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The article presents an evaluation of different terrain point extraction algorithms for
airborne laser scanning (ALS) point clouds. The research area covers eight test sites
with varying point densities in the range 3–15 points m−2 and different surface
topography as well as land-cover characteristics. In this article, existing implementa-
tions of algorithms were considered. Approaches that are based on mathematical
morphology, progressive densification, robust surface interpolation, and segmentation
are compared. The results are described based on qualitative and quantitative analyses.
A quantification of the qualitative analyses is presented and applied to the data sets in
this example. The achieved results show that the analysed algorithms give classifica-
tion accuracy depending on the landscape and land cover. Although the results for flat
and mountainous areas as well as for sparse and dense vegetation are in line with
previous tests, this analysis provides an overview of situations in which the quantita-
tive evaluation is not enough to correctly assess the classification results.

1. Introduction

The digital terrain model (DTM) is a prerequisite for the modelling of many processes in
geography and the environmental sciences, e.g. geomorphology (Brock and Purkis 2009;
Rayburg, Thoms, and Neave 2009; Höfle and Rutzinger 2011), hydrology and hydraulic
engineering (Thoma et al. 2005; Tymków and Borkowski 2006; Mandlburger et al. 2009),
and forestry (Hyyppä et al. 2008; Popescu and Zhao 2008; Zhao, Popescu, and Nelson
2009). It is the surface of superficial water run-off and the base for plant growth. Its
extraction, especially in forested areas, is difficult, because of the difficulty of moving in
the forest using terrestrial methods and as a result of the reduced visibility from airborne
acquisition. Airborne laser scanning (ALS) is unique because it can penetrate the forest
canopy through small gaps in the foliage and, thus, partially identify the forest ground
from an airborne position (Axelsson 2000; Næsset 2002; Wagner et al. 2008; Korpela
et al. 2009; Véga et al. 2012; Bretar and Chehata 2010).

Collecting measurements over forests by ALS is, however, not enough to obtain a
DTM because many reflections from the canopy and the understory are recorded (Liu
2008). Extraction of the ground points is therefore a filtering task (Liu 2008; Meng et al.
2009; Wang et al. 2009; Mongus and Žalik 2012; Susaki 2012).

As ALS technology is becoming more accessible and widely used for geospatial
analyses, the necessity to implement tools to process the data arises. For a user who is
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interested in extraction of the ground data for DTM generation, the most important
information for selecting the right tool and the algorithm for ground data extraction is
how fast the software will process the data and how time-consuming the adjustment of
the optimal parameters is in order to achieve high-quality results. Such tools need to
be adapted to the data format and the purpose of the analyses. Finally, users also
have to have knowledge on how to verify the correctness and the quality of the
processed data.

A number of algorithms have been suggested (Kraus and Pfeifer 1998; Axelsson
2000; Vosselman 2000; Ruppert et al. 2000; Haugerud and Harding 2001; Evans and
Hudak 2007; Kobler et al. 2007; Wei-Lwun et al. 2008; Véga et al. 2012; Mongus and
Žalik 2012; Pingel, Clarke, and McBride 2013) for extracting the ground. These
algorithms consist of different concepts for the data-filtering process. Some of them
have been implemented in commercial software packages. To verify the accuracy of
ground filtering, several comparisons have been performed (Sithole and Vosselman
2004; Zhang and Whitman 2005; Chen et al. 2007; Baligh, Valadan Zoej, and
Mohammadzadeh 2008; Meng, Currit, and Zhao 2010). Our contribution approxi-
mately follows along this line of approach, although with the inclusion of three special
considerations.

First, we want to consider the implementation of existing algorithms. This means that
our findings can be used by the scientific community without the need to develop or
implement the algorithm anew. Second, to verify the flexibility of the algorithms, we used
areas covered by different land-cover types and terrain slopes. Finally, the assessment of
the ground extraction quality consists of a qualitative and a quantitative analysis, both
being in a formal setting.

A detailed description of a majority of the proposed algorithms can be found in several
publications (Pingel, Clarke, and McBride 2013; Sithole and Vosselman 2004; Pfeifer and
Mandlburger 2008). Here we present a general summary of approaches for ALS data
filtering. The algorithms developed for the ground data extraction can be distinguished,
depending on the concept by a few general categories. First we discuss simple filters
(Pfeifer and Mandlburger 2008), which work on assigning the lowest elevation value
within the reference unit, e.g. pixel.

Another group are the morphological filters (Vosselman 2000). These ground extractors
work on morphological operators applied for greyscale images (Susaki 2012; Zhang et al.
2003). Generally, these filters work on the differences in elevation in the analysed images. If
the differences are higher within a selected kernel size than a predefined threshold value, the
data are assigned as off-terrain objects (Pingel, Clarke, and McBride 2013). In Zhang et al.
(2003) it is assumed that the slope is constant, and the terrain slope is used to determine the
thresholds for different kernel sizes. Kobler et al. (2007), Chen et al. (2007), and Pingel,
Clarke, and McBride (2013) reported modifications of the basic filter principle. In a
parameter-free (PF) algorithm (Mongus and Žalik 2012), the authors suggest gradually
increasing the grid resolution and decreasing the window size.

The next group of methods works on progressive densification (PD) (Pfeifer and
Mandlburger 2008). These methods start on seed points, and advance by adding more data
that represent the terrain. They work on rebuilding the ground progressively. An example
is the filter of Axelsson (2000), implemented in the commercial TerraScan software. A
variation is given by Isenburg (LAStools 2013) in the LAStools package.

The contrast to the densification methods are surface-based (SB) filters, e.g. the Kraus
and Pfeifer (1998) robust interpolation algorithm applied in the commercial SCOP++
software. Here it is assumed that all of the data represent the terrain, and next, points that
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do not fit to the surface are iteratively rejected. Other variations were proposed by
Elmqvist (2001) and Brovelli, Cannata, and Longoni (2004).

The last group of filters works on segmentation (S) (Pfeifer and Mandlburger 2008).
First, the data are separated into segments, which represent a homogenous type of objects,
and next these segments are clustered into a few main groups of objects according to their
geometry. Examples are proposed by Sithole (2005) and Lu et al. (2009).

From each group at least one available implementation is tested.
The article is organized as follows: Section 2 describes the test areas and data used for

the analyses. In this section we also described the ground extractors chosen for filtering
and the methods used for result evaluation. The results are presented in Section 3. The
discussion and conclusion with respect to the available literature are described in Sections
4 and 5.

2. Data and methods

2.1. Test sites

Eight test sites were selected in the Małopolska province as research areas (Figure 1),
Małopolska being located in the southern part of Poland. This region is characterized by
various types of land cover and terrain slope (Kondracki 1994). The northern part is
dominated by lowlands with the Vistula river valley. In the southern part are the Tatry
Mountains, which are part of the Carpathian Mountains. The research areas were char-
acterized by their land cover; in Table 1 we introduce division of the vegetation into herbs,
bushes, and trees. The density of the forests (Table 1) is a sorted order (single trees, low,
medium, dense, and very dense) based on the visual appearance of the point cloud.

The first test site is Brzeszcze (0.1024 km2), located in the western part of the
Małopolska. This terrain represents a valley of flat terrain (Table 1), which is covered
by various types of vegetation, forest, and grassland. The second test area is Dąbrowica
(0.1764 km2), which constitutes fields and dense, natural and deciduous forest located on
a small hill. The third research area is Grobelczyk (0.1764 km2). This terrain constitutes a
part of the Niepołomice Forest, a protected forest complex in the Sandomierz Basin. This
test site is characterized by very dense deciduous forest on a flat area dominated by oak,
alder, hornbeam, and birch species. The subsequent terrains are Jawiszowice
(0.0676 km2), with a village on a terrain of low slope (Table 1) with various types of
buildings and trees, and Krokiew (0.0576 km2), which represents a mountainside with
steep slope (Table 1), covered by coniferous forest dominated by spruce species. The last
three test areas are Sienna (0.1024 km2), Szczurowa (0.0506 km2), and Zakopane
(0.0441 km2), constituting the following types of terrain: a mountainous area with valleys
covered by natural deciduous forest; a village on a flat area with homogenous types of
building; and a village in the mountains.

2.2. The data

The ALS data used in this research were gathered using Riegl LMS-Q680i and LMS-
Q560 laser scanners with rotation mirrors (Riegl 2013). The data were collected over
several time periods: in August 2007 for the two test areas (Table 1), and for all other six
areas from June to July 2010 (Table 1). The vertical accuracy of the data has been
evaluated using GPS ground measurement, indicating an accuracy root mean square
(RMS) between 0.1 m and 0.2 m; for every test area several measurement were made.
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The last echo density of the data ranged between 3 and 15 points m−2 (Table 1). The
density of the data was estimated by dividing the number of points representing the last
reflection per unit area.

2.3. Tested ground extractors

In this article, approaches based on mathematical morphology, PD, robust surface inter-
polation, and S were compared. In our comparison, as was mentioned before, we focused
on the evaluation of algorithms that are implemented in available software. The reason is
that we would like to verify only those algorithms that, without implementation of the
algorithm, are available for the user. Therefore, below we attach a short description of
both: the algorithm and the parameters as well as the software applications.
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Figure 1. Area of research with the location of test sites: I – Brzeszcze; II – Jawiszowice; III –
Grobelczyk; IV – Szczurowa; V – Jawiszowice; VI – Sienna; VII – Zakopane; VIII – Krokiew.
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2.3.1. Morphological filters

From the group of morphological filters, the progressive morphological filter (PMF)
proposed by Zhang et al. (2003) and the PF approaches by Mongus and Žalik (2012)
were evaluated. Using a gradually increasing window size the PMF detects various sizes
of off-terrain objects step by step, depending on the elevation difference threshold. The
algorithm of Zhang et al. (2003) as implemented in the commercial software LIS of
Laserdata GmbH was used (Wichmann 2011).

The ground extraction in LIS works on a raster based on the point cloud Z coordinates
(Wichmann 2011). A 0.5 m spatial resolution was selected, because of point cloud density.
The three most important parameters were tested: the initial threshold dh0, which repre-
sents the initial elevation difference threshold; the terrain/slope s, which represents the
maximum slope of the terrain taken into account; and the increasing window size wk,
which can be either linear or exponential (Table 2) (Wichmann 2012). The window size
(wk) was selected to remove the largest building on the tested terrain; in a linear increase
this was selected as wk = 2bk + 1, where k is the number of iterations and b is the radius;
in an exponential increase this was given by wk = 2bk + 1 (Wichmann 2012). In our test
sites, the width of the largest building is 20 m, namely the largest kernel size that had to
be applied was 41 pixels (20.5 m) for a linearly increasing window size and 65 pixels
(32.5 m) in an exponential mode. For the parameters applied and the result ID (identifica-
tion number) please refer to Table 2. The last step was the point cloud data classification
based on the generated raster with ground elevation.

The second algorithm evaluated is the PF. This method uses thin plate spline (TPS)
interpolation to avoid misclassification caused by the difference in altitude of the terrain
(Mongus and Žalik 2012). The generated surface is iterated towards the ground for this
purpose, where top-hat scale space is obtained by gradually decreasing the window size.
This algorithm is implemented in the commercial gLiDAR – Advanced Modeler software
tool.

The first step in gLiDAR is selection of the DTM properties, which are the resolution
of the generated DTM, interpolation resolution, and the low outlier size. In this step we
used the default properties, because the surface resolution was equal to the resolution
assumed in this study, and other default parameters were sufficient. The next step is
ground filtering, where only the size of the largest object to be removed from the ground
can be specified (20 m, see above). After ground filtering the user can improve the
achieved result using three correction parameters: minimal ground response minres, max-
imal ground response maxres, and the factor F (Table 2). These three parameters deter-
mine, respectively: the height difference between DTM and the point that will be assigned
as ground; the height threshold above which the points will be classified as off-terrain;
and the ratio between the size of the off-terrain features and their responses obtained in the
top-hat scale space.

2.3.2. PD filters

From the PD filter the implementation (LAStools 2013) was chosen. Using a triangular
irregular network (TIN) a surface is generated from below to the laser points. For all data
the statistics describing the distance to the TIN facets are collected. Based on the statistics
calculated, seed points are selected and using chosen threshold values the surface is
iteratively densified (Axelsson 2000). The algorithm in the LAStools (LASground)
works on bulged triangles.
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For terrain point extraction, two predefined sets of parameters describing the terrain
characteristics are available: the terrain type tt (Table 2) provides information about the
terrain to be classified. This means that before classification a visual inspection of the data
is necessary. Generally, for forested areas fh a 5 m step size should be applied, for towns tf
the step size increases to 10 m, for cities cw to 25 m, and for large cities m with very large
buildings the step size increases to 50 m (LAStools 2013). The second parameter g
(Table 2) applied in the classification decides on the ground surface smoothness. Here,
four different granularities can be applied: default d; fine f; extra-fine ef; and ultra-fine uf.
For all classified data sets, horizontal and vertical units in metres were specified. The
results were described with an ID number (Table 2).

2.3.3. Surface interpolation filters

In this study, we used the hierarchic robust interpolation approach by Kraus and Pfeifer
(1998) as implemented in the commercial SCOP++ software package (Trimble 2012). In
this strategy, first an averaging surface through all laser points is computed. Next, based
on the distance between each point in the data set and the surface a weight parameter is
determined; points below the averaging surface obtain a higher weight and, thus, have
more influence on the run of the surface in the subsequent iteration. The described
approach is, furthermore, embedded in a hierarchical coarse-to-fine framework (Pfeifer,
Stadler, and Briese 2001). Based on the final DTM surface, the point cloud is classified
into terrain and different classes of off-terrain points by analysing the vertical distances
between the laser points and the DTM.

In the SB filter in SCOP++ it is possible to extract bare-ground on the basis of several
default hierarchic robust filtering hrf strategies, respectively: Lidar Default ld, Lidar DTM
Default ldtmd, Lidar Default Strong lds, Lidar Default Weak ldw, Lidar Feat Default lfd,
Lidar Feat DTM Default lfdtmd, and Lidar Simple Filter lsf (Table 2). In all of these
strategies a sequence of steps is applied, which, together with the corresponding para-
meters of the respective steps, decide on the classification results (SCOP++ 2010). To
evaluate the influence of pixel size, with respect to the data density, for the filtering
process, the strategies were applied using a 0.5 m and a 1 m grid resolution gres (Table 2).
We also specified mean accuracy macc parameter as the filter value of the bulk data,
computation c, which allows a decision to be made between a faster and more extensive
computation, and filtering f parameter, which builds a weight function of filter steps and
the filter values of the bulk data of the filter (SCOP++ 2010). For the results ID and the
individual parameters threshold, please refer to Table 2.

2.3.4. S filters

From this filtering concept the S algorithm available in LIS was tested (Wichmann 2012).
The algorithm works with plane fitting. In each point a best-fitting plane is determined
from the neighbouring points, which is used for segmentation. The classification is
performed for the entire segment based on its properties using threshold values. In this
S strategy it is possible to use several parameters for plane fitting, which influence the
ground segment detection.

Two parameters of the S were tested: the increasing window size wk and the maximum
distance of a point to the model plane maxd (Wichmann 2012) (Table 2). The kernel size
in the wk parameter was selected the same as in PMF; other parameters were set using the
default values. The last step was to differentiate the generated segments into terrain and
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off-terrain objects. This was achieved in the Classify Segments module. Here two possi-
bilities, maxDZg determining the maximum difference between ground and a point to be
classified as ground (Wichmann 2012), were tested. The result ID and the parameters
threshold are listed in Table 2.

2.4. Evaluation methods

2.4.1. Reference data generation through manual classification

Reference data is necessary in the verification of the filtering correctness. A frequently
used technique to generate a point cloud reference data is to classify it manually (Kobler
et al. 2007; Sithole and Vosselman 2004; Waldhauser et al. 2014).

In this research, DTMaster (from Trimble) was chosen for manual classification. We
generated reference data for transects across each test site. To achieve representative data,
we selected areas representing the heterogeneity of the terrain, i.e. a variety of objects.
The transect width in the individual test site depends on the point cloud density and the
terrain complexity; for more complex terrains with higher point density we selected
smaller areas. The length and width of the transect areas for each individual test site
were as follows: Brzeszcze (length 320 m, width 70 m); Dąbrowica (420 m, 78 m);
Grobelczyk (590 m, 85 m); Jawiszowice (260 m, 48 m); Krokiew (340 m, 33 m); Sienna
(450 m, 33 m); Szczurowa (225 m, 54 m); and Zakopane (535 m, 38 m).

To verify the correctness of manual classification the data for the Sienna test site were
classified two times by two different experienced participants. The differences in the
classification did not exceed 0.5% of all analysed points in this area. The ground point
ratio for all test areas is represented in Table 1. The highest number of ground points
(Reference GP) was recorded in case of three data sets: Jawiszowice, Szczurowa, and
Zakopane, representing built-up areas. In the Grobelczyk area the ground points were
represented by 4.99% (Table 1), which is because of the land cover of this terrain and also
the data collection time. This area is covered by very dense, deciduous forest. The data
were collected in June in a leaf-on condition, which results in low ground point ratio.

2.4.2. Qualitative evaluation

Qualitative verification of ground extraction is made on the basis of a visual inspection of
the results (Meng, Currit, and Zhao 2010). These types of analyses allow determining the
general type of objects, and the spatial distribution of misclassifications. Basically, in this
analysis it is verified how the algorithm works in building and vegetation filtration,
because these two types of features represent the biggest part of the objects on the terrain.
The method for visual quality evaluation by visual examination is detailed in Sithole and
Vosselman (2004). Below we point out the issues specific to our test areas.

The qualitative analysis is performed for land-cover classes. It is based on the derived
models of the surface.

We verified whether the algorithm removes all buildings, or if not, on which type of
buildings and on which type of terrain it fails to do so. Moreover, we analysed the local
neighbourhood of the object, because this could have an influence on any misclassifica-
tion. For vegetation the height of the incorrectly classified vegetation was assessed, their
area, and density in comparison to the ground points on this terrain. As in building
analysis it should also be related to the terrain type and the immediate local neighbour-
hood. The important issues in our test sites were also terrain discontinuities, especially in
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built-up and mountainous areas, because reducing these discontinuities leads to a loss of
information and a misrepresentation of the terrain.

To compare the filtering methods, we suggest a quantification of the results. Our
qualitative evaluation is applied to analyse spatial distribution of non-removed objects or a
part of objects, e.g. building, tree, sharp ridges. Because there are a few types of wrongly
filtered objects, the evaluations have to be carried out separately.

According to our methodology presented in Figure 2, first the data are divided into
areas, representing different types of objects. We have done this on a basis of
digitization of buildings and vegetated areas supported by information from the
point cloud, DTMs, digital surface models (DSMs), and ortophotomap (Figure 2).
The example of manually refined vegetation and building boundaries for Szczurowa
test site is represented in Figure 3. The same procedure was applied to delineate
breaklines on the terrain. The breaklines were delineated on a basis of DTMs gener-
ated from the reference data (Reference GP) as well as from automatic classification
(Automatic GP). To evaluate the breakline error, the lengths of the generated break-
lines for the reference data (DTMref breaklines length) and for automatically classified
data (DTMauto breaklines length) were compared (Figure 2).

Point cloud

Building foot print and vegetation

boundary digitization

Automatic (GP) and manual

(GP)  ground filtering

Reference GP

DTMref
Building

outlines

Vegetation

outlines

Automatic GP

Surface interpolation

DTMauto

Subtraction DSM-DTMref

nDSMref

Subtraction within building 

outlines

Breaklines digitization

DTMauto 

breaklines 

length

DTMref 

breaklines 

length

DSM

Surface interpolation

Subtraction withinvegetation 

outlines

DTMdiff 

<–0.2 m

Over-smoothing

error

Subtraction DTMauto-DTMref

DTMdiff

DTMdiff 

<2 m

Building

error

DTMdiff 

>0.2 m

Vegetation

error

Herbs

error

Bushes

error

Trees

error

nDSMref

≥5 m

nDSMref

<5 m

nDSMref

<0.5 m

Subtraction DTMref breaklines –

DTMauto breaklines

Breaklines error

Figure 2. The qualitative analyses workflow. For abbreviations please refer to Section 2.4.2.
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Next we evaluated height difference models (DTMdiff) between the surfaces gener-
ated from tested software applications (DTMauto) and from the reference data (DTMref)
(Figure 2). The DTMdiff models (Figure 3) were separately subtracted within the build-
ings and vegetation outlines. To detect the errors caused by non-filtered buildings from the
ground a height assumption was applied. It was established that if the height differences
(DTMdiff) inside the buildings’ outlines are greater than 2 m, the pixels would be
assigned as a building errors. The 2 m assumption was applied on the basis of several
tests and a visual inspection of the results. Because the buildings should be higher than
2 m we assumed that this threshold is sufficiently good to verify whether some buildings
were wrongly included in the ground class. The height threshold was introduced to avoid
other small errors caused not by wrongly filtered buildings, but by differences in the
interpolated DTM surface.

Discrimination in height was also applied in the outlines of vegetated areas. First a
reference normalized DSM (nDSMref) representing our vegetation division for herbs, bushes,
and trees was evaluated (Figure 2) – (definition in Section 2.1 and in Table 1). Second, the
nDSMref surface was subtracted to the vegetation boundary (Figure 3). Based on the
delineated boundaries the DTMdiff from all of the results were evaluated separately. This
allowed the evaluation of the scale of wrongly filtered vegetation from the ground. To
eliminate the influence of surface interpolation, a 0.2 m buffer was applied; it was assumed
that non-filtered vegetation (vegetation error) is represented by differences higher than 0.2 m.
The threshold was chosen on a basis of tests and our knowledge on the data.

Additionally, the extent of terrain over-smoothing was verified in the vegetation
outlines. Here, to count the areas that were over-smoothed, the same 0.2 m buffer was

20° 38′ 44″ E

20° 38′ 44″ E

20° 38′ 40″ E

20° 38′ 40″ E

20° 38′ 36″ E

20° 38′ 36″ E

50° 7′ 15″ N
50° 7′ 15″ N

50° 7′ 14″ N

50° 7′ 14″ N

Buildings

Vegetation

Height above

sea level (m)

for vegetation

nDSMref

High : 243

Low : 218

(b)  (c) 

  

  

m
0 25

DTMdiff

(DTMauto–DTMref) 

(m)

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

(d)

(e)

(a)

Figure 3. Example for the qualitative evaluation in the Szczurowa test site: (a) shading for
reference DTM (DTMref), (b) an ortophotomap, (c) shading for reference DTM and difference
model between DSM and DTMref (nDSMref), (d) shading for DTM generated on the basis of
automatic classification (DTMauto), and (e) the difference model between DTMref and DTMauto
(DTMdiff). The location of the test area is shown in Figure 1 (IV Szczurowa).
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applied. The pixels with a height difference smaller than −0.2 m were included as over-
smoothed areas (Figure 2).

2.4.3. Quantitative evaluation

In a quantitative analysis the classification is verified numerically using three basic
parameters: Type I, Type II, and Total errors (Sithole and Vosselman 2003). The first
parameter represents the percentage of terrain points that are classified as off-terrain. The
parameter is evaluated on the basis of Equation (1), where a is the count of terrain points
that have been correctly identified as terrain and b is the count of terrain points that have
been incorrectly identified as off-terrain.

Type I error ¼ b= aþbð Þ: (1)

The second parameter counts the percentage of points that represent off-terrain, but are
classified as terrain. In Equation (2), c is the count of off-terrain points that have been
incorrectly identified as terrain and d is the count of off-terrain that has been correctly
identified as off-terrain.

Type II error ¼ c= cþdð Þ: (2)

The third parameter represents the total amount of wrongly classified data and is
calculated based on Equation (3), where e is the total number of points tested.

Total error ¼ bþcð Þ=e: (3)

The quantitative analysis is performed using the spatial co-location assumption. It is
assumed that if the X, Y, Z coordinates of two compared points from two different data sets
are equal or if their difference is very close to zero, then their classifications can be
compared.

3. Experimental results

3.1. Qualitative assessment

All classified data sets were compared with the manual reference data qualitatively
(Table 3). To simplify and shorten the description we treated bushes and trees together.
We also omitted herbs, because no misclassification occurred in this class. For explanation
of the abbreviations used in this chapter, please refer to Table 2 and Section 2.3.

Generally, in flat, vegetated areas (Brzeszcze, Dąbrowica and Grobelczyk) the best
results were achieved on the basis of PMF. In the Brzeszcze test site the bushes and trees
error in seven results from PMF counts less than 2 m2 (Figure 4(a)) and the over-
smoothing error in all results (without PMF 1) counts less than 220 m2 (Figure 4(b)).
They were not cumulated, which means that there was no large over-smoothed area but
single pixels spread out through the entire vegetated area. As seen in Figure 4(c) in the PF
filter a boundary effect in the vegetation class occurs. The boundary effect means wrongly
classified points on the border of the data set, which occurs due to the lack of data for
computation outside the boundary. Also in Dąbrowica the best results were achieved for
PMF. The vegetation error was counted between 513 and 550 m2 and was concentrated in
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one area with sparse ground data. The lowest vegetation error in Dąbrowica (fields, dense
forest, hills) was achieved on a basis of PD algorithm, in 12 of 16 results; the area of
wrongly filtered vegetation was smaller than 32 m2. However, the over-smoothing error
counted between 290 and 1069 m2 and it was grouped in a few places representing more
rough terrain. In the Grobelczyk test area (dense deciduous forest) in 13 results from PMF
there was no over-smoothing error, the vegetation error was between 619 and 1621 m2

and it was grouped in three places covered by very dense forest where the shortest
distance between two nearest points, assigned as the ground in the reference data, was
larger than 15 m. Also in the PD algorithm in the majority of the results there was no
vegetation error. The over-smoothing error here was relatively low and ranged between
135 and 603 m2; however, it was spread out within the test site in several 30–50 m2 areas.
The highest vegetation error was observed on the basis of the PF algorithm; in every result
it was higher than 4000 m2. Such high error in the PF algorithm was caused by the
boundary effect of the data.

In flat, built-up areas almost all of the compared algorithms achieve good results. In
the Jawiszowice test site all the buildings were correctly filtered on the basis of all results
from the PMF and S algorithms (Table 3). The highest number of non-filtered buildings
was observed in SB 1, 4, 5 (Figure 4(d)) and PF 16 where three of four buildings were
assigned as terrain. In the Szczurowa test site the results were similar; moreover, the PMF
and S algorithms correctly filtered all the buildings. The worst results were observed in 6
and 13 results from SB in the Szczurowa test site where seven of 14 buildings were
assigned into the ground class.

Highly accurate ground filtering results in mountainous vegetated areas are obtained
based on PMF, PD, and SB algorithms. Two exceptions are the 5 and 12 results from SB.

PMF (2) PMF (2) PF (1) SB (1)

(d)
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Smoothness error

Building error

Correct ground

Reference data outline

(g)(f)(e)
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Figure 4. The qualitative results for analysed test sites, where: (a)–(c) Brzeszcze test site; (d)
Jawiszowice test site; (e) Sienna test site; (f) Krokiew test site; (g) Zakopane test site; (i) shading for
reference DTM; and (ii) shading for DTM generated on the basis of automatic classification.
Abbreviations in the figure represent the analysed algorithm, and in the bracket the number of the
results. The location of each test area is shown in Figure 1.
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In every applied algorithm it was possible to extract the ground on steep slope covered by
deciduous forest at the Sienna test site. The smallest over-smoothing, as in previous test
sites, was achieved based on PMF. In the analysed mountainous test area the S algorithm
provides the worst results, which occur in one large area (Figure 4(e)). The vegetation
error inside this area is higher than 3103 m2, which constitutes almost 34% of the wrongly
filtered area inside the vegetation outline. In the Krokiew test site the results are similar to
the previous area. The vegetation error on the basis of PMF, PD, and SB algorithms was
small. Because this test site represents a rough steep slope with a uniform gradient, the
over-smoothing, in PMF, PD, and PF, was spread out into the whole area as small (a few
square metres) blobs; the example is shown in Figure 4(f).

The SB (not including results from 5 and 12) and also PD algorithms give the best
results in mountainous agricultural areas with buildings. In that kind of terrain more
breaklines occur than in natural environment areas, so during the verification of the
filtering quality this parameter should be included in the analyses. In Table 3 we see
that the largest length of the removed breaklines was observed on the basis of PMF and
the lowest was achieved in SB and S. However, the S failed in vegetation and building
filtering. In Table 3 and Figure 4 (g) it is shown that five out of six buildings were
assigned as ground. Moreover, the bushes and trees error constitutes almost 39% of the
area inside the vegetation outlines. Good results were also achieved in PF. In the first
result (PF 1) the algorithm correctly filtered all the buildings; however, the over-smooth-
ing is larger here than in the 2, 3 and 4 results, the reason being the parameter thresholds.

The qualitative results show that most of the algorithms do not provide good results
for the classification of dense vegetation or objects on high slope areas, especially when
there are few or hardly any ground points under the tree canopy. Those objects are
classified as ground or are removed from the ground class together with the terrain points.
In such cases all the filter algorithms work too local. The first variant was observed in
results where very liberal thresholds were selected and the second when rigorous para-
meters were applied. Obviously, the vegetation easiest to remove is in flat areas applying a
rigorous threshold.

In build-up areas the applied algorithms give good results in the Szczurowa test site
because the buildings here have a simple shape and are small. Some difficulties occur in
places where a tree canopy is in the vicinity of buildings (SB 6, 13). This situation was
also observed in high slope areas in the Zakopane test site, especially in places where
there is a small distance between the roof and the ground (SB 5, S 1–16). Figure 5 shows
that some algorithms have difficulties with flat roof filtering (PD 1–4); however, on
increasing the step size to 10 m the building is correctly removed from the ground.

The qualitative analysis shows also the threshold-parameter influence on breaklines,
discontinuity, and roughness quality, especially in mountainous areas. In most of the
analysed algorithms stricter thresholds caused removal of breaklines. The surface gener-
ated on the basis of ground class was also smoother and did not contain all the details on
the terrain. This was observed in all the results from the S in Krokiew and Sienna and in
the 9–16 results in the PD algorithm. The low and outlier points do not have a large
influence on classification accuracy, and all tested algorithms remove these points from
the ground class mostly correctly.

The qualitative results were also analysed with respect to the parameters applied. The
results show that in the PMF the most important is a terrain slope s; other parameters
hardly have an influence. Lower terrain slope (in our study it was 0.05) allows the
majority of off-terrain objects to be removed from the ground. Increase in the s parameter
threshold results in a higher number of off-terrain objects in the ground class. However, in
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the tested mountainous areas, a low s parameter has influence on removing parts of the
terrain, especially in high slope areas and sharp edges (see also Kobler et al. 2007). In the
PF algorithm the results depend on the specified kernel size. If it is too small, the
buildings will not be correctly filtered from the ground. The results depend also on the
minimum residual applied. To achieve good results in flat areas a lower minres can be
specified, but in mountainous areas this parameter should be increased to reduce the over-
smoothing. The maxres parameter is also important, especially in mountainous areas,
because the usage of too low maxres constitutes a rejection of points, which could
represent the ground. In the PD algorithm the best results were observed on the basis of
strategies with a 10 m step size. Smaller step size constitutes a smaller number of correctly
filtered objects from the ground, although the ground class is rough. Larger step size
removes a larger number of objects from the ground, but also increases the over-smooth-
ing. The granularity parameter has little influence on the classification. In the SB algo-
rithm the best results were observed using lds (Lidar Default Strong) and ldtmd (Lidar
DTM Default). We did not observe a larger difference between the results for different
grid resolutions; however, the reason could be only two applied grid resolutions. From the
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Figure 5. Shaded relief representing the filtration results for PD algorithm; fh, tf, cw, and m
represent the step size, and d, f, ef, and uf represent the granularities. For abbreviations’ descriptions
please refer to Section 2.3.2.
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LIS S algorithm all the applied parameter thresholds give good results only in the flat,
built-up parts of the Szczurowa test site. The most problematic, for this algorithm, are
vegetated areas, because it is difficult to define segments for spread-out data representing
a forest compared with compact buildings or bare-ground areas.

3.2. Quantitative assessment

The results show that in each test site the lowest Type I error was achieved using the PMF
and PF algorithms (Table 4). According to the statistics it is possible to detect that the
lowest Type II error was achieved in four test areas using S in LIS and in other test sites
using PF, PD, and SB algorithms. The lowest Total error was observed in almost every
test site based on the PMF with different threshold parameters. Only in the Zakopane and
Jawiszowice test sites the lowest total error results were obtained using the PF algorithm.
In the Zakopane (mountain, built-up) low Total error was also obtained using SB, being
respectively, results 2, 9, 6, and 13.

Nevertheless, the results show also that the lowest Type I error is correlated with the
higher Type II error – see the third and fourth columns in Table 4. The consequence of this
is that the surface generated based on the smallest Type I error will contain a number of
off-terrain objects. Similarly, the results also show that the surface generated on the basis
of the lowest Type II error will be smoother due to a higher Type I error – see the seventh
and eighth columns in Table 4.

Furthermore, the results presenting the smallest Type I error and Type II error in Table 4
are not synonymous with the best ground classification. The explanation for this can be
found in Figure 6, where three results for the Brzeszcze and Zakopane test sites were
compared. As is shown in the figure in the lowest Type I error (Figures 6(a.i) and (b.i)) a
number of off-terrain objects are visible on the ground. In the images with the lowest Type
II error (Figures 6(a.iii) and (b.iii)) too many ground points are removed from the ground
class.

To verify the algorithm flexibility for different terrain types we also evaluated Total
average error for all of the test areas. Total average error was evaluated as an average of
the lowest Total error in each algorithm for all test sites. The results show that PF, PMF,
and SB give misclassification lower than 3%, and on a basis of PD and S this error is
higher than 5%.

3.3. Qualitative and quantitative assessment

Based on qualitative and quantitative analyses, decisions were made with regard to which
algorithm gives the best results with respect to the quantitative and visual verifications. It
was assumed that the best algorithms (and their parameters) were those that had quanti-
tative results smaller than 1% together with high-quality qualitative results. For some test
sites a 1% assumption was not possible because the smallest errors were higher than this
predefined value. The selected algorithms and their parameters are in the last four columns
in Table 4.

It was observed that in mountainous, forested, and built-up areas the best results were
achieved using the ldtmd (Lidar DTM Default) settings in the SB algorithm. Although the
PF algorithm has the smallest Total error in these areas, the qualitative results are rather
poor, because of the boundary effect. In forested mountainous areas with very few ground
points and in hilly built-up areas the best results were achieved using tf (towns or flats)
parameters settings from the PD algorithm with granularities, respectively, d/f; ef (default/
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fine; extra fine). In other areas the best results were achieved using the PMF with various
parameters.

4. Discussion

Filtering off-terrain points is, according to the qualitative analysis, the easiest for buildings
with simple geometry, then a little difficult for high vegetation, and the most difficult for

Reference

data outline

(a) (i)

(ii)

(iii)
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Figure 6. Ground filtering examples in the Brzeszcze (a) and Zakopane (b) test sites; (i) the lowest
Type I error, (ii) the reference data, and (iii) the lowest Type II error.
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very dense vegetation. This can be seen from Table 3 and how the categories of failures
relate to the land cover. However, this process is more complex, so we cannot state that
filtering of every type of buildings will be easier than for every type of vegetation. Here,
the influence is also the spatial distribution of the objects and the terrain type.

The quantitative analysis shows that mountainous areas (Krokiew, Sienna, and
Zakopane) pose a very big challenge, and filtering above terrain can only be accomplished
by some over-smoothing of the terrain and through breakline removal or by selecting a
more liberal parameters threshold, to reduce the Type I error, and manually improving the
automatic filtering by removing the objects from the ground.

Filtering based on available algorithms, when applied in software, depends on user
knowledge and also the program interface. Out of all the tested software the easiest and
the fastest filtering was possible in LAStools. This software allows data processing with
different parameters using a batch file. In SCOP++ a command line language is also
available, but this is more complex. In gLiDAR in order to apply the algorithm for ground
extraction, the user has only to specify a few parameters. Furthermore it is possible to
verify the results visually during changing the parameters thresholds. The most time
consuming was the classification using LIS software, especially S, because in this method
it was necessary to apply six modules sequentially.

Verification of a ground class extraction with reference data is one of the most
important issues in classification correctness determination (Meng, Currit, and Zhao
2010). As has been described in the article, manual classification is one of the possibilities
to achieve reference data. In the available literature (Baligh, Valadan Zoej, and
Mohammadzadeh 2008; Meng, Currit, and Zhao 2010; Sithole and Vosselman 2003)
this process was also indicated as a good solution for results verification. The other
possibility is a GPS measurement. However, this method can be used only to verify the
correctness of the DTM. This method cannot be applied to verify the correctness of the
filtering process at the point cloud level.

The accuracy of the filtering depends on the terrain complexity (breaklines, buildings,
dense vegetation), point cloud density, seasonality (penetration rate) (Bretar and Chehata
2010), the methods used for ground extraction, and the threshold parameters used in the
applied algorithm. Nevertheless, the results also show that not all the analysed algorithm
applications give a high-quality filtering for all tested land-cover types and terrain slope.
Although the results depend also on the parameter thresholds (Baligh, Valadan Zoej, and
Mohammadzadeh 2008), it is possible however to draw general conclusions in all of the
analysed methods.

The PD ground extraction algorithm gives satisfying results in all research areas.
Furthermore, the positive aspect of this algorithm is its simple software interface.
However, it was observed that compared with the reference data and also other
software package algorithms, the PD based on ground filtering generates a smoother
surface.

The PMF filter in LIS enables one to obtain good ground extraction for all land covers
in flat and low slope areas. Moreover, the ground class is rougher and contains all the
details present on the terrain. Nevertheless, to use a PMF ground algorithm in LIS
software it is necessary to apply a few steps and specify several thresholds, which may
cause difficulties for an inexperienced user.

The PF algorithm in gLiDAR software, in general, gives good results in all analysed
terrain types. However, it generates misclassification on the boundary of the data sets. The
boundary effect can be solved by overlapping of neighbouring data sets; however, if users
do not have at their disposal this data, the errors have to be erased manually.
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Of all the analysed methods the robust interpolation algorithm (SB) in SCOP++
software gives the best results in mountainous areas. The reason for this is the disconti-
nuities on the terrain and breaklines preservation. However, the method fails in very
densely vegetated areas. The tool has a simple interface; the user has only to choose
between the predefined defaults filter strategies. In addition, it is also possible to change
the threshold parameters and to work on user strategies (see Razak et al. 2013, filter for
forested landslide analysis).

The S algorithm in LIS enables correct results in built-up flat areas. However, in
forested and mountainous areas, above all in high slope terrain with dense vegetation, and
a small number of laser scanner reflections from the ground, the applied algorithms fails.
The reason for this is that trees are usually less smooth in texture than buildings and
ground segment distinction in these areas is difficult (Zhang and Whitman 2005).
Moreover, the S method is not simple to apply, and in order to achieve a ground class
from segments it is necessary to apply several steps.

The Type I error and Type II error confirm the conclusion contained in the Sithole and
Vosselman (2004) article: lowering one error type at the cost of an increase in the other.
Additionally, it was observed that the lowest Type I error, from amongst all the analysed
software applications, was achieved based on the PMF. Exceptions are mountainous areas
where the Type I error results were similar or worse with respect to other algorithms.

Based on conducted analyses we state that the verification of the filtering process
should include numerical evaluation (Type I, Type II, and Total error) and also visual
inspection of the extracted ground class. The quantitative results provide information
about the amount of wrongly filtered data, but do not provide an answer about the spatial
distribution of these errors. To accomplish this, we have to look at the data or use
statistical methods that allow estimating the spatial distribution of errors. The quantifica-
tion of the qualitative assessment allows verifying the type of wrongly extracted objects
from the ground, and also checking the height difference between the ground and wrongly
filtered objects. This allows users to assess the influence of the misclassification on the
correctness of the DTM. Moreover, quantitative verification does not have to represent the
impact of the size of the error to the DTM height accuracy. For example, high Type II
error does not necessarily mean that the applied algorithm gives poor results, because this
error could be spread close to the ground surfaces, which does not have large influence on
the terrain elevation accuracy. On the other hand, low Type II error does not always mean
that the terrain class will be correct, because wrongly filtered points may represent part of
building (a roof), which will have an impact on DTM height accuracy.

Our research confirms the influence of seasonality. Additional difficulties in the
ground extraction process occur, especially in forested areas.

Some potential in future methods for ground extraction could be the use of full-
waveform data, because they contain information about the echo width, which can be used
to determine the laser beam ground reflections (Pfeifer and Mandlburger 2008; Mücke,
Hollaus, and Prinz 2010; Lin and Mills 2009).

5. Conclusions

This article presented the differences in bare-ground extraction from ALS data based on
several concepts of filter algorithms, which have an implementation in software.

The method suggested for evaluation of the quality consists of a qualitative part,
which is based on land cover, and assesses the derived models, and a quantitative part,
which works on the point cloud directly.
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The results show that from amongst the compared algorithms there is no single
method that gives the best results for each analysed type of terrain – slope and land
cover. However, it is possible to draw general conclusions with regard to the methods and
applied parameters. In the PD algorithm the user should focus on selecting the step size,
which should fit the terrain type. However, the user should note that with an increase of
step size, the ground surface is over-smoothed. In the PF algorithm the size of the largest
buildings must be considered, and the correction of the parameters needs user input. For
the LIS Progressive Morphological Filter algorithm, the user has to specify the maximum
window size, and focus on the initial threshold, and the slope of the terrain for which the
filter will be applied. The SB algorithm from SCOP++ enables ground filtering on a
predefined mode level; the user need only choose the appropriate strategy. Additionally,
an improvement of the parameter settings is also possible.

Summarizing filtering using existing tools still requires knowledge of the area and an
awareness of the application for the DTM in order to minimize the relevant errors.
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