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Abstract

Generalized additive mixed models extend the common parametric pre-

dictor of generalized linear models by adding unknown smooth functions of

di�erent types of covariates as well as random e�ects. From a Bayesian view-

point, all e�ects as well as smoothing parameters are random. Assigning

appropriate priors, posterior inference can be based on Markov chain Monte

Carlo techniques within a uni�ed framework.

Given observations on the response and on covariates, questions like the

following arise: Can the additive structure be recovered? How well are un-

known functions and e�ects estimated? Is it possible to discriminate between

di�erent types of random e�ects?

The aim of this paper is to obtain some answers to such questions through

a careful simulation study. Thereby, we focus on models for Gaussian and

categorical responses based on smoothness priors as in Fahrmeir and Lang

(2001a, b). The result of the study provides valuable insight into the facilities

and limitations of the models when applying them to real data.

1 Introduction

Generalized additive mixed models (GAMMs) provide a broad and 
exible frame-

work for regression analyses in realistically complex situations with cross-sectional,

longitudinal and spatial data. They extend the class of generalized linear models

by adding unknown smooth functions of metrical covariates, time scales and spatial

covariates as well as random e�ects to the common linear �xed e�ects part of the

predictor. In fully Bayesian GAMMs, all these e�ects as well as smoothing param-

eters or other hyperparameters are considered as random, and speci�c models are

obtained by assigning appropriate priors to them.

The two main concepts in the rapid development of Bayesian non- and semipara-

metric function estimation are based on (i) adaptive basis function approaches and

(ii) smoothness priors. In basis function approaches, priors are designed to control

the signi�cance of basis function coeÆcients (e.g. Smith and Kohn, 1996; Yau, Kohn

and Wood, 2000), the number and location of knots of piecewise constant functions

or regression splines (Denison et al., 1998; Biller, 2000), or - in a spatial context -

partitions of a spatial domain (Heikkinen and Arjas, 1998; Knorr-Held and Ra�er,

1999).

Smoothness priors approaches are stochastic analogues of penalized likelihood meth-

ods. They assign appropriate priors, di�ering in the type and degree of smoothness
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for function values or parameters, which are neighbours in the domain of a metrical

covariate or a time scale, or in space. These concepts have been used for Bayesian

smoothing splines (Hastie and Tibshirani, 2000) , in dynamic models (Knorr-Held,

1999) or in Markov random �eld models for spatial smoothing (Besag et al., 1991).

Fahrmeir and Lang (2001a, b) combine these concepts for a uni�ed treatment of

GAMMs. Using the fact that smoothness priors have a common general multi-

variate Gaussian form, posterior inference is possible with algorithmically eÆcient

MCMC techniques. Finally, Lang and Brezger (2001) develop Bayesian P-splines

models, which may be seen as a combination of basis functions and smoothness

priors approaches.

Bayesian GAMMs o�er a powerful tool for regression analysis of data correlated over

time or space. However, in applications some of the following questions typically

arise: How well can an underlying structure, including additive e�ects of covariates,

time and space, be recovered on the basis of the observed data? Is it possible to

distinguish between spatially correlated random e�ects modelling a smooth spatial

structure and uncorrelated random e�ects, which should capture unobserved het-

erogeneity? Assuming a true underlying regression function, can we say something

about bias and variance of the estimate? What is the in
uence of signal-to-noise or

variance-to-variance-ratios? How big is the in
uence of the information content of

di�erent types of responses?

To �nd answers to these questions for realistically complex models, analytical re-

sults are generally not available. Consequently, there is an obvious need for thorough

simulation studies, which can give at least partial answers on an empirical basis. Sur-

prisingly, there is a clear lack of such studies in the literature. Some exceptions are

Smith, Wong and Kohn (1998), Smith and Kohn (1996) and Bernardinelli, Clayton

and Montomoli (1995).

The aim of this paper is to explore some of the open questions mentioned above

for Bayesian GAMMs developed in Fahrmeir and Lang (2001a, b). We focus here

on Gaussian and (multi-)categorical probit models, with predictors including all the

di�erent types of e�ects described at the beginning in additive stylized form. The

results provide further insight into the properties of posterior inference with these

models and give guidance for their facilities and limitations in real data applications.

2 Bayesian generalized additive mixed models

Generalized linear models assume that, given covariates w, the distribution of the

response variable y belongs to an exponential family with mean � = E(yjw) linked to
a linear predictor � = 


0
w by � = h(�). Here h is a known link or response function

and 
 = (
1; : : : ; 
q) is the vector of unknown regression coeÆcients to be estimated.

GAMMs extend GLMs by replacing the simple parametric linear predictor through

a 
exible semiparametric additive predictor

� = f1(x1) + � � �+ fp(xp) + 

0
w + bg:

The unknown functions f1; : : : ; fp are (more or less) smooth functions of metrical

covariates, time scales and spatial covariates. The parameters bg; g 2 f1; : : : ; Gg, are
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uncorrelated (unstructured) random e�ects, mainly introduced to model unobserved

heterogeneity. In most cases the grouping variable is an index that identi�es di�erent

units or clusters. It may also be an indicator of spatial sites to incorporate spatial

heterogeneity. Then, a common approach is to decompose a spatial e�ect fspat(s),

say, where s 2 f1; : : : ; Sg denotes the sites on a lattice, into a smooth, structured

component fstr(s) and an unstructured random e�ect bs. A rational for an additive

decomposition fspat(s) = fstr(s) + bs is that a spatial e�ect is usually a surrogate of

many underlying unobserved in
uential factors. Some of them may obey a strong

spatial structure others may be present only locally. Such models are common in

spatial epidemiology (Besag et al., 1991; Knorr-Held and Besag, 1998) and have also

been used in Fahrmeir and Lang (2001b). With similar arguments, we could also

decompose functions of a time scale or a metrical covariate into a smooth component

and an uncorrelated random e�ect. A main focus of the simulation study in Section

3 is to investigate whether such a decomposition is identi�able given the data and

the priors. (Note that the decomposition is not likelihood identi�able!)

Smoothness priors for the unknown functions f1; : : : ; fp depend upon the type of

covariate. Alternatives for metrical covariates and time scales are random walk

priors (Fahrmeir and Lang, 2001a), P-spline coeÆcient priors (Lang and Brezger,

2001) and smoothing spline priors (Hastie and Tibshirani, 2000). In any case, it is

possible to express an unknown smooth function f , more exactly the corresponding

vector of function evaluations f = (f(x1); : : : ; f(xn)), as the matrix product of a

design matrix X and a vector of unknown parameters �, i.e. f = X�. All priors for

a coeÆcient vector � have the same general Gaussian form

�j� 2 / exp

�
�

1

2� 2
�
0
K�

�
: (1)

This implies that �j� 2 follows a partially improper Gaussian prior

�j� 2 � N(0; � 2K�);

where K� is a generalized inverse of the penalty matrix K. The amount of smooth-

ness of a function f is controlled by the variance parameter � 2. For a fully Bayesian

analysis, a hyperprior for � 2 is introduced in a further stage of the hierarchy. This

allows for simultaneous estimation of the unknown function and the amount of

smoothness. A common choice is a highly dispersed but proper inverse gamma

prior � 2 � IG(a; b). (This type of prior is also chosen for var(�) = �
2 in a Gaussian

additive mixed model y = � + �.)

Functions f(x) of a spatial covariate x, where xi represents the location of an ob-

servation i in a spatial domain, can also be expressed in the form f = X�. In the

simplest case, a component �s of � is equal to f(s), the value of f(:) at site s, and a

Markov random �eld prior as in Besag et al. (1991) is assumed for �. Again it can

be brought into the general form (1).

For unstructured random e�ects, a usual assumption for the prior is that the bg's

are i.i.d. Gaussian,

bgjv
2 � N(0; v2); g = 1; : : : ; G (2)

with a highly dispersed hyperprior for v2.
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Apparently, there is only a slight di�erence to the additive smooth e�ects f1; : : : ; fp.

In fact, instead of specifying for example �rst or second order random walk priors

for a function f , the random e�ects prior (2) may be speci�ed as well. The main

di�erence between the two speci�cations is the amount of smoothness allowed for a

function f . With a random e�ects speci�cation successive parameters are allowed to

vary more or less unrestricted, whereas random walk priors guarantee that successive

parameters vary smoothly over the range of x. As already mentioned in some cases

it may be even necessary to include both a structured and an unstructured e�ect

into the predictor.

Bayesian inference is based on the posterior distribution of the model. In all practical

situations the posterior distribution is numerically intractable and posterior analysis

is carried out with MCMC simulation. The exact MCMC simulation techniques

used are described in detail in Fahrmeir and Lang (2001b), see also Hastie and

Tibshirani (2000) for the case of Gaussian responses. For Gaussian and categorical

probit models, which are the focus of this paper, posterior simulations are possible

with Gibbs sampling. In other cases, MH steps based on conditional prior proposals

(Knorr{Held 1999) or on iteratively weighted least squares proposals (Gamerman,

1997) are a possible alternative.

All computations have been carried out with BayesX a software package for Bayesian

inference with MCMC techniques. The program and the user manual are available

via internet at http://www.stat.uni-muenchen.de/~lang/. The user manual of

BayesX also contains a short survey of the MCMC techniques used in this paper.

3 Simulation study

3.1 Simulation design

In our simulation study we present results for Gaussian responses, binary probit

models and multinomial probit models with three categories.

In all cases we start with a basis model that will be extended to more complicated

situations. The predictor of our basis model (M1) is given by

�it = const + f(xit) + bi; i = 1; : : : ; 50; t = 1; : : : ; 15;

where f(x) = sin(x) and bi � N(0; v2) is an unstructured random e�ect. The model

corresponds to longitudinal data with 50 individuals observed during an observation

period of 15 time points. The values of the covariate x are chosen randomly within an

equidistant grid of 50 points between -3 and 3. Thus, x is a time varying covariate. In

a second model (M2), x is restricted to be time constant, that is for every individual

i exactly one of the 50 di�erent covariate values of x is observed. This is technically

equivalent to models where the e�ect of a particular covariate is split up into a

structured (smooth) and an unstructured (unsmooth) e�ect. The question arising

in such situations is whether we can really distinguish between the two di�erent

e�ects.

In a next step we replace the metrical covariate x in models M1 and M2 by a spatial

covariate (models M3 and M4). More speci�cally, we assume now that x denotes
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the location in the geographical map shown in Figure 1. The function f is chosen

as a sinusoidal function of the centroid coordinates x1 and x2 of the regions, i.e.

f(x1; x2) = sin(x1x2) + 0:148. The constant 0.148 is added to ensure that the sum

of function evaluations is zero. The true function used for simulations is shown in

Figure 1 a). Since the map consists of 309 districts the number of individuals is

increased from 50 to 309 in order to obtain the same situation as in models M1 and

M2.

Overall, we end up with 4 di�erent models which we summarize in Table 1. In

order to investigate the e�ect of the variance v2 of the random e�ects on estimation

results we simulated the models with three di�erent variances v2 = 0:25, v2 = 0:5

and v
2 = 0:75. For Gaussian responses the variance of the error term is always set to

1. In the case of multinomial responses with three categories a second predictor has

to be designed. In all cases the second predictor is composed of the same covariates

and has the same structure as the predictor of the �rst category but with a di�erent

functional form for f . The predictors of the second category are summarized in

Table 2.

We also experimented with models where an additional nonlinear "time trend" g(t)

has been added to the predictors of our models. Since in all cases the nonlinear time

trend was estimated almost unbiased and results for f and the random e�ects were

close to models M1-M4 we omit to show results for these models.

As smoothness priors for the function f we usually choose a second order random

walk if x is metrical, and a Markov random �eld prior with adjacency weights for

spatial covariates. For metrical covariates we also tested other smoothness priors,

e.g. P-splines or smoothing splines, but the di�erences in results are more or less

negligible. For the hyperparameters of inverse gamma priors of variance components

we set a = 1 and b = 0:005 as a standard choice.

We generated 250 replications y1 - y250 for every model M1-M4 and variances v2 =

0:25, v2 = 0:5 and v
2 = 0:75. The replications are simulated always with the same

random e�ects coeÆcients bi, i.e. the random e�ect can be seen as a �xed but

unstructured (unsmooth) function. In order to make results comparable we also

used identical random e�ects coeÆcients for models M1 and M2, and M3 and M4,

respectively. Usually, random e�ects are considered as an additional unit- or cluster

speci�c random error similar to the overall errors. Thus, we could have also treated

the random e�ects as additional errors and simulate new coeÆcients bi, i = 1; : : : ; n,

for every replication of the models. This strategy has been followed for example by

Lin and Zhang (1999). However, some of the questions that we adress in this paper

cannot be answered by treating the random e�ects as additional errors. Moreover, in

the case of a spatial covariate the treatment of random e�ects as additional location

speci�c errors is at least questionable, because then we tacitly assume that there is

an inde�nite number of locations.

In the next sections results are compared by computing the average estimated func-

tions and random e�ects coeÆcients of the 250 replications, i.e.

�f(x) =
1

250

250X
j=1

f̂
y
j

(x)
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for f and analogue terms for the random e�ects. We also computed the square root

of the relative MSEs

q
MSE(j) =

vuuuuut

X
x

(f̂ y
j

(x)� f(x))2

X
x

f(x)2

for the j-th replication of the models, j = 1; : : : ; 250.

0-1.06176 1.147353

a)

0-0.984736 1.203313

b)

Figure 1: Maps of the "true" function f used for simulation. Figure a) displays the

map used for Gaussian responses, probit models and the �rst category of multicat-

egorical probit models. Figure b) displays the map used for the second category of

multicategorical probit models.

Model � covariate x nonlinear functions

M1 f(xit) + bi x metrical, time varying f(x) = sin(x)

M2 f(xi) + bi x metrical, time constant f(x) = sin(x)

M3 f(xit) + bi x spatial, time varying f(x1; x2) = sin(x1x2) + 0:148

see also Fig. 1a)

M4 f(xi) + bi x spatial, time constant f(x1; x2) = sin(x1x2) + 0:148

see also Fig. 1a)

Table 1: Summary of simulated models (Gaussian responses and probit models).
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Model nonlinear function for �1 nonlinear function for �2

M1,M2 f(x) = sin(x) f(x) = x
2

4:5
� 0:694

M3,M4 f(x1; x2) = sin(x1x2) + 0:148 f(x1; x2) = 0:4(x1 + x2)

see also Fig. 1a) see also Fig. 1b)

Table 2: Summary of simulated models for multicategorical probit models.

3.2 Results for Gaussian responses

Models M1 and M2

We �rst compare the results for models M1 and M2 where f is a function of the

metrical covariate x. Figure 2 shows the average posterior mean estimates �f(x) for

f (dashed lines) for models M1 (left panel) and M2 (right panel). For comparison

the true function is additionally included (solid line). The function is estimated

almost unbiased for model M1 whereas for model M2 estimates are considerably

biased. Also for model M2, the bias becomes larger if the variance of the random

e�ects is increased. This is, however, not too surprising since the smooth function is

considerably masked by the superimposed unstructured e�ect. Figure 3 displays the

average deviation of the estimated random e�ects coeÆcients (dashed line) from the

true coeÆcients (solid line). More speci�cally, the �gure maps the true coeÆcients

on the x-axis against the estimated and the true coeÆcients on the y-axis. Thus,

if the coeÆcients are estimated without any bias the dashed and the solid line

must coincide. In all cases we observe more bias if the absolute values of the true

coeÆcients become larger. Similar to the results for the smooth function more bias

is obtained for model M2 compared to model M1. There is however an important

di�erence between the results for the smooth and the unstructured unsmooth e�ect.

For larger variances of the random e�ects the bias decreases for both models M1 and

M2, whereas the bias for f clearly increases. This indicates that both the smooth

and the unsmooth e�ect is recovered better if it is less masked by the superimposed

second e�ect. The question arises whether the lack of �t for the smooth and the

unsmooth e�ect in model M2 also leads to a considerable reduction of the overall �t.

To answer this question we compared the overall �t measured by the deviance (or

the residual sum of squares) for the di�erent models and variances v2 of the random

e�ects (Table 3). Surprisingly, the increase of the deviance is relatively small for

model M2 compared to model M1. This implies that the main problem is more the

separation of the structured and the unstructured e�ect rather than a decrease of

the overall �t. This becomes even more obvious with Figure 4 in which boxplots of

the relative MSEs for f (�rst graph), the random e�ects coeÆcients (second graph)

and the sum of both e�ects for model M2 (third graph) are printed. For both, the

smooth und the unsmooth e�ect, the relative MSEs become worse for model M2

whereas the MSEs of the sum of both e�ects become much smaller compared to the

MSEs for individual terms.

The problem of insuÆcient separation of the smooth and the unsmooth e�ect might

be caused by the speci�c random e�ects generated once and held �xed in all repli-

cations. In order to check this we rerun the simulations for model M2 treating the
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random e�ects part in the predictor as an additional individual speci�c error rather

than an unstructured function. Replications of the model are now obtained by sim-

ulating not only the overall errors but also the random e�ects. The resulting average

function estimate for f is shown in Figure 5 a) for the case v
2 = 0:5. The panels

b) - d) show the estimates corresponding to the upper tenth decile, the median

and the lower tenth decile of the relative MSE measure. Similar to the simulations

with random e�ects held �xed the bias is higher compared to model M1. Moreover,

looking at the 10th percent best �t, the median �t and the 10th percent worst �t

in panels b) - d) we observe that at least 50 percent of the estimates are of equal or

even worse quality than the average estimate for f in Figure 2. Also, the relative

MSEs are only marginally smaller compared to the simulations with random e�ects

held �xed in every replication. That is, at least in a substantial number of cases the

smooth and the unsmooth e�ect is separated with considerable bias.

We also estimated all models without incorporating the random e�ects component

into the predictors in order to see how the non-consideration of the random e�ect

changes the �t for f and the overall �t. As an example, Figure 6 shows the average

posterior mean for models M1 (left panel) and M2 (right panel) in the case of

v
2 = 0:5 for the random e�ects variance. Similar results are obtained for v2 = 0:25

and v
2 = 0:75. The average deviance is 1638.64 for Model M1 and 1750.08 for

M2. Neglecting the random e�ect leads to a dramatic increase of the deviance.

Moreover, the estimate of the smooth function f is considerably masked by the

random e�ect. This implies that a random e�ects component should always be

incorporated although an unbiased separation of an e�ect into a smooth and an

unsmooth part may be diÆcult.

Besides point estimates, an important aspect of statistical inference are credible

intervals or regions for the unknown parameters. The question is: How accurate

are the true values covered by the credible intervals? In a Bayesian framework

based on MCMC simulation techniques pointwise credible intervals for the function

evaluations of f and the random e�ects coeÆcients are estimated by computing the

respective empirical quantils of the sampled parameters. Table 4 shows the average

coverage (in percent) of pointwise 80 % credible intervals for function evaluations

of f and the random e�ects coeÆcients, respectively. For model M1 the coverage of

function evaluations of f is in all cases clearly above 80 %, for the random e�ects

coeÆcients the average coverage is more or less identical to 80 % implying the

suggestion that our Bayesian credible intervals are relatively conservative estimates.

To assess the e�ect of the curvature of f on the covarage we also experimented

with more or less curved functions than the sine function. We replaced the true

function f(x) = sin(x) by functions f(x) = sin(ax) where a = 0:25; 0:5; 2; 4 and

rerun the simulations. For a = 0:25 and a = 0:5 the resulting functions are less

curved than the sine function, and for a = 2 and a = 4 the functions are more

curved. We obtained average coverage rates between 84 % and 87 % implying that

the curvature of the function has a negligible e�ect on the coverage. Not surprisingly,

the average coverage for model M2 is in all cases beyond 80 %, sometimes far

beyond. Clearly, the reason is that the estimation procedure is not able to distinguish

correctly between the smooth and the unsmooth e�ect. The coverage of the sum of

both e�ects, however, is in all cases almost identical to 80 %.
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Finally, we investigated the accuracy of point estimates for the variance component

v
2 of the random e�ects. Table 5 shows average point estimates obtained by the

posterior mean and the average bias. Even for model M2 the bias can be more or

less neglected.

Models M3 and M4

Compared to models M1 and M2 the covariate x is now spatial rather than metrical.

Thus, x represents the location of a particular observation in the map shown in

Figure 1. Model M1 corresponds to model M3, and model M2 to model M4. In

general, the di�erences to the case of a metrical covariate are relatively small.

Figures 7 and 8, respectively, show the average posterior mean estimate and the

average bias for models M3 (left panels) and M4 (right panels). To gain more insight,

Figure 9 displays the average deviation of the estimated function evaluations for f

(dashed line) from the true values (solid line). For model M3 the true function is

recovered almost unbiased, whereas for model M4 we observe a considerable bias

which increases with increasing variance v2 of the random e�ects. Similar to model

M2 the estimation procedure seems to have problems to distinguish between the

smooth and the unsmooth e�ect. This is con�rmed with Figures 10 and 11. Figure

10 displays the average deviation of the random e�ects coeÆcients (dashed line) from

the true coeÆcients (solid line). For both models M3 and M4 the bias decreases with

increasing variance v2 of the random e�ects, i.e. the random e�ects coeÆcients are

estimated more accurately if the unstructured e�ect is less masked by the smooth

e�ect (and vice versa). Figure 11 shows boxplots of the relative MSEs for f (�rst

graph), the random e�ects coeÆcients (second graph) and for the sum of both

e�ects for model M4 (third graph). It con�rms the �ndings for models M1 and

M2. Although it seems that it is not possible to separate the two di�erent e�ects in

model M4, the sum of both e�ects is estimated satisfactorily.

In analogy to models M1 and M2 we also investigated the coverage of credible

intervals. The average coverage for models M3 and M4 can be found in Table 4.

The results are quite similar to the �ndings for models M1 and M2. Note, that

the coverage for the structured spatial e�ect is even higher than the coverage for a

metrical covariate.
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Model v
2 average deviance Model v

2 average deviance

M1 0.25 704.92 M3 0.25 4209.59

M1 0.5 699.67 M3 0.5 4180.85

M1 0.75 697.33 M3 0.75 4169.35

M2 0.25 711.52 M4 0.25 4379.39

M2 0.5 705.93 M4 0.5 4357.24

M2 0.75 703.33 M4 0.75 4350.28

Table 3: Gaussian responses: Average deviance.

Model v
2 ave. coverage f1 ave. coverage b

M1 0.25 0.87 0.80

M1 0.5 0.87 0.80

M1 0.75 0.86 0.80

M2 0.25 0.74 0.75

M2 0.5 0.61 0.67

M2 0.75 0.66 0.72

M3 0.25 0.91 0.80

M3 0.5 0.91 0.80

M3 0.75 0.91 0.80

M4 0.25 0.76 0.74

M4 0.5 0.59 0.68

M4 0.75 0.44 0.61

Table 4: Gaussian responses: Average coverage of pointwise 80 % credible intervals

for f and the random e�ects coeÆcients.

Model true v
2 �̂

v2 ave. bias Model true v
2 �̂

v2 ave. bias

M1 0.25 0.244 -0.015 M3 0.25 0.256 -0.001

M1 0.5 0.470 -0.021 M3 0.5 0.496 -0.002

M1 0.75 0.731 -0.022 M3 0.75 0.749 -0.001

M2 0.25 0.210 -0.049 M4 0.25 0.265 0.007

M2 0.5 0.418 -0.074 M4 0.5 0.591 0.092

M2 0.75 0.700 -0.056 M4 0.75 0.845 0.094

Table 5: Gaussian responses: Average estimate and bias of the variance component.
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Figure 2: Gaussian responses: True function (solid line) and average posterior mean

estimate for f .
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Figure 3: Gaussian responses: Average deviation of the estimated random e�ects

coeÆcients (dashed line) from the true coeÆcients (solid line). The graphs map the

true coeÆcients on the x-axis against the estimated and the true coeÆcients on the

y-axis.
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Figure 4: Gaussian responses (models M1 and M2): Boxplots of relative MSEs for

f , random e�ects and the sum of both e�ects (model M2 only).
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Figure 5: Gaussian responses: Estimated function f for model M2 and v2 = 0:5 if the

random e�ects are resampled in every replication. Panel a) shows the estimate for f

averaged over the 250 replications. Panels b) - d) show the estimates corresponding

to the upper tenth decile, the median decile and the lower tenth decile of the relative

MSE measure.
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Figure 6: Gaussian responses: True function (solid line) and average posterior mean

estimate for f if the random e�ects are neglected.
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Figure 7: Gaussian responses: Average posterior mean estimate for f . The true

function can be found in Figure 1 a). The left panel refers to model M3 and the

right panel to model M4. All maps including the true map are coloured in the same

scale in order to guarantee comparability.
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Figure 8: Gaussian responses: Average bias for f . The left panel refers to model

M3 and the right panel to model M4. The left and the right panel are coloured in

di�erent scales because of the large di�erences in the amount of the bias.
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Figure 9: Gaussian responses: Average deviation of the estimated spatial function

(dashed line) from the true function (solid line). The graphs map the true values on

the x-axis against the estimated and the true values on the y-axis.
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Figure 10: Gaussian responses: Average deviation of the estimated random e�ects

coeÆcients (dashed line) from the true coeÆcients (solid line). The graphs map the

true coeÆcients on the x-axis against the estimated and the true coeÆcients on the

y-axis.
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Figure 11: Gaussian responses (models M3 and M4): Boxplots of relative MSEs for

f , random e�ects coeÆcients and the sum of both e�ects (for model M4 only).
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3.3 Results for categorical responses

The main �ndings for categorical responses, binary as well as multicategorical, are

virtually identical to the case of Gaussian responses. For that reason, the main focus

of the presentation is restricted to the di�erences between metrical and categorical

responses. Naturally, we would expect that both the bias and the MSE become

larger for categorical data compared to metrical responses, because categorical data

contain less information. Surprisingly, the loss of �t (in terms of bias and MSE) is

unexpectedly small. As an example, Figure 12 compares the average estimates of

the smooth function f for models M1 and M2 and v
2 = 0:5. The solid lines show

the average posterior mean estimates for Gaussian responses and the dashed lines

for binary probit models. We observe that the di�erences are more or less negligible.

Figures 13 and 14 show the boxplots of the relative MSEs for Gaussian responses

(1.{3. boxplot) and binary probit models (4.{6. boxplot). The �rst two graphs in

each �gure show the MSEs for the smooth function f . The third graphs display

the MSEs for the sum of the smooth and the unsmooth e�ect (for models M2 and

M4 only). There is an obvious but relatively small increase of the MSEs for probit

models.

For binary probit models Figures 15 and 16 show the average deviations of the

random e�ects coeÆcients from the true coeÆcients for models M1 and M2 and for

models M3 and M4, respectively. They correspond to Figures 3 and 9 for Gaussian

responses. We obtain virtually the same results as for Gaussian responses, but

with one exception which is best seen in the left panels of Figures 15 and 16. For

Gaussian responses the bias and the MSE decreases with increasing variance v
2

of the random e�ects. For probit models we obtain comparable results except for

values of the random e�ects coeÆcients above 1.8 or below -1.8. The main reason

is that the probabilities for y = 1 (y = 0) are already close to one (zero) for values

of the predictor above 1.8 (below -1.8) and therefore values of the random e�ects

coeÆcients above 1.8 or below -1.8 are extremly hard to identify unless we have a

vast amount of data. Consequently, the bias of the posterior mean estimates for the

variance component v2 is slightly higher for v2 = 0:5 and v
2 = 0:75 compared to

Gaussian responses (Table 6).

An investigation of the coverage of 80 % credible intervals for binary responses gives

similar results as for Gaussian responses. For v2 = 0:25 and v
2 = 0:75 the average

coverage of the random e�ects coeÆcients is slightly beyond 80 % in model M1.

Note that the coverage of the credible interavals in models M2 and M4 is in all cases

far beyond the nominal level. The coverage of the sum of both e�ects is, however,

near or above the nominal level.

For multicategorical probit models the predictor of the �rst category is identical to

the predictor used for binary probit models. Therefore we can assess a possible loss

of �t that is obtained by switching from the binary case to the multicategorical case.

Once again we observe that the loss of �t is relatively small. As an example, Figure

17 shows the relative MSEs for the smooth function f for binary probit models (1.{

3. boxplots) and multicategorical probit models (4.{6-boxplots). The �rst graph

shows the MSEs for model M1, the second graph for model M2 and the third graph

for the sum of the smooth and the unsmooth e�ect (for model M2 only). As can be

observed, the additional loss of �t for multicategorical probit models is small.
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Figure 12: Models M1 and M2 (v2 = 0:5): Comparison of estimates for f for

Gaussian responses (solid lines) and binary responses (dashed lines).

Model true v
2 �̂

v2 ave. bias Model true v
2 �̂

v2 ave. bias

M1 0.25 0.216 -0.043 M3 0.25 0.260 0.002

M1 0.5 0.497 0.005 M3 0.5 0.508 0.001

M1 0.75 0.661 -0.092 M3 0.75 0.742 -0.009

M2 0.25 0.149 -0.110 M4 0.25 0.292 0.034

M2 0.5 0.432 -0.321 M4 0.5 0.622 0.124

M2 0.75 0.571 -0.182 M4 0.75 0.847 0.096

Table 6: Binary responses: Average estimate and bias of the variance component.

Model v
2 ave. coverage f1 ave. coverage b

M1 0.25 0.84 0.76

M1 0.5 0.84 0.80

M1 0.75 0.84 0.78

M2 0.25 0.71 0.67

M2 0.5 0.63 0.71

M2 0.75 0.68 0.72

M3 0.25 0.93 0.80

M3 0.5 0.93 0.80

M3 0.75 0.93 0.80

M4 0.25 0.65 0.65

M4 0.5 0.50 0.67

M4 0.75 0.39 0.65

Table 7: Binary responses: Average coverage of pointwise 80 % credible intervals

for f and random e�ects coeÆcients.
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Figure 13: Models M1 and M2: Boxplots of relative MSEs for f . The �rst to third

boxplots refer to Gaussian responses and the fourth to sixth to binary responses. The

third graph compares the MSEs for the sum of both e�ects (model M2 only).
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Figure 14: Models M3 and M4: Boxplots of relative MSEs for f . The �rst to third

boxplots refer to Gaussian responses and the fourth to sixth to binary responses. The

third graph compares the MSEs for the sum of both e�ects (model M4 only).
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Figure 15: Binary responses (models M1 and M2): Average deviation of the esti-

mated random e�ects coeÆcients (dashed line) from the true coeÆcients (solid line).

The graphs map the true coeÆcients on the x-axis against the estimated and the true

coeÆcients on the y-axis.
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Figure 16: Binary responses (models M3 and M4): Average deviation of the esti-

mated random e�ects coeÆcients (dashed line) from the true coeÆcients (solid line).

The graphs map the true coeÆcients on the x-axis against the estimated and the true

coeÆcients on the y-axis.
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Figure 17: Models M1 and M2: Boxplots of relative MSEs for f . The �rst to third

boxplots refer to binary probit models and the fourth to sixth to multicategorical

probit models. The comparison is based on the �rst category in multicategorical

probit models for which the true predictor is identical to probit models. The third

graph compares the MSEs for the sum of both e�ects (model M2 only).
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4 Conclusion

In this paper Bayesian generalized additive mixed models are studied through an

extensive simulation study. The main results of the paper can be summarized as

follows:

� Smooth functions and coeÆcients for individual speci�c random e�ects are well

recovered provided that the covariate values do not only vary across individuals

but also within individuals (models M1 and M3).

� If a covariate x varies only across individuals or clusters we are confronted

with the following: The e�ect of x is split up into a smooth part f(x) and an

unsmooth part bx (models M2 and M4). In this case the estimates for both the

smooth and the unsmooth part are sometimes considerably biased. The sum

of both e�ects, however, is estimated almost unbiased. Thus, the estimation

procedure may have problems to separate correctly the two e�ects.

� The Bayesian credible intervals are rather conservative in the sense that the

average coverage is usually above the nominal level.

� The di�erences in terms of bias and MSE between Gaussian responses, binary

and multicategorical probit models are relatively small.

In this paper estimation is fully Bayesian with MCMC simulation techniques where

the smooth functions, random e�ects coeÆcients and the smoothing parameters are

estimated simultaneously. A comparison with an empirical Bayes approach where

the smoothing parameters are estimated vias cross validation or as described in Lin

and Zhang (1999) would be interesting but must be defered to future research.

References

Bernardinelli, L., D. Clayton, and C. Montomoli (1995). Bayesian Estimates of

Disease Maps: How Important are Priors. Statistics in Medicine 14, 2411{

2431.

Besag, J., Y. York, and A. Mollie (1991). Bayesian Image Restoration with

two Applications in Spatial Statistics (with discussion). Ann. Inst. Statist.

Math. 43, 1{59.

Biller, C. (2000). Adaptive Bayesian Regression Splines in Semiparametric Gen-

eralized Linear Models. J. Comp. Stat. and Graph. Stat. 12, 122{140.

Denison, D., B. Mallick, and A. Smith (1998). Automatic Bayesian Curve Fitting.

J. R. Statist. Soc. 60, 333{350.

Fahrmeir, L. and S. Lang (2001a). Bayesian Inference for Generalized Additive

Mixed Models Based on Markov Random Field Priors. Appl. Statist. (JRSS

C) (to appear).

Fahrmeir, L. and S. Lang (2001b). Bayesian Semiparametric Regression Analysis

of Multicategorical Time-Space Data. Ann. Inst. Statist. Math. 53, 11{30.

27



Gamerman, D. (1997). EÆcient Sampling from the Posterior Distribution in Gen-

eralized Linear Models. Statistics and Computing 7, 57{68.

Hastie, T. and R. Tibshirani (2000). Bayesian Back�tting. Statist. Sci. (to appear).

Heikkinen, J. and E. Arjas (1998). Nonparametric Bayesian Estimation of a Spa-

tial Poisson Intensity. Scand. J. Statist. 25, 435{450.

Knorr-Held, L. (1999). Conditional Prior Proposals in Dynamic Models. Scand.

J. Statist. 26, 129{144.

Knorr-Held, L. and J. Besag (1998). Modelling Risk from a Desease in Time and

Space. Statistics and Medicine 17, 2045{2060.

Knorr-Held, L. and G. Ra�er (2000). Bayesian Detection of Clusters and Discon-

tinuities in Disease Maps. Biometrics 56, 13{21.

Lang, S. and A. Brezger (2001). Bayesian P-splines. SFB 386 Discussion Paper

236, University of Munich.

Lin, X. and D. Zhang (1999). Inference in Generalized Additive Mixed Models by

using Smoothing Splines. J. R. Statist. Soc. B 61, 381{400.

Smith, M. and R. Kohn (1996). Nonparametric Regression using Bayesian Vari-

able Selection. Journal of Econometrics 75, 317{343.

Smith, M., C. Wong, and R. Kohn (1998). Additive Nonparametric Regression

with Autocorrelated Errors. J. R. Statist. Soc. B 60, 311{331.

Yau, P., R. Kohn, and S. Wood (2000). Bayesian Variable Selection and Model

Averaging in High Dimensional Multinomial Nonparametric Regression. Tech-

nical report, University of NSW.

28


