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Abstract This paper addresses moderately large vibrations of immovably supported three-layer composite
beams. The layers of these structural members are elastically bonded, and as such, subjected to interlayer
slip when excited. To capture the moderately large response, in the structural model a nonlinear axial strain-
displacement relation is implemented. The Euler—Bernoulli kinematic assumptions are applied layerwise,
and a linear interlaminar slip law is utilized. Accuracy and efficiency of the resulting nonlinear beam theory
are validated by selective comparative plane stress finite element calculations. The outcomes of application
examples demonstrate the grave effect of interlayer slip on the geometrically nonlinear dynamic response
characteristic of layered beams.

1 Introduction

In various engineering applications, beams, plates and shells composed of several layers are used to optimize
the weight and load-bearing capacity of structures. The layers of composite members are bonded by, for
instance, glue, bolts, or nails. In those cases where the flexibility of the fastener is relatively large, a rigid bond
cannot be achieved and the layers slip against each other when loaded. The structural behavior becomes more
complex than that of homogeneous members, and thus, classical theories of analysis cannot be used anymore
for response analysis.

This has been recognized a long time ago, and consequently, in the last decades various studies were devoted
to the static analysis of beams and plates with interlayer slip subjected to lateral loading. The results of some
early studies are summarized in the contributions of Pischl [25] and Goodman and Popov [14]. In Appendix B
of Eurocode 5 [8], the y-method [23], which is a simplified method to analyze the static response of layered
structures with partial interaction, is included. The exact static analysis of composite beams with partial layer
interaction was presented in Girhammar and Pan [10]. Static buckling of composite beams and beam columns
was more recently treated, for example, in [6,12,21,28]. In more sophisticated approaches, an inelastic relation
between interlaminar shear traction and slip on the static deflection is considered. For instance, [24] describes
an inelastic force-based finite element analysis of two-layer beams applying the assumptions of Timoshenko
beam theory to each layer separately, and a higher-order beam theory for the inelastic analysis of composite
beams with partial interaction can be found in [29]. An extension of the latter theory to geometric nonlinear
beams was presented in [30]. Previously, in [26] a geometric nonlinear model for composite beams with partial
interaction was introduced. Hozjan et al. [18] analyzed the geometrically and physically nonlinear static
response of planar structures with partial interaction. Recently, in [2] the governing equations for predicting
the moderately large static response of a fully restrained pinned-pinned beam were presented.
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The dynamic behavior of composite beams with interlayer slip has been studied less frequently. In the
pioneering paper of Girhammar and Pan [11], lateral vibrations of layered beams with interlayer slip were
analyzed. Later, the same group provided an extension and generalization of this theory for the exact dynamic
analysis of such structural members [13]. Adam et al. [3] developed an accelerated modal series solution of
vibrations of flexibly bonded layered beams. Piezoelectric and thermo-piezoelectric vibrations of beams with
interlayer slip were studied in [16,17]. Challamel [5] treated lateral torsional vibrations of composite beams
with partial interaction. The random dynamic response of an uncertain compound bridge subjected to moving
loads was analyzed in [4]. Recently, Di Lorenzo et al. [22] presented an efficient procedure for the computation
of lateral vibrations of discontinuous layered elastically bonded and non-classically supported beams.

A moderately large response in the presence of immovably supports causes nonlinear axial strains, i.e.,
the beam response becomes geometric nonlinear. In various studies, the influence of the membrane stress
due to stretching of the central fiber on the dynamic response of homogeneous (e.g., [9,31]) and layered
beams (e.g., [15,20]) has been considered. However, to the best knowledge of the authors, moderately large
vibrations of beams with interlayer slip have not been analyzed yet. To fill this gap, in this contribution a
theory for the analysis of the dynamic flexural response of composite beams with elastically bonded layers is
presented, whose supports are rigidly held apart. In this theory, nonlinear axial strain-displacement relations
are considered, which originate from moderately large vibrations of the member with horizontally restrained
supports. In a common assumption, for each layer, the Euler—Bernoulli assumptions are assigned separately.
To keep the derivations simple and clear, a three-layer composite beam with symmetrically disposed layers is
considered. However, it should be noted that the proposed theory can be extended to beams with an arbitrary
number of asymmetrically disposed layers.

The following paper is structured as follows. At first, the governing kinematic equations and their relation
to the layerwise cross-sectional resultants of a three-layer composite beam are established. Conservation of
momentum, in combination with the cross-sectional resultants expressed in terms of the kinematic variables,
yields a set of coupled geometrically nonlinear equations of motion. Corresponding boundary conditions for
various horizontally restrained beam ends are formulated. The proposed solution procedure is based on a
modal expansion of the lateral deflection into the first few mode shapes of the corresponding linear beam. In
an illustrative example, the transient response of a soft-hinged immovably supported member to a half-wave
sinusoidally distributed time harmonic excitation is analyzed. In order to verify the proposed beam theory, the
derived response is compared to the outcomes of an elaborate plane stress finite element analysis. The second
example studies the nonlinear resonance of a beam with partial interaction, to show the effect of different
load amplitudes and varying interlaminar stiffness on the amplitude frequency response of various kinematic
variables and stress resultants.

2 Basic equations

A single-span beam of length / in principal bending about the out of plane (y-)axis, composed of three elastically
bonded layers with constant rectangular cross section along the central beam (x-)axis, is considered, as for
instance shown in Fig. 1. The geometry and material parameters of the external layers are the same. That is,

hi=h3, Ay=A3, E1=E3, pr=p3, EA|=EA3, EJ1 =EJ3 (1)

with /; denoting the thickness of the ith layer, A; is the ith layer cross-sectional area, E; the ith layer Young’s
modulus, p; the ith layer density, E A; the ith layer extensional stiffness, and E J; the ith layer bending stiffness.
The subscript i = 1 refers to quantities of the top layer, i = 2 to the central layer, and i = 3 to the bottom
layer. A time-varying distributed lateral load g (x, t) excites the structural member to flexural vibrations.

Since the bond between the layers is flexible, the layers displace against each other when the beam is
deflected. This relative displacement between the top layer and the central layer, Au >, and the central layer
and the bottom layer, Aup3, is referred to as interlayer slip. Assuming that the layers are rigid in shear,
Euler—Bernoulli theory is applied to each layer separately. This yields the lateral deflection w; and horizontal
displacement u; at distance z; from the neutral axis of the ith layer as [16]

wi=w, u=u —zw, i=1273 )

with (.) , indicating partial differentiation with respect to x, and uEO) the ith axial displacement at z; = 0
50) gO)’ in terms of the central axial

(see Fig. 2). Expressing the axial displacements of the outer layers, u, ~ and u
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Fig. 2 Deformed three-layer beam element at x and at time ¢ (modified from [16])

displacement ug)), cross-sectional rotation w , and the interlayer slips Au12 and Au»3, leads to [16]

uio) = u§°’ +dwy — Auyz, ugo) = uéo) —dw x + Aups. 3)

In these relations, d is the distance between the central axis and the neutral axis of the top/bottom layer, as

shown in Fig. 2. In case of rectangular outer layers d = (h1 + h2)/2.
Moderately large lateral vibrations in the presence of immovable supports strain the central axis, and thus,

the axial strain-displacement relation becomes nonlinear (see e.g., [32]),

e =u§?£+%w?x, i=1,2,3. 4)
The longitudinal strain at any fiber of the beam is therefore
Swh —ziwae,  i=1,2,3 (5)

o 1
€ =€ —ZiWyy =U; + >

Assuming a constant slip modulus K, which is the same for both interfaces, the interlaminar shear traction
ts12 (t523) is linearly related to the interlayer slip Au 2 (Auz3), and in combination with the kinematic relations

of Eq. (3) it follows that

tsio = KAupp = K (u;O) — I/t(lo) +dw,x>, tso3 = KAuyz = K (ugo) — M%O) +dw,x> . (6)
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Fig. 3 Free-body diagram of a deformed infinitesimal three-layer beam element at time ¢. First-order (in red) and second-order
(in blue) internal forces (color figure online)

Application of Hooke’s law delivers the relation between the layerwise bending moment, M;, and the
layerwise axial force, N;, respectively, and the kinematic quantities (see e.g., [32]),

M; = —EJiw xx , i=1,23, @
B _ u® 1
N; = EAje; = EA; x T 2w ®)

The global stress resultants for the entire cross section (compare with Fig. 3) are composed of the layerwise
quantities according to

M=) Mi—(Ni—N3)d. ©)

3
N=>"N. (10

No external axial load is applied to the beam, and thus, the global axial force N (also referred to as membrane
force) emerges from the nonlinear axial strains due to moderately large deflection w only. The effect of N
on the dynamic response is captured through second-order analysis. That is, conservation of momentum in
axial (x-) and transverse (z-)direction and conservation of angular momentum about the y-axis is applied to
an infinitesimal beam element in its deformed state (shown in Fig. 3), yielding

N, =0, (11)
Tx+q=pi, (12)
M, +Nw,—T=0, (13)

where u = 2p1A| + p2A; denotes the mass per unit length, w is the lateral acceleration, and 7T is the
transverse cross-sectional force. In Eq. (11) the effect of longitudinal inertia and in Eq. (13) the effect of
rotatory inertia have been omitted, thus limiting the analysis to the lower frequency range. Furthermore, in a
common assumption of second-order analysis, the longitudinal force S has been replaced by the axial force N
[27].
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Equation (13) is differentiated with respect to x and subsequently combined with Eq. (12). Considering
that according to Eq. (11) the axial force N is only a function of time ¢ (and not of x) this results in

M x + Nw,xx +q = W, (14)

In x-direction, omitting the longitudinal inertial, layerwise application of conservation of momentum yields
(16]

Nl,x + 512 = 0» (15)
—N3, + 123 =0, (16)
Nox —t512 + 1523 = 0. (17

3 Governing equations
3.1 Equations of motion

The equations of motion of this beam problem are obtained by expressing Egs. (11), (14)—(17) in terms of the
governing kinematic variables, i.e., lateral deflection w, interlayer slips Au 1, and Aus3, and axial displacement

of the central axis ugo).
Inserting the expression for axial force N,

1
N = EA, (ug’i + Ew?x> + EA(Aunsy — Autny), (18)

EA, =2FEA + EA;, (19)

which results from combining Eq. (10) with constitutive relation Eq. (8) and kinematic relation Eq. (3), into
Eq. (11) leads to the first governing equation:

EA, (Mgzx + w,xw,xx> + EAI(Au23,xx - AulZ,xx) =0. (20)

Next, in Eq. (9), M;, N1, and N3 are substituted by Egs. (7) and (8), respectively, and subsequently, variables

uﬁo))c and u goi are replaced by the derivative of Eq. (3) with respect to x. This yields the total bending moment

as
M = —EJoow xx + EA1d (Auinx + Auz ) 1)

with
EJoo = EJo+2d°EA, (22)

denoting the bending stiffness of the rigidly bonded beam, and
EJo=2EJi+EJ (23)

the bending stiffness of the non-composite beam, i.e., K = 0. The second derivative of Eq. (21) with respect
to x inserted into Eq. (14) leads to the second equation of motion,

—EJoow xxxx + EA1d (Au12,xxx + Au23,xxx) + Nwxx +q = pw. (24)

Now, Egs. (15), (16), and (17) are combined with constitutive relations Eqs. (8), (6) and kinematic relations
Eq. (3), with the result

K 0
Ay yx — ——Aupy — ul)

EA 2 — WaWoax = dWw g =0, (25)
1
K 0)
Auzsxx — EA, Auzz + U3 xx F W w x — dw yox =0, (26)
K ©)
(Auzz — Aurz) +uy o+ w w e =0. 27)

EA2 2‘XX
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One of the five coupled nonlinear partial differential equations of motion, Eqgs. (20), (24)—(27) in terms

of the four governing kinematic variables w, Aujp, Aussz, and ugo) are redundant because the sum of the
underlying Eqgs. (15) to (17) yields Eq. (11). Consequently, Egs. (20), (25), and (26) are condensed to two
equations, which are easier to solve. To this end, Eqs. (25) and (26) are summed up with the outcome

K

AMZ?:,xx + AulZ,xx - E_Al (Auzz + Auqn) — 2dw,xxx =0. (28)
Then, Eq. (25) is subtracted from Eq. (26). In the resulting expression, quantity ug’)i . T W xw xy is eliminated

by means of Eq. (20), yielding
Auzs s — Aua xx — 8% (Auzs — Aurz) = 0. (29)

The parameter
’ EA,
S =K—-— (30)
EAEA>

is proportional to K, and hence, can be considered as an indicator of the degree of composite action in
longitudinal direction.

3.2 Boundary conditions

The equations of motion are solved in combination with the actual boundary conditions. Because this mixed
initial-boundary value problem comprises one fourth-order differential equation (Eq. (24)) and three second-
order differential equations (Egs. (20), (28), (29)), for its solution five boundary conditions are to be specified
at each end.

The ends of the considered structural members are immovably supported, i.e., at both ends the horizontal
displacement of the central axis and the lateral deflection are zero,

), =0
wp =0, (32)

and are either hinged supported without shear restraints, hard hinged supported, or clamped. Free-end boundary
conditions are not considered because in moderately large beam vibrations the axial force N is primarily a
result of nonlinear stretching of the central fiber due to longitudinally fully restrained ends. In Egs. (31) and
(32), the subscript b indicates quantities of the boundaries at x = 0 and x = [.

Hinged support without shear restraints
When at a hinged end no shear restraints are applied (i.e., the slip between the layers is not restrained), the
rotations of the layerwise cross section are not restrained, and consequently, the layerwise bending moments
are zero, (M;), = 0,i =1, 2, 3. Eq. (7) facilitates to express this dynamic boundary condition in terms of the
kinematic quantity w as

(w xx)p = 0. (33)

At any hinged end, the overall bending moment is zero, M), = 0. That is, according to Eq. (21) and considering
Eq. (33),

(Aurzx + Aunsy), = 0. (34)
Since the interlayer slip is not constrained at the boundaries, at the beam end the horizontal support reaction,
which corresponds to the axial force N, is fully transferred into the central layer, i.e., (N2);, = N. Inserting
Egs. (8) and (18) into this relation yields the fifth boundary condition,

1
(Au23,x — AulZ,x)h + 2(14&0))6 + Ewi) =0, (35)
b

which couples all kinematic variables of the problem.
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Hard hinged support
At a hard hinged support, an end plate prevents the relative displacement of the layers at the interface, i.e.,

(Au12)p = (Aurz)p = 0. (36)

Thus, the shear tractions at the interfaces (#512);, and (#523); are also zero. The boundary condition M; = 0
can be expressed alternatively as compared with Eq. (21),

—EJoo (wxx), + EA1d (Aurnx + Aunz ), = 0. (37)
Rigidly clamped end
A rigidly clamped end yields the slope of the lateral deflection zero,
(wx)p =0, (38)
and slip at both interfaces is constrained,
(Au2)p = (Auzz)p = 0. (39)

It should be noted here that the coupled differential equations Eqs. (24) and (28) can be condensed to a
single sixth-order equation of motion in terms of deflection w. In this equation (Eq. (55)), the corresponding
boundary conditions and stress resultants in terms of w are derived in Appendix A.

4 Solution procedure

The coupled set of differential equations of motion (Egs. (20), (24), (28), (29)) is solved by expanding the
lateral deflection w(x, t) into the first N M mode shapes of the corresponding linearized beam problem (i.e.,
N =0) (seee.g., [1]),

NM
wx, 1) =Y ()Y, (0). (40)

n=1

The mode shapes ¢, (x) are obtained easily from the homogeneous differential equation of motion of sixth
order in terms of lateral deflection w of the corresponding linear beam problem (i.e., Eq. (55) with N = 0
and g = 0), as described comprehensively in [13]. The modal expansion of w is inserted into the ordinary
differential equations (20) and (28), which are subsequently solved in combination with Eq. (29) and the

corresponding boundary conditions for Auj, Ausz, and u(zo) as afunctionof ¥,,,n =1, ..., NM. With these
variables available, the axial force N is evaluated according to Eq. (18), yielding a nonlinear series in terms
of Y,. For this analysis, any value of 0 < x < [ can be employed because N is constant along the span /.
The required derivatives of these in such a manner obtained series for w, Aujy, Aurz, and N are inserted
into the partial differential equation Eq. (24). According to the rule of Galerkin (see e.g., [32]), this equation
is successively multiplied by ¢,,(x), m = 1,..., NM and integrated over the span /. The orthogonality
conditions of the mode shapes ¢, (x) simplify considerably the resulting N M nonlinear ordinary differential
equations in time ¢ for unknown coordinates Y,,,, m = 1, ..., NM, which are coupled through the effect of the
axial force N. Eventually, these equations are solved by means of standard procedures of numerical analysis.

Subsequently, this procedure of analysis is exemplarily outlined for a hinged beam without shear restraints.
Since the corresponding mode shapes are simply sine waves [3],

ul (o 22\ V2 nmw
¢ﬂ(x)=/8n Sin)\‘l’lxv ﬁn = [7 (H—}_ E;0>:| ) )\‘l’l:_a n = 17"'7005 (41)
o

the solution of the ordinary differential equations Egs. (20), (28), (29) in combination with the corresponding
boundary conditions Egs. (31), (34) and (35) at each end can be presented comprehensively in analytical form.

The found series representation of M;O) is a quadratic functionof ¥, (n =1, ..., NM),

W01y = - % 2B (sm (2hnx)  4EA; (= 2x)sinh (§) —Isinh (58 — 2x)))> ve w

8 A AE A, sinh (%) + EA381 cosh (%)

n=1
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whereas Au1y and Auyz contain a linear and a quadratic term of unknown coordinates Y,:

NM
Aupp(x, 1) =Y By

n=1

dh, cos (A,x) Bl E A, sinh (%8(1 —20) Y, |7, 43)
I + 4 4EAsinh (%) + EAzdlcosh (§) ") "

NM
Augz(x.1) =Y dn’Bu

n=1

dhncos (Anx) Bl EA,sinh (38(1 — 2x))
2 K 4 . sl sl Yo | Y. (44)
M+ 4 4EA;sinh (5) + E A8l cosh (5)

The first derivative of the latter equations and of Eq. (40) is inserted into Eq. (18). Evaluation of this

expression at, for instance, x = 0 yields after some algebra the axial force N in terms of Y,2 r=1,...,NM),
NM
EA, 4E A, 24 2v 2
N(t) = 1-— A Y, < (1). (45)
4 ( AEA, +EA23lcoth(52—l)> r; e

Multiplying the mode expanded fourth-order partial differential equation (24) by the mth mode shape, ¢,,,
integrating subsequently over the span /, and considering the orthogonality relations of the mode shapes

!
Bl
Mn (X) G (x)dX = mpSpp | = T(Smn (46)
0
yields a coupled set of N M nonlinear ordinary differential equations for the modal coordinates Y,
. : 5 A2 1
Yo + 2005 Yy + 0¥y + —NYy = —P,, n=1,...,NM. 47)
“w my

In this equation, w, denotes the nth natural circular frequency of the corresponding linearized simply supported
beam with interlayer slip (see e.g., [3]),

1

2 42, 2 o AT
W, = A, (A, o) | 1 F‘f— EJo s (48)
o0

with the parameter « according to Eq. (56). P, is the nth modal load,

ﬂnzﬂl
My = —

!
» Pa(t) = /%(X)CJ(x, ndx. (49)
0
Viscous damping has been added modally to Eq. (47) via the modal damping coefficient ¢, [3].

5 Illustrative examples

In the following, the nonlinear dynamic response of a three-layer beam whose ends are resting on hinged
supports without shear restraints, subjected to a time harmonic half-wave sine load distribution with excitation
frequency v,

g(x, 1) = gosin ”l—x sin vt, (50)

is analyzed. The load g and the fundamental mode shape ¢; are affine, and thus, all modal loads except the
fundamental one are zero,

l
P = qo0B81

sin vt. (51)

For internal resonance, higher modes may contribute significantly to the total response due to mode inter-
action caused by the cubic terms in the modal equations. In the present study, internal resonance is not studied,
and since P, = 0V n = 2,..., 00, the contribution of the higher modes to the nonlinear forced dynamic
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response is negligible. Consequently, the coupled modal equations of motion reduce to a single equation in
terms of the fundamental modal coordinate only:

. i MABIZEA 4EA
Vi + 2810171 + 0}V + b1 e(l !

— Y =—r. (52)
4u 4EA| + E A8l coth (%)) mi

In particular, a three-layer beam of length / = 1.0 m, layer thickness 41 = h3 = 0.01 m, i, = 0.0102, and
width b = 0.1 m is considered. Young’s modulus of the external layers, E1 = E3 = 7.0 - 10'0 N/m?, is seven
times larger than of the core, E; = 1.0 - 10'° N/m2. To the interfaces, a slip modulus of K = 1.0 - 10% N/m?
is assigned. This setup of the cross section corresponds to a lateral composition parameter  (Eq. (56)) times /
of al = 13.3, indicating a moderate lateral layer interaction [12]. The mass density of the top and the bottom
layer p; = p3 is = 2700 kg/m?, and of the central layer p, = 1000 kg/m>. Evaluation of Eq. (48) yields the
first five natural circular frequency of the corresponding linear composite beam as

w1 = 383.7rad/s, wr, = 1107 rad/s, w3 = 1994 rad/s,

w4 = 3079 rad/s, ws = 4395 rad/s. (53)

5.1 Example 1: Transient response

In the first example, the transient response of this beam subjected to the load ¢ (x, t) according to Eq. (50)
with load amplitude of gy = 1.5 - 10° N/m and excitation frequency v = w; is computed. The results of the
proposed nonlinear dynamic beam theory are compared with the outcomes of a computationally much more
expensive finite element (FE) analysis conducted in Abaqus Standard 6.13-2, in an effort to verify this theory.
In this analysis, quadrilateral plane stress elements with eight nodes per element are used to discretize the
layers, and the interlayer domain is discretized by linear cohesive elements with four nodes per element. To
the normal stiffness of the cohesive elements a value of 1000 times the tangential stiffness is assigned, because
in the beam model it is infinite. The tangential stiffness corresponds to the slip modulus K assigned to the
beam model. In contrast to the beam model, where the thickness of the interlayers is zero, in the FE model
the cohesive zones have a thickness of 0.1 mm, i.e., #1/100. The thickness of the midlayer, /5, is reduced
by two times the thickness of the cohesive zones (i.e., i1, = 0.01 m), with the result that the total height
of the FE model and the beam model are the same. The hinged supports at the ends of the central axis are
implemented by means of kinematic couplings of the outer surfaces of the central layer to two additional nodes,
which represent the left and right support, respectively. In total, the FE model exhibits about 30,000 degrees
of freedom (compared to one degree of freedom in terms of the single-mode Ritz approximation used to solve
the beam equations). Geometric nonlinearity is accounted for by setting in Abaqus the NLGEOM option to
ON. This triggers an incremental iterative solution procedure where equilibrium is established in the deformed
configuration. For evaluating internal forces, Abaqus uses Cauchy (true) stress and the integral of the rate of
deformation, D = sym (3—;), where v is the velocity at a point with current spatial coordinates x [7]. For the
numerical integration of D, the approach presented in [19] is used.

An eigenfrequency analysis yields the first five natural frequencies of the corresponding geometric linear
FE model as follows,

ol =383.0radls, i = 1103 radss, (" = 1984 rads,

54

wi ") = 3060 rad/s, o{"") = 4363 rads. oY
Comparing these outcomes with the corresponding results of the beam theory, Eq. (53), shows that the first
natural frequency of both approaches differs only by about 0.2%. This small difference increases to about
0.8% for the fifth frequency.

The subsequent figures show the undamped nonlinear transient response of the beam. At first, in Fig. 4 the
lateral deflection at midpan, w(x = 0.5/), normalized with respect to the nonlinear static response at midspan,
ws(x = 0.5]), is shown as a function of the ratio time ¢ over fundamental period 77 = 27 /wj. The bold full
black line represents the nonlinear outcome of the proposed beam theory. As observed, the midspan deflection
increases until the maximum is obtained at ¢/ 7| = 4.763, then decreases to almost zero, then increases again,
and so on. This kind of beat effect is a result of the geometric nonlinearity of the problem that yields the
fundamental frequency amplitude dependent. In this figure, also the normalized midspan deflection of the
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Fig. 5 Normalized lateral deflection along the beam axis at a certain time instant. Outcome of the proposed nonlinear beam theory
versus FE plane stress solution

corresponding linear member is depicted by a red graph. Since the excitation frequency corresponds to the first
natural frequency, the response of the undamped linear beam grows unboundedly. Comparison of the linear
and nonlinear deflection reveals even better the amplitude dependence of the fundamental frequency, leading
to a reduction in the effective fundamental period of the nonlinear beam with increasing response amplitude.
Additionally, the time history of the corresponding nonlinear midspan deflection of the FE model is shown by
the thin blue line with circular markers. It is readily seen that the results of the beam and the FE approach are
virtually identical. Comparison of the deflection resulting from the beam and FE model along the beam axis at
normalized time instant ¢/ 71 = 4.763, depicted in Fig. 5, also verifies for this example problem the accuracy
of the proposed beam theory.

Figure 6 shows the upper and lower interlayer slip, Au1 and Aus3, at the left beam end (i.e., x = 0) with
respect to t/T1. Auyr and Augz are also normalized with respect to nonlinear static deflection at midspan,
ws(0.51), to keep the difference in the order of magnitude of the considered displacement response quantities
apparent. One interesting observation is that the nonlinearity due to moderately large vibrations causes the
upper (black line) and lower (blue line) interlayer slip to become different. In contrast, in the linear beam both
interlayer slips (red graph) are identical. The distribution of the normalized interlayer slips of the nonlinear
beam over x at r/T| = 4.763 reveals that close to the beam ends Au 1y and Ausz become different due to the
geometric nonlinear membrane force N. Close to the beam center, where the beam deformation is small, both
quantities are the same. The FE solution shown in Figs. 6 and 7 confirms again the accuracy of the proposed
theory.

The longitudinal displacement of the central fiber ug)) at x = 0.08/, again normalized with respect to
ws(0.51), is displayed in Fig. 8. The peak value of uéo) appears at about x = 0.08/, compared with the red
graph in Fig. 7, which shows the distribution of uéo) over x at time instant 7/ T; = 4.763. The time history

of ugo) (0.08!) reflects the beat effect observed before. The prediction of uéo) (0.08/) by the plane stress FE
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analysis, which is also shown in Figs. 7 and 8, coincides excellently with the results of the beam theory.

In contrast to the previously discussed kinematic response variables, however, the local FE peak values of
ugo) (0.08!) are slightly larger than those of the beam response, as seen in Fig. 8. It should be noted that uéo) is

the result of stretching of the central fiber, and thus, for the corresponding linear beam zero.

Subsequently, the resulting internal forces are displayed and discussed. Figure 9 shows the time history of
the membrane force N, and the layerwise axial forces Ny, N2, and N3, respectively, at midspan. The quantities
are normalized to the nonlinear axial force N3 at x = 0.5/. While membrane force N and central layer force
N, are always in tension (or zero), the axial forces of the faces, N; and N3, alternate between tension and
pressure. However, in contrast to the linear beam, the peaks in tension are larger than in compression, due
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to the presence of membrane force N. In Fig. 10, these axial forces at 1/ 7] = 4.763 are plotted against the
longitudinal coordinate x. According to this beam theory, the membrane force N is constant along the beam.
Atx = 0and x = [, Ny and N3 are zero, and Ny = N, as prescribed by the pertaining boundary conditions,
compared with Eq. (34).

In Fig. 11, the overall bending moment M, and the layerwise bending moments My, M>, and M3 at midspan
are depicted as a function of time ratio /7. The static nonlinear overall bending moment Mg at x = 0.5/
is used to normalize these dynamic bending moments. In addition, the overall bending moment in the center
of span [/ of the corresponding linear beam is also shown. The moments of the external layers, M and M3,
which are proportional to the beam curvature w ., are identical because these layers have the same bending
stiffness. It is readily observed that the dynamic amplification of the overall bending moment at midspan is of
the same magnitude as the one of the midspan deflection, compared with Fig. 4. To complete the insight into
the nonlinear response behavior of the considered structural member, in Fig. 12 for a certain time instant the
normalized overall and layerwise bending moments are plotted as a function of x.

From the results of this example, it can be concluded that the proposed theory for immovably supported
composite beams with interlayer slip predicts very accurately the nonlinear response of those members, vali-
dated through a comparative FE analysis.

5.2 Example 2: Nonlinear resonance

After having validated the proposed theory for a particular member, subsequently linear and nonlinear frequency
response functions of the same but 5% damped composite beam are derived by sweeping the excitation
frequency v in the vicinity of the fundamental frequency w; of the corresponding linear structure. At time
t = 0, the member is subjected to the harmonic load according to Eq. (50), and a time history analysis is
conducted. After decay of the transient vibrations, the maximum of the steady-state response is recorded.
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Figure 13 shows the nonlinear frequency response functions of the midspan deflection max |w,(0.5/)| for

three different load levels. These frequency response functions are normalized by means of the static midspan

deflection of the corresponding geometric linear beam, subsequently referred to as w(SrLef ) (0.51). The excitation

frequency v is related to the fundamental frequency w; of the linear flexibly bonded beam, denoted as a)gref ),

The reference load amplitude q(()ref ) is the same as qo in the first example, i.e., qéref ) = 1.5.103 N/m. In

two additional analyses, the load amplitudes are two times (Zqéref ) ) and ten over three times (10q(()ref ) /3),
respectively, of the reference load. In this figure, also the amplitude function of the linear member with its
maximum of 10.0 at resonance is shown by the dashed graph. As expected, the nonlinear beam behaves in the
vicinity of the first natural frequency like a hard spring, and with increasing load amplitude the peak deflection

deviates more from the linear counterpart. The reference load qsef yields for max |w (0.50)|/ w(SrLef )(O.Sl )a

peak value of 9.15. For the two larger load amplitudes 2q(()ref ) and 10q(§ref ) /3, the resonance curves exhibit

in a certain frequency range multivalued amplitudes, and the entire solution splits into two stable and one
unstable branch. However, in this and the subsequent figures only the stable response branches are depicted

because the response has been found by time history analyses. Two different frequency sweeps are conducted
to determine the two stable solutions. In the first sweep, starting at v /a)gref ) = 0.1, the excitation frequency
is stepwise increased, and the last response of the current step is used as initial condition for the subsequent
analysis with increased excitation frequency. In the second sweep, starting at v /wgref ) = 2.5 the excitation
frequency is stepwise reduced. Both sweeps are continued until that frequency where the well-known jump
phenomenon occurs, i.e., the tangent of the amplitude functions becomes vertical. For the load case 2q(()ref ),

three solutions exist in the frequency range 1.18 < v /wﬁref ) < 1.25, the corresponding peak amplifications

max |w,, (0.51)| /ws. (0.51) are 3.23 and 7.95, respectively. Further increase of the load amplitude to 10g. /3

increases also the frequency range of multivariate solutions (i.e., 1.25 < v/a)gref ) < 1.50), however, the
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maximum deflection amplification reduces to 6.78 at v/a)iref ) = 1.50. The resonance curve of the largest

load amplitude exhibits at v/ wiref )~ 1 /3 some minor amplifications, an effect of subharmonic resonance

well-known in highly nonlinear structural problems.

In Fig. 14, for the same load amplitudes the frequency response functions of interlayer slip Auz3z atx =0

are presented, normalized with respect to wgrff ) (0.51). In contrast to the midspan deflection, the maximum

of the steady-state solution of Aus3 becomes larger with increasing load amplitude (and thus, with increasing
nonlinearity). The large increase in the interlayer slip at the beam ends in a geometric nonlinear response
condition has already been observed in the previous example, compare with Figs. 6 and 7. Note that the
frequency response functions of the interlayer slip Auj; are identical with the one of Au»3, see also Fig. 7.

A similar response behavior is observed for the normalized steady-state longitudinal displacement

max |u(2(;) (0.080)|/wsr (0.5]), as seen in Fig. 15. This quantity is zero for the linear member and grows with

increasing nonlinearity related to an increase in the load amplitude.
Figure 16 represents the resonance functions of the overall axial force N, and the layerwise axial forces Ny,

N> and N| at midspan only for reference load qoref ) All steady-state internal forces are divided by the static

axial force in the bottommost layer, at x = //2 of the corresponding linear beam subjected to qéref ), referred

to as reference axial force N3(geLf) (0.51). Thus, in this representation the difference in magnitude of the various

axial forces is maintained. As observed, the maximum of the layer quantity N3 is about 2.69 times larger than

of the resultant axial force N, and 38.8 times larger than N,. To quantify the increase in the non-dimensional

steady-state overall axial force with increasing load, in Fig. 17 the ratio max |N,| over N;geg ) is shown for

the load cases qéref ), 2q(()ref ), and IOqéref ) /3. In contrast, the maximum of the amplitude function of the axial

forces of the bottommost layer, max |N3,(0.5/)] /N3(geLf) (0.51), is with 11.1 largest for the load qéref ), and
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decreases slightly for the two larger load amplitudes, as revealed by Fig. 18. The amplification of this quantity
in the linear beam is 10.0, and thus, smaller than in the three considered nonlinear responses.
The resonance curves of the overall bending moment at midspan shown in Fig. 19 are similar to the ones

of the midspan deflection, compared with Fig. 13.

Subsequently, the linear and nonlinear frequency response functions of the considered flexibly bonded

beam (a/ = 13.3) subjected to reference load g

are set in contrast to the outcomes of the rigidly bonded

beam (i.e., K = oo, and thus, «/ = 00) and the unbonded beam (i.e., K = a/ = 0), both also subjected to
qéref ). The fundamental frequency of the fully bonded member is 1.27 times larger and of the unbonded beam

2.78 times smaller than the one of the flexibly bonded structure (i.e., a)g

ref))'
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The deflection frequency response functions depicted in Fig. 20 represent the dynamic (de-)amplification

with respect to the midspan deflection of the flexibly bonded linear beam, w</” (0.51). This figure reveals the
large effect of the interlayer stiffness K on the global stiffness, and consequently, on the nonlinear dynamic
structural response. As observed, the nonlinear quasistatic midspan deflection of the beam without bonded
layers is 6.3 times larger than the static deflection of the flexibly bonded beam, and the nonlinear peak amplitude
ratio is 21.0 compared to 9.15 of the reference structure. Because of the large flexibility of this member, its
response characteristics becomes more nonlinear compared to the reference beam. That s, in a certain frequency
range the response is multivariate with two stable and one unstable branch, and the effect of subharmonics

at about one third of the fundamental frequency is more pronounced. By contrast, the fully bonded beam

exhibits a nonlinear quasistatic midspan deflection of 0.63 times wgff ) (0.51), and a peak deflection amplitude
amplification of 5.54 is predicted. In the flexibly and the rigidly bonded beam, the nonlinear peak deflection
amplification is slightly smaller than in the linear counterpart, however, in the unbonded beam the difference
between the linear and nonlinear peak amplification is large.

According to Fig. 21, the nonlinear steady-state interlayer slip amplitude max |Auz3,| at x = 0 of the

unbonded structure is 6.66 times larger than the one of the flexibly bonded reference beam. It is also seen that

in the unbonded nonlinear beam the peak amplification max | Aus3,|(0)/ wgff ) (0.51) is much smaller than in

the linear member, whereas in the flexibly bonded beam this response behavior is the other way around.
Figure 22 shows frequency response functions for the overall axial force N, normalized with respect to the
static axial force of the bottom layer at midspan of the linear flexibly bonded beam, N3(rseLf) (0.51). The displayed
results show that the maximum nonlinear overall axial force N of all beam configurations is of similar order
of magnitude.
Since in the unbonded beam, no shear tractions can be transferred from the central layer to the external
layers across the interfaces, the axial forces in the external layers, Ni and N3, are zero. Thus, Fig. 23 shows
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the midspan frequency response function of N3 for the flexibly and the rigidly bonded beam. One interesting
observation is that for both members the quasistatic internal force is almost the same. The maximum nonlinear
response amplification of N3 is 11.1 for the flexibly bonded member, compared to 12.2 for the beam without
interlayer slip. The nonlinear peak of the frequency response function of N3(0.5/) exceeds the linear one,
which is in contrast to the response behavior of the peak deflection.

In the last figure, Fig. 24, the nonlinear and linear steady-state overall bending moment amplitude at
x = [/2 divided by the static bending moment of the linear flexibly bonded beam is shown. While the
nonlinear peak bending moments of the flexibly and the rigidly bonded structure (of about 9.4) are about the



268 C. Adam, T. Furtmiiller

—
[\S]
T

4o

—_
(=]
T

o]
T

max\N3p(0.SI)\ / N3SL(reﬁ(0.Sl)
(o)}

L1
(ref)

o/ 2 25

Fig. 23 Frequency response function of the normalized axial force in the bottom layer. Variation of the interlayer stiffness.
Nonlinear and linear response

—_

(=)
T
|

G

max| M,(0.50)| / Mg )(0.51)

/@,
1.5

v/ @)

Fig. 24 Frequency response function of the normalized overall bending moment at midspan. Variation of the interlayer stitfness.
Nonlinear and linear response

same, the maximum amplification of the unbonded beam is more than three times smaller compared to the
other members. The reason is the large flexibility of the unbonded beam, by which means the membrane force
N = N; becomes dominant in the transfer of the external load to the supports. Note that the resonance peak
of the overall moment M is identical for the three linear beams because the system is statically determined,
and thus, M is unaffected by the structural stiffness.

6 Summary and conclusions

In this paper, the equations of motion and corresponding boundary conditions for vibrating flexibly bonded
three-layer composite beams on immovable supports have been derived. The proposed theory is based on a
layerwise application of kinematic Euler—Bernoulli assumptions, a linear elastic relation between the interlayer
slip and the interlayer shear traction, and a nonlinear strain-displacement relation for the central fiber. The
latter relation accounts for stretching of the central fiber during moderately large lateral beam vibrations, which
develop because the supports are rigidly held apart.

In a first illustrative example, it was shown that the proposed beam solution of the considered simply
supported member without shear restraints and the outcomes of a comparative plane stress finite element
analysis are in excellent agreement. As such validated, in the second illustrative example the proposed beam
theory was used to derive frequency response functions for various kinematic response and internal force
quantities. The results of this study demonstrate the significant impact of partial layer interaction on the non-
linear dynamic response of composite beams. Consequently, the benefit of the proposed theory for efficiently
predicting moderately large vibrations of composite beams with interlayer slip is confirmed.
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Appendix A: Governing equations in terms of the lateral deflection w and its derivatives
A.1 Equation of motion

In Eq. (24), Au12 xxx + Auas xxx is substituted by the expression obtained by differentiating Eq. (28) with
respect to x and solved for Aup xxx + Au23 xxx. Then, the resulting equation is differentiated two times with
respect to x, and Aujz yxx + Aus xxx is replaced by the expression originating from rearranging Eq. (24).
This analysis yields the following sixth-order partial differential equation:

2 N a’N Mmoo 01211« .. 1 o?
W xxxxxx — & (1 + m) W xxxx + mw,xx + E_]Ow,xx - mw = E_Joq,xx - mq, (55)
where the parameter [16]
a? = K& (56)
EAEJy

is proportional to the slip modulus K, and thus, defines the degree of lateral composite action. The practical
range of this parameter is discussed in [12].

A.2 Stress resultants

Equations (15) and (16) are added and the shear tractions eliminated by Eq. (6). Differentiation of this expression

(0) ©0)

with respect to x, and inserting u; , and u3  obtained from rearranging of Eq. (8) yields

K
Nl,xx - N3,xx - E_Al(Nl — N3) + 2de,xx =0. (57)

The difference of the axial forces in the upper and the lower layer follows from rewriting of Eq. (9) and
substituting the constitutive equation (7),

Ny — N _ ! iM- M) = 1(EJ + M) (58)
1 3= d\: 1 i = 4 oOW, xx .
1=
Inserting Eq. (58) and its second derivative with respect to x into Eq. (57) leads to
M a’M
W xxxx — azw,xx = - E;; m (59)
Eventually, the overall bending moment M results from combination of Eq. (59) and Eq. (14) as
EJ N 1 .
M = a_zoo |:w,xxxx —a’ (1 + m> W xx + E_J()(Mw - CI)i| . (60)

The difference of the axial forces in the outer layers Ni — N3, which is subsequently needed for defining the
boundary conditions, is found by substituting in Eq. (58) M; by Eq. (7) and M by Eq. (60),

Ni— Ny = — 2 2o Loy N b i —g) 61)
—N3=———F|w -« -t ——|w —(u — .
P T T e | Elw " 2EJ) " T B T

Adding Eq. (15) and Eq. (16) reveals that the sum of the shear tractions at the interfaces #y12 + #5203 is equal to
—(N1,x — N3.x). Thus, Eq. (61) is differentiated with respect to x and multiplied by (—1), leading to

EJ EJy N
ts12 + 1523 = T.;O [w,xxxxx - 052 (1 -+ )

EJso a?ElJy

1 .
W xxx + E_JO(Mw,x - ‘I,x):| . (62)
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A.3 Boundary conditions

Hinged support without shear restraints
For the sixth-order boundary problem (55), at each beam end three boundary conditions must be prescribed.
For a simply supported end, wp = 0, (W xx)p» = 0, and M} = 0, compared with Sect. 3.2. Equation (60) is
used to express M, = 0 in terms of the variable w, i.e., (EJow yxxxx — ¢)» = 0. In summary, the boundary
conditions read

wp =0, (Wxx)p =0, (EJow xxxx —¢q)p = 0. (63)

Hard hinged support

The boundary conditions for a hard hinged support are w, = 0, M, = 0, and (Au12)p = (Auzz)p = 0. The
latter conditions can be alternatively expressed as (#512 + #523)p = 0. Utilizing Egs. (60) and (62), respectively,
the boundary conditions of a hard hinged support in terms of w read as

wp =0 w o 1+ N w ! =0
b=V, JXXXX OézEJ() XX EJ()q [;_ s

) EJy N 1 .
W xxxxx — & 1 - m + Ole]() W yxx + E_‘]O(Mw,x - q,x) . =0.

(64)

Rigidly clamped end
Atarigidly clamped end w, = 0, (w ), = 0, and (Au12), = (Auzz), = 0, or alternatively (¢512 +523), = 0.
Expressed in terms of w these conditions become

b EJy N 1
wp =0, (w,x)b =0, W xxxxx — & 1 - m + OleJO W xxx — E_J()q’x ) =0. (65)

A.4 Discussion

Equation (55) in combination with the pertinent boundary conditions can only be solved for w if the axial force
N is the result of an external axial force applied at the boundary of the beam, such as in dynamic buckling
analysis. In the current problem, however, the overall axial force N develops due to membrane strains as a result

of immovable supports. Thus, according to Eq. (18), additionally to w the interlayer slips Au12 and Auys,

and the axial displacement ugo) need to be solved simultaneously. This is only possible in an efficient manner

with the coupled equations present in Sect. 3. However, the formulation of this boundary problem according
to Eq. (55) reveals parameter o, which is an important parameter to assess at the outset the vulnerability of the
member to interlayer slip [12].
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