52000burnin = 2000using w.255

With the first two statements we read in the data. The next two statements are used to256

specify the model to be estimated and the number of MCMC iterations the algorithm should257

perform, including the burn-in stage. The batch file is executed by typing ‘useful filename’258

in BayesX. The program also provides several possibilities to visualize estimation results,259

details can be found in the user manual (Brezger et al., 2002).260

9 When estimating a model for an average cohort trend only, the restricted sample yielded a similar pattern as
the full sample, hence we are confident that limiting the scope to the matched subsample does not impose severe
selectivity issues on its own.
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Table 1
Estimated constant effects (in.)

10th percentile Mean 90th percentile

Intercept 66.85 67.08 67.31
Urban −0.505 −0.323 −0.133

Intercept pertains to 18-year-old cadets.

3.3. Results261

Table 1andFigs. 2 and 3provide estimation results for our model (14). For the ease262

of interpretation, the implied cohort trends are depicted inFig. 4. Urban cadets were sig-263

nificantly shorter on average with a point estimate of−0.32 in. (Table 1). Such an urban264

penalty is consistent with the literature on anthropometric history in the US before the265

20th century. The trends in stature of the three occupational strata are very different. At266

the beginning of the period under consideration, farmers were the tallest. The notion that267

“propinquity to the source of food” was conducive to human stature is indeed well estab-268

lished in the literature (Komlos, in press). However, this advantage declined subsequently.269

The increasingrelative price of food and the decline in transportation costs, especially with270

the construction of the railroad network, could have induced farmers to trade away larger271

shares of their produce. The middle class cadets, on the other hand, gained considerably in272

the late 1830s, just at the time when the height of the rest of the society was beginning to273

Fig. 3. Birth state random effects on a map of 1880. Numbers refer to case count.
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Fig. 4. Predicted trends in height, calibrated for 21-year-old rural cadets.

decline. In other words, there is no evidence of the “Antebellum Puzzle” pertaining to the274

middle class. The height advantage of the middle class was largest between 1844 and 1860.275

Heights did decline among the cohorts experiencing the impact of Civil War on the cost of276

living during their adolescence. This cycle in heights does, not differ from the other groups,277

but those from the middle class maintained the lead that they had attained in the late 1830s278

(Fig. 4).279

We also estimated a model confined to 1903 urban (non-farmer) cadets (of whom 1430280

were middle class). The middle class height advantage (Fig. 5) was positive and be-281

came significant in 1838 (after the economic recession of 1837) until the end of Civil282

War. The increasing height of the urban middle class at a time of increasing inequality283

(Lindert, 1991), when other segments of the society were becoming shorter, supports the284

view that the Antebellum Puzzle was brought about by changing economic circumstances285

(Lauderdale and Rathouz, 1999; Woitek, in press; Komlos, 1987).10 Had the phenomenon286

been caused solely by a worsening disease environment, the height of the middle classes287

should have been affected as well. We can infer that the increase in middle class incomes288

must have been large enough to compensate for the rising relative prices of (protein-rich)289

foods.11290

10 The West Point sample is the only one so far that permits a closer investigation into the biological standard of
living of the middle classes in 19th century America.
11 In addition, if the disease environment had worsened, then the inference is warranted that the increase in their

income was sufficiently large to increase their nutrient intake and thereby compensate for the rise in the demands
of the disease environment.
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Fig. 5. Height “premium” of the urban middle class relative to urban non-middle class/non-farmer cadets (from a
separate regression): mean estimate and 10th/90th percentile.

4. Conclusion291

In many empirical regression applications, metrical covariates can exert non-linear ef-292

fects. While it is possible to implement non-linearity into traditional linear models, more293

flexible approaches such as the additive models framework are quite attractive, since the294

progress in the speed of computing has expanded the practical limits considerably. The295

Bayesian approach to additive models described here has the advantage that it does not296

rely on cross-validation of models with regard to different combinations of smoothness pa-297

rameters, as in traditional frequentist implementations. Thus, it is possible—given enough298

data—to estimate several of those functions in one model. Actually, the possibilities offered299

in the BayesX software reach beyond those applied here.12300

In our application, we have demonstrated that this methodology can be useful to es-301

timate historical time trends from micro data. Trends in human stature in 19th century302

America have been shown to be quite different among different occupational groups. Our303

results indicate a substantial gain in the “biological standard of living” of the middle304

class in comparison to the rest of the society during the Antebellum decades, reflecting305

the increasing per capita income of this group as well as the rising inequality during the306

period.307

12 Link functions may be incorporated to estimate (multinomial) logit, (ordered) probit, and other models of the
traditional GLM family. Moreover, spatial correlation in data organized by geographic units can be taken into
account.
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