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A B S T R A C T   

Ground motion record selection methodologies are commonly developed to ensure that the input excitation used 
in response history analyses embodies essential conditions such as spectral compatibility, hazard and intensity 
measure consistency, seismological and site-specific criteria, always performing in a computationally efficient 
manner. A methodology utilizing genetic algorithms is revisited here, expanded to select multi-component 
ground motions and satisfying the typically required selection objectives of earthquake engineering applica
tions, while ensuring increased efficiency. Multi-objective optimization is performed, claimed to be superior in 
delivering robust results that account for spectral compatibility in first and second order statistics (mean and 
standard deviation) in a wide range of spectral values, as well as satisfying seismological and site-specific criteria. 
A unique contribution is the ability to include probability distribution targets in specific ordinates of the spec
trum, on top of the mean and standard deviation, allowing for more refined ground motion sets that can be used 
to reduce the number of records required in response history analyses. Additionally, a novel benchmarking 
process to assess the efficiency of ground motion record methodologies is introduced here, in terms of providing 
sets that are globally-optimal solutions to the optimization problem. Through this benchmarking algorithm, the 
proposed methodology appears to be impeccable in extracting the best possible ground motion sets.   

1. Introduction 

1.1. Motivation and state of the art 

In many earthquake engineering applications, it is typically required 
to determine the seismic demands of structures through a series of 
nonlinear response history analyses i.e. by integrating step-by-step the 
equations of motion in the time domain. This type of analysis is widely 
used as a reference in research, as it is the most accurate approach [1]. 
The required input excitation is the time-history of ground accelerations, 
i.e. ground motion (GM). The most common choice is to use records of 
previous earthquake events, appropriately selected and (if necessary) 
scaled to match specific spectral targets (e.g. Ref. [2]). Other choices are 
simulated or artificial seismograms [3], or seismograms obtained 
through physics-based simulations of the seismic source, the propaga
tion of the seismic waves and the site effects. GM selection defines the 
input excitation that connects the seismic hazard of a given region to the 
response of the analyzed structure. Since GM uncertainty contributes 
significantly to the uncertainty of structural analysis output, this process 

can have considerable impact on conclusions regarding structural safety 
[1,4]. Therefore, numerous research efforts have been made to establish 
hazard consistent selection and to eliminate pitfalls in defining the input 
excitation with respect to seismic hazard. 

GM selection approaches are commonly classified into two main 
categories: “scenario-based selection” and “target-based selection”. Ac
cording to the first one, the selection of records is primarily based on 
seismological and site parameters corresponding to earthquake sce
narios of the seismicity of interest, while then trying to meet spectral 
targets (or exceed them, as required in most seismic codes) [5]. In the 
second case, these criteria of causal nature are significantly relaxed and 
the GM selection is performed based on the spectral target, since spectral 
values are the main parameters affecting the seismic demand. The uni
form hazard spectrum (UHS) is a commonly used target spectrum that 
has been shown to be a conservative choice because it implies that the 
large amplitudes of spectral values will occur at all periods [6]. To 
address this, Ref. [7] introduced the conditional mean spectrum (CMS), 
which provides the expected (i.e. mean) spectral values, conditioned on 
the occurrence of a target spectral acceleration value at a specific period 

* Corresponding author. 
E-mail address: christoph.adam@uibk.ac.at (C. Adam).  

Contents lists available at ScienceDirect 

Soil Dynamics and Earthquake Engineering 

journal homepage: www.elsevier.com/locate/soildyn 

https://doi.org/10.1016/j.soildyn.2021.106734 
Received 9 December 2020; Received in revised form 12 February 2021; Accepted 18 March 2021   

mailto:christoph.adam@uibk.ac.at
www.sciencedirect.com/science/journal/02677261
https://www.elsevier.com/locate/soildyn
https://doi.org/10.1016/j.soildyn.2021.106734
https://doi.org/10.1016/j.soildyn.2021.106734
https://doi.org/10.1016/j.soildyn.2021.106734
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2021.106734&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Soil Dynamics and Earthquake Engineering 148 (2021) 106734

2

of interest. To further expand this rationale, Ref. [8] introduced the 
generalized conditional intensity measure (GCIM), which considers 
more GM properties (e.g. significant duration and Arias intensity) as 
conditional values. An important element in GM selection is the 
record-to-record variability in the resulting GM set. Therefore, Ref. [9] 
has developed a semi-automated procedure capable of selecting and 
scaling GM to fit a target acceleration spectrum while controlling vari
ability in the set. To account for the response spectrum variance in 
addition to the mean, the conditional spectrum (CS) was introduced by 
Ref. [10]. In this work, conditional GM selection is achieved by an al
gorithm that uses Monte Carlo simulations to generate response spectra 
and then chooses recorded GM to match them, while a “greedy opti
mization” technique is then employed to further improve the match. In 
Ref. [11], the algorithm of Ref. [10] was revisited to improve its utility 
and speed, where the efficiency of the proposed procedure was assessed 
through its computational expense (i.e., the run time). In that work, the 
problem of GM selection is approached from an algorithmic point of 
view rather than focusing on hazard consistency or the appropriate use 
of GM features i.e. intensity measures (IM), which gather the main 
research attention around this topic. 

Addressing inconsistencies and pitfalls in selecting records and 
computing target spectra has also been in the center of attention. For 
example, in Ref. [12], attention is drawn to the difference between 
spectral accelerations as obtained from any horizontal component of 
GM, typically used in structural analysis, and the geometric mean of 
spectral accelerations from the two horizontal components, typically 
used in hazard analysis. Linking the hazard to the structural response 
under such inconsistency can yield significantly altered results. 
Analogically, since probabilistic seismic hazard analysis (PSHA) esti
mates the seismic hazard by incorporating multiple earthquake sce
narios and GM prediction models, Ref. [13] has introduced the “exact CS 
calculation” which, unlike typical CS calculations, considers multiple 
causal earthquakes to produce more accurate target spectra. A com
parison and thorough review of the exact CS and the GCIM method can 
be found in Ref. [14], while state-of-the-art reviews of GM selection 
approaches are presented in Refs. [1,15,16]. 

Apart from hazard consistency in GM selection, a significant amount 
of research has focused on practical schemes. Using the Adaptive Har
mony Search (a meta-heuristic optimization algorithm), Ref. [17] pro
posed a GM selection framework that facilitates both code-based and 
CMS-based selection. In Ref. [18], a genetic algorithm (GA) was used 
to select GM sets that are compatible with a predefined response spec
trum, supported by a graphical user interface (GUI). To support 
structure-specific GM selection for seismic design and assessment, 
Ref. [19] introduced the “ISSARS” software environment integrated 
with a finite element analysis package, while the same authors in 
Ref. [20] aimed to support reliable design and assessment by presenting 
a decision support process for structure-specific selection of 
code-compatible GM. Structure-specific and hazard-consistent selection 
for risk-targeted ground motion selection was also addressed in 
Ref. [21], where a web-based system was developed for the selection of 
characteristic ground motions. To accommodate code-based selection of 
real records for practitioners, “REXEL”, an open-source software tool 
that is accompanied with a GUI, was introduced in Ref. [22]. 

The vast majority of applications incorporating GM excitation 
involve 2D structural models that are horizontally excited with one 
component of the GM. Accordingly, research on hazard consistency and 
the appropriate use of IM to ensure efficiency and sufficiency is mostly 
focused on these types of applications (definitions regarding efficient 
and sufficient IM can be found in Ref. [23]). The shortcoming of 
first-mode spectral acceleration is addressed in Ref. [24], which is often 
used as a conditioning IM in CS, but is only useful when GM selection is 
required for specific single-mode dominated structures. In that work, the 
log-average spectral acceleration over a period range is suggested 
instead, which seems to be a superior scalar IM particularly suitable for 
multiple demand parameters and also regional risk assessments of 

building portfolios, also supported by other studies (e.g. Refs. [25–30]). 
Focusing on one-dimensional excitation is useful because usually one of 
the horizontal axes of the structure is critical and therefore the analyses 
related to this axis are most important. However, this is not the case for 
torsion-sensitive structures, such as irregular buildings. In such cases, 
bidirectional horizontal excitation of a 3D structural model is a neces
sity, along with the appropriate use of IM that refer to both axes. Several 
approaches have been proposed to address the key elements of bidi
rectional selection, including the appropriate use of IM, e.g. Refs. 
[31–35]. One step further is to incorporate the vertical component as 
well, resulting in three dimensional excitation. This is essential in ap
plications where the evaluation of non-structural components is inten
ded, as they are usually more sensitive to accelerations than 
displacements, and it has been shown that the vertical acceleration 
component is necessary in the definition of vertical acceleration de
mands [36,37]. In addition, for some more complex structures, such as 
buildings with cantilevers and bridges, the vertical component of the 
excitation may also be critical to the structural safety. In Ref. [38], a 
methodology for selecting, scaling and orienting three components of 
GM for intensity-based assessments is presented, in which each record is 
selected to match the target spectra as closely as possible. A discussion of 
multicomponent hazard identification is presented in that work, 
emphasizing the need to clarify appropriate multicomponent target 
spectra. 

The previous methods aim to select a single GM set, which usually 
has a mean spectrum matching a mean target spectrum, while some of 
them also consider the variance spectrum matching a target. To achieve 
spectral match in the first and second order statistics (i.e., mean and 
variance), it is common to use a single objective function that is the 
weighted sum of the two individual objectives (e.g. Refs. [10,11,24,26, 
31,38–40]). In contrast, several selection strategies praise the use of 
multi-objective optimization, which (normally) results in more than one 
optimum solution forming the pareto-front, i.e., an ensemble of GM sets 
referred as pareto-optimal, where no other set can be found to improve 
at least one objective while not reducing the other objectives (Fig. 1). 
The benefit of pursuing a multi-objective optimization is that it sidesteps 
the use of weight factors that give relative importance between the 
objectives, whose values are somehow arbitrary, without physical 
meaning, and therefore difficult to choose. 

In Fig. 1, a schematic representation of a two-objective optimization 
problem is presented, where F1 and F2 represent the scores of the two 
objectives (i.e. the fitness or objective functions) that the optimal solu
tions minimize. In the same figure, it is evident that selecting a positive 

Fig. 1. Schematic representation of two-objective optimization (F1 , F2) 
showing pareto-optimal and non-optimal solutions, the pareto-front and the 
influence of choosing one of three different weight factors w = w1, w2 and w3, 
respectively, when one-objective optimization is performed instead. 
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value for a weight factor w (e.g. w = w1, w2, w3) to perform a single- 
objective optimization as the weighted sum of the two objectives F1 
and F2 (i.e. F = F1 + wF2) affects the resulting solution. Choosing, for 
example, w = w1 leads to a single-objective optimization that returns the 
green GM set as a solution,1 which could have significantly worse per
formance in F2 than a different GM set that satisfies both objectives well, 
e.g., for w = w2 resulting in the red GM set. Even if F1 and F2 are fairly 
well minimized for all w = w1, w2, w3, different properties might exist in 
the resulting GM sets. That is, blue, green and red GM sets in Fig. 1 might 
differ significantly in their seismological and site properties, their 
number of records or the scale factors used. By extending the rationale of 
using weight factors to three-component selection, the problem of 
appropriately selecting their values becomes even greater because a 
weight for each additional objective must be selected. 

The starting point of the proposed approach is the work in Ref. [41], 
where a GA was used to perform the multi-objective selection of GM sets 
that have a median and standard deviation spectrum that match pre
defined targets in a period range. Multi-objective selection using GA was 
also suggested by Ref. [42], where more objectives were introduced such 
as “earthquake scenario” parameters (e.g., magnitude, source-to-cite 
distance, soil conditions). In that work, a thorough review of selection 
schemes is presented and the need for guidance regarding the use of 
metaheuristic optimization algorithms (such as GA) is emphasized, since 
they become more and more popular in GM selection applications. One 
more benefit in using GA for the process of GM selection, as pointed out 
in Ref. [43], is the elimination of Monte Carlo simulations along with the 
increased efficiency. The notion of efficiency in the optimization process 
is frequently used to describe that the resulting GM sets have a good 
match with the targets and that the optimization process is performed 
quickly. It is well understood that GM selection is an optimization 
problem that aims to find the optimal solution(s) that satisfy the ob
jectives without exploring the entire solution space, as this is imprac
tical, if not unfeasible. The number of solutions are the possible 
combinations of records given by the binomial coefficient, which leads 
to huge solution spaces, even for small databases with a few hundred 
records [41–43]. 

1.2. Objective of the proposed work 

In the present work, the concept of multi-objective selection is 
extended for the first time in up to three-component ground excitation 
sets, having spectral targets as objectives and using GA to perform the 
optimization process. In this way, given the desired spectral targets in up 
to three orthogonal directions, the goal of the GM selection optimization 
process is to satisfy the targets by extracting from a suitable database of 
GM records, subsets with a desirable number of records. Typically, these 
spectral targets refer to first and second order statistics, i.e. specific 
mean and standard deviation spectra in a range of periods. A unique 
contribution of the proposed framework is the ability to specify the 
whole probability distribution function as a target, on top of the mean 
and standard deviation targets, at specific periods of interest in the 
spectrum. This is accomplished through a concept inspired by the 
stratified sampling technique, and its impact in GM selection is 
demonstrated through an application. In another application that 
demonstrates the efficiency of the proposed methodology, a novel pro
cedure is introduced to assess the quality of the resulting GM sets in 
reaching (or at least approaching) the globally optimal solutions of the 
optimization problem. This is of paramount importance and is investi
gated for the first time in a GM selection scheme. It clearly shows the 
performance of the optimization process as opposed to the less infor
mative measure of quality in the spectral match (also shown here), since 
the later is largely dependent on the targets as well as the database of 

GM used. In terms of computational cost, the run-time of the proposed 
methodology is in the range of minutes to a few hours, which is typically 
not critical since GM selection is not a repetitive process in most ap
plications. Therefore, computation times are only approximately indi
cated when necessary to promote understanding rather than benchmark 
the proposed procedure. The overview of the whole framework, the 
implementation of the various selection options and relevant applica
tions are presented in the following sections. 

2. A comprehensive framework for selecting ground motion 
record sets through genetic algorithms 

The broad family of evolutionary algorithms (EA) are methods to 
solve optimization problems inspired by the biological evolution and its 
key mechanism, the natural selection, where the heritable genes change 
in the population over the progression of generations. These changes are 
achieved in nature through some biological operations such as selection, 
crossover and mutation and the corresponding (genetic) operators in the 
current EA optimization scheme have an important role and therefore 
will be described in detail below. In the problem formulation, the pop
ulation is a number of candidate solutions (i.e. GM record sets) that 
iteratively change their characteristics (often referred to as genes) 
through selection, crossover and mutation. Each iteration corresponds to 
a new generation of the population. As the generation progresses, the 
candidate solutions in the population should optimally satisfy the 
objective functions and form a near-global Pareto front. 

The algorithm used in this work is a subclass of EA, an elitist genetic 
algorithm variant of NSGA-II [44]. It is part of the Matlab Global Opti
mization Toolbox and all procedures are implemented in Matlab spe
cifically for the purpose of the proposed GM record selection approach, 
so that the configuration of the optimization problem is tailored to 
facilitate its needs. Three phases can be distinguished, similarly to 
Ref. [41]: pre-processing, processing and post-processing. In 
pre-processing, the parameters and input data of the selection are 
defined. Processing follows, where the proposed optimization scheme 
converges to the solution. The outcome is a list of GM sets with detailed 
information about the properties of each GM record utilized. To assess 
these GM sets and choose the interesting one(s), the post-processing 
phase is a tool to display, rank and evaluate them. The three phases 
are described in detail below. 

2.1. Pre-processing: defining selection criteria and targets 

In the pre–processing phase the input criteria regarding the selection 
process are defined. The required information for the selection process 
is:  

• directions of the GM components defined in up to three orthogonal 
axis (i.e. x, y and z)  

• target spectra, which are the objectives that the selection process is 
designed to meet, two for each direction of interest: a mean and a 
standard deviation target spectrum  

• GM screening criteria, reducing the initial size of the GM database, 
mainly based on seismological and site parameters in order to pre
dominantly account for the earthquake scenarios that are expected to 
contribute to the seismicity of interest  

• properties of the resulting GM record sets regarding their scaling and 
the number of records in the sets, in terms of admissible ranges 

The above input choices for the selection process are explained in 
greater detail here to better clarify them and demonstrate the versatility 
of the proposed selection approach. 

2.1.1. Single- and multi-component multi-objective selection 
Firstly, the desirable dimensions of the GM record sets are specified 

in terms of the considered components, which can be up to three 
1 If the applied optimization scheme is able to return the optimal solution, 

otherwise a non-optimal solution is returned. 
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(namely x, y and z components). In the case of three-component selec
tion, the outcome of the selection process will be used as excitation of 3D 
structural models in the three orthogonal directions, thus utilizing each 
component of the GM (two horizontal and the vertical). Separately from 
the dimensionality of the record sets, the targets of the selection process 
are also defined here in terms of the above-mentioned desirable di
rections. It is noted that the target spectra might be provided for just one 
of these directions, hence the remaining components will be utilized 
regardless of their spectral properties. Alternatively, target spectra in 
more directions of interest can be provided, driving the selection to 
satisfy one-, two- or three-component targets described in more detail in 
Table 1. In this table, seven options are presented in total, referred to as 
′H1′ , ′Hgm1′ , ′H2′ , ′V1′ , ′HV2′ , ′HgmV2′ and ′HV3′ , where ′H′ denotes 
horizontal, ′V′ vertical, ′gm′ geometric mean of two orthogonal hori
zontal components, and the number indicates the dimensionality of the 
targets (1, 2 or 3). 

2.1.1.1. Single-component target selection. As previously explained, most 
earthquake engineering applications concern 2D structural models and 
therefore the majority of the record selection approaches focus on one 
horizontal component of the excitation to match target spectra that are 
consistent with the hazard at the site of interest. Typically used in real 
applications, this component of the selected records is oriented along the 
critical building axis to perform nonlinear response history analyses, as 
it is expected that the accumulation of damage and collapse primarily 
originates from this direction for a specific level of shaking. This type of 
selection is referred here as ′H1′ since one target in the horizontal di
rection is employed. A common issue in record selection observed in 
Ref. [12] is the inconsistency between selecting arbitrary horizontal 
components of GMs to match targets that have been calculated with 
respect to the geometric mean. To address this, under the choice ′Hgm1′ , 

the geometric mean of the two horizontal components is calculated and 
then matched to the target spectrum. Finally, if the vertical excitation is 
of interest, namely ′V1′ (similar to ‘H1’ but in the vertical direction), the 
vertical component of the GMs is matched to the target. 

2.1.1.2. Two-component target selection. Maintaining hazard consis
tency in both horizontal components when performing nonlinear dy
namic analyses in 3D models is of great importance [31]. Therefore, two 
orthogonal horizontal spectra can be defined by ′H2′ as targets for the 
selection process and the resulting record sets will be (at least) 
two-dimensional. Two-dimensional record sets may also be of interest 
with respect to one arbitrary horizontal component and the vertical 
component, denoted here as ′HV2′ . If the geometric mean of the hori
zontal components is preferred instead of the one arbitrary, the ′HgmV2′

selection option is pursued. 

2.1.1.3. Three-component target selection. Matching spectral targets in 
all three orthogonal directions can be pursued by the option ′HV3′ , 
where the proposed procedure performs selection of three-component 
GM that fit first and second order spectral targets in each direction (i. 
e., six objectives in total). 

2.1.2. Spectral targets and pre-selection criteria 
The spectral targets must be defined for each direction of interest. 

The targets are provided here as mean and standard deviation spectra of 
the natural logarithm of spectral acceleration together with the period 
range in which they are matched. Additionally to these first and second 
order statistics in a period range, the probability distribution function at 
specific spectral ordinates can be requested as a target (e.g. a target of 
lognormal probability distribution for the spectral accelerations at T =
1s). This is a unique element in the proposed approach, not supported by 
other selection strategies. This is achieved through a concept similar to 
latin hypercube sampling (LHS), schematically shown for one variable in 
Fig. 2 (a), where the probability space is divided into equal sub-spaces 
and one random number is generated inside each corresponding inter
val in the variable domain. Here, since we seek to select appropriate 
records rather than generating numbers, the selection process is forced 
to favor the record sets that have spectral acceleration values, at specific 
periods, falling into appropriate ‘strata’ (i.e. sub-spaces in the spectral 
acceleration domain). These sub-spaces are obtained by the same pro
cess shown in Fig. 2 (a), e.g. at T = 1s in Fig. 2 (b), thus resulting in the 
required probability distribution efficiently. More details regarding the 
implementation of this requirement is provided in section 2.2. 

In addition to selecting GMs based on their spectral shape as defined 
by the targets, additional preliminary criteria based on seismological, 
site, and other parameters are typically used in the literature to exclude 
GMs with very different characteristics from the target hazard. Quanti
tative recommendations on causal parameter bounds are provided in 
Ref. [45] for PSHA-based GM selection. Here, the screening criteria are 
the fault rupture mechanism, the magnitude (Mw), the source-to-cite 

Table 1 
Possible record selection schemes performed through the proposed 
methodology.  

Notation Record Selection Description 

One-component target selection 
H1 One arbitrary horizontal component is selected to match one horizontal 

target spectrum 
Hgm1 The geometric mean of two orthogonal horizontal components is 

calculated and matched with the target spectrum of the geometric mean 
V1 The vertical component is selected to match the vertical target spectrum 
Two-component target selection 
H2 Two orthogonal horizontal components are selected to match two 

horizontal target spectra 
HV2 One arbitrary horizontal and the vertical components are matched with a 

horizontal and a vertical target spectrum 
HgmV2 Similar to HV2, with the difference that the horizontal component is the 

geometric mean of two orthogonal horizontal ones 
Three-component target selection 
HV3 Two orthogonal horizontal and the vertical components are matched 

with three target spectra  

Fig. 2. (a) The LHS concept for one variable; (b) the proposed scheme for GM selection, equivalent to LHS.  
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distance (RJB) (as defined by Joyner and Boore), the soil conditions at 
the site expressed through the average shear wave velocity at the top 30 
m (Vs,30), as well as scaling limits to exclude records that would require 
excessive scale factors to reach the targets in the period ranges of in
terest. All these criteria reduce the initial database of GM records 
(RecPool) to a subset (BoundedRecPool) of more appropriate ones to the 
application at stake. 

2.1.3. Scaling of ground motions 
The proposed approach is one of the scaling methods in which the 

scale factors of the records in the GM set are appropriately chosen so that 
its statistical properties match with the targets while circumventing the 
introduction of bias due to excessive scaling [4]. 

Controlling the scaling properties of GM sets are of particular interest 
and setting bounds is largely supported in the research community (e.g. 
Refs. [31,38]), while a scale factor as close to unity (unscaled record) is 
preferred e.g. Refs. [42,46]. The bounds of the scale factors are input 
variables in this framework, changeable depending on the application. A 
reasonable value of 5 for an upper bound of scaling factors is considered 
in this work, as was proposed by Ref. [41]. The lower bound is set to 0.5, 
although it is not an important parameter since scaling is normally used 
because of the lack of recorded GMs at high intensities, therefore 
increasing rather than decreasing the intensity of records is typically 
sought. Another parameter of the scaling factors is the flexibility in their 
usage. Constant scaling among the records in a specific set can be 
considered beneficial because the relative intensities between unscaled 
motions in the scaled set are preserved [41]. However, this constraint 
limits the ability to meet specific targets, especially when multiple 
components are of interest, which means that equal scaling would be 
applied to all records and components. For this reason, in Ref. [33], 
following the rationale in Ref. [47], it is argued that different scaling 
factors between components could be allowed. In Ref. [31], supporting 
these views on the topic, a differentiation of 5% between the scale fac
tors of the two horizontal components of the GMs is permitted. 

Considering the above, the proposed method employs a constant 
scaling factor for all records in a record set, namely SFconstant, for which 
appropriate bounds are provided as input choices (with SFconstant ∈

[0.5 − 5] being the default). To allow for some flexibility between the 
different components in x, y and z directions, a differentiation of 5% 
between each component can be chosen, resulting in the relation 

0.95 ≤
SFi

SFconstant
≤ 1.05, i = x, y, z (1) 

Consequently, the scale factors SFx, SFy and SFz, which correspond to 
scale factors in x, y and z directions, differ less than 5% between each 
other, constant for the entire set. It is noted that if the above is not 
considered important in a specific record selection application, complete 
independence of the scale factors between records is also supported by 
the proposed procedure, offering even more flexibility. 

2.2. Processing: extracting pareto-optimal solutions 

After the parameters of the selection are defined and the initial 
database of GM is reduced based on the preliminary criteria, the selec
tion of the sets is initiated. Here, the formulation of the optimization 
problem and its basic solution procedures are explained. 

2.2.1. Optimization problem formulation 
As previously mentioned, for each direction of interest i = x, y, z 

there are two targets in the period range T ∈ [Tstart , Tend], the mean 
m̂(tgt)

lnSai
(T) and the standard deviation σ̂ (tgt)

lnSai
(T) spectrum targets of the 

logarithm of spectral accelerations. By the end of the optimization 
problem, the k = 1,…,K solutions (i.e. GM sets) should have mean 
m̂(set− k)

lnSai
(T) and standard deviation σ̂(set− k)

lnSai
(T) spectra such that the 

objective functions 

F(set− k)
m,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Tend

T=Tstart

(

m̂(set− k)
lnSai

(T) − m̂(tgt)
lnSai

(T)
)2

√
√
√
√ (2)  

F(set− k)
σ,i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Tend

T=Tstart

(

σ̂ (set− k)
lnSai

(T) − σ̂ (tgt)
lnSai

(T)
)2

√
√
√
√ (3)  

are minimized forming a near global pareto-front (similar to Fig. 1). 
Only for the case where a distribution function (e.g., lognormal distri
bution) at a specific period (or periods) is an additional target, the 
process described in section 2.1.2 is performed and the sub-spaces at the 
spectral acceleration domain are obtained. The nk records of set k are 
forced to fall into the nk sub-spaces by minimizing the number of sub- 
spaces not occupied with a spectral acceleration value (NEmpty). For the 
case of multiple periods of interest, NEmpty is the sum of empty sub-spaces 
in all periods. The additional objective function is given by 

FLHS,i =Nempty (4) 

To obtain the mean and standard deviation spectra of the logarithm 
of spectral accelerations for a GM set k containing nk records, used in 
Equations (2) and (3), one has to compute them for each period of in
terest T ∈ [Tstart ,Tend] by the following equations, 

m̂(set− k)
lnSai

(T)=
1
nk

∑nk

j=1
ln
(
SF(set− k)(j)Sai(j, T)

)
(5)  

σ̂ (set− k)
lnSai

(T)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
nk − 1

∑nk

j=1

(

ln
(
SF(set− k)(j)Sai(j, T)

)
− m̂(set− k)

lnSai
(T)

)2
√
√
√
√ (6) 

Note that the scale factors SF(set− k)(j) in these equations are written 
for the general case where they are independent between the records j =

1,…,nk, whereas for the case of constant scaling between the records in 
set k, it is SF(set− k)(j) = SF(set− k) = SFconstant , see Equation (1). The term 
Sai(j,T) refers to the spectral acceleration of the component i, record j at 
period T. 

Therefore, the optimization problem comes down to finding the 
proper scale factors as well as an index to identify which records take 
part in each set, similar to related research on the topic [41,42]. In this 
work however, to increase the speed and efficiency of the optimization 
scheme, we minimize the number of variables by including the above 
information in the same variable. For the GM set k, there are N variables 
SF = [SFrec1,SFrec2,…,SFrecN], taking the values SFrec ∈ {0, [SFmin, SFmax]}

for each of the N records available in the database. Zero denotes that the 
record is not included in the set and the nonzero variables are bounded 
by the limits of the scale factors. Moreover, their total number (nk) is 
bounded by the allowed range of records in a set. Finally, implementing 
the above in vectorized form through Matlab allows for great speed in 
the computations of Equations (2)–(6) at each step of the optimization 
until convergence is reached. The steps and procedures of the optimi
zation process are explained in section 2.2.2. 

2.2.2. Convergence to solution: Creation, selection, crossover, mutation and 
reproduction 

To converge to a near-global (or global) pareto-optimal solution, a 
series of five processes take place, as subsequently described. 

2.2.2.1. Creation. The first step is to create an initial population of 
candidate solutions also referred to as individuals (i.e. GM record sets), 
each of them represented by a vector of N variables [SFrec1, SFrec2,…,

SFrecN] corresponding to each one of the N records of the database. The 
number of the population size is crucial for the behavior of the optimi
zation. A large population size increases the chances of converging in a 
near-global pareto-optimal solution by exploring the solution space 
more thoroughly, but also increases the computation time. Since N is 
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typically in the range of hundreds, a population of PopSize = 200 in
dividuals is suggested and implemented as the default choice in the 
built-in procedures in Matlab, following the work in Ref. [44]. Due to 
the measures taken in the proposed procedure to efficiently formulate 
the optimization problem, this optimization option is adjustable and 
increased in our scheme, since a population size of PopSize = 1000 
converges in several minutes.2 

To create the initial population, a random number nk in the range of 
desirable records is generated for each of the individuals, and nk out of N 
randomly chosen variables are assigned with nonzero values in the 
range of the admissible scale factors. In this way, the initial population 
that satisfies all the constraints of the optimization scheme is randomly 
selected in the form of the matrix 

SFiteration− 0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

SF(k=1)
rec1 SF(k=1)

rec2 ⋯ SF(k=1)
recN

SF(k=2)
rec1 SF(k=2)

rec2 ⋯ SF(k=2)
recN

⋮ ⋮ ⋱ ⋮
SF(k=PopSize)

rec1 SF(k=PopSize)
rec2 ⋯ SF(k=PopSize)

recN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7)  

where each row corresponds to an individual. If constant scaling is 
chosen, the nonzero values in each row are equal. After the initial 
population SFiteration− 0 is created, the iterative process begins, where 
selection, crossover, mutation and reproduction choices will control its 
behavior. 

2.2.2.2. Selection. In each iteration, a new population is formed, start
ing with the first SFiteration− 0 to the last, and each individual in the pop
ulation is assigned a fitness score based on its ability to minimize the 
objective (or fitness) functions, e.g. Equations (2) and (3). Through se
lection, some individuals are chosen from the population to become the 
parents for the next generation, which means that these individuals are 
used to generate the children through the operations of crossover and 
mutation (described in the following paragraphs). In this work, the 
tournament selection method is used [48], where the individuals with 
the highest fitness scores have a greater chance to be selected as parents. 

2.2.2.3. Crossover. Through the process of crossover, characteristics 
from two parents are combined to create the crossover children, with the 
idea that combining the characteristics of two well-performing in
dividuals will potentially result in an even better individual. There are 
multiple ways to perform crossover. In this work, the operation needs to 
generate crossover children that respect the constraints of the problem, 
which are the bounds of the scale factors, constant scaling (if required) 
and a constrained number of nonzero variables. For this reason, a record 
that is not included in either parent (i.e., both parents have a common 
zero value) will not be included in the child as well, and the records 
common in both parents will be included in the child with their scale 
factor being the average of the parents, i.e. SF(child) = (SF(k=parent1) +

SF(k=parent2))/2. The remaining part of the non-similar scale factors of the 
parents (one zero value and one non-zero value) will be chosen 
randomly to ensure that the child has appropriate number of non-zero 
scale factors, following all the necessary constraints. 

2.2.2.4. Mutation. A typical problem with the use of genetic algorithms 
is premature convergence to a local optimum. This is caused by the lack 
of diversity in the population and disproportionate exploitation (i.e., 
using existing solutions to obtain new, refined ones with better fitness 
scores) versus exploration (i.e., searching for new solutions in different 
regions of the solution space). Mutation, which can be done in various 
ways, can bring diversity to the population, as it randomly alters a small 
amount of the genes of the parents. 

For each parent that takes part in mutation, a uniform multiplication 
of the scale factors can be found that minimizes Equation (2) (or the sum 
of them in the case of multi-component optimization) and is performed 
replacing their original value. This does not affect the score of Equation 
(3). Moreover, the parents chosen for mutation, are changed by 
randomly swapping nonzero with zero variables in their vector. 
Depending on the fitness score of the parents, the number of variables 
swapped varies from one (for the best performing ones) to three (for the 
worst performing ones). These randomly changed vectors of the parents 
are the vectors of the mutation children. 

2.2.2.5. Reproduction. The population to be created in the next gener
ation is a combination of high performing individuals from the previous 
generation, referred to as elitist selection, and the children of the parents 
obtained trough crossover and mutation. The reproduction options 
control the contribution of elitist selection, crossover children and mu
tation children that will take part in the next generation. Elitist selection 
ensures that the quality of the solution does not decrease from one 
generation to the next. Through crossover, the algorithm converges to a 
solution and therefore it normally accounts for the greater part of the 
next generation. Finally, through mutation divergence is pursued, 
further exploring the solution space and avoiding local optima and 
typically makes up a smaller portion of the next generation. Here, 5% of 
the population size is assigned to elite individuals (e.g., 50 individuals 
for a population size of 1000), while 80% of the remaining is assigned to 
crossover and 20% to mutation children (e.g., 760 and 190 individuals 
for a population size of 1000). 

2.3. Post-processing: choosing between the optimal solutions 

The last part of the selection process is to assess the solutions, as they 
are expected to be more than one and form a near-global Pareto front. 
Three metrics are introduced according to which the solutions are 
ranked, namely Rspectral, Rcausal and Rdist, which are explained below. 

2.3.1. Spectral match (Rspectral) 
At this point, the concept of weight factors is used to rank the 

different solutions according to how well they match the spectral tar
gets. By changing and adjusting the weights, one quickly obtains a 
different rank of the resulting solutions after the entire optimization 
scheme is completed, with the best solution having the lowest Rspectral 

value with respect to this metric. This is considered superior here to the 
alternative of using weight factors to merge the objective functions, 
which leads to single-objective optimization, since this would require 
rerunning the optimization process for each combination of weight 
factors, resulting in tedious computations. In the general case of three- 
component selection, where i = x, y, z, each solution has an Rspectral 

value obtained by 

Rspectral =
∑

i

(
wm,iFm,i +wσ,iFσ,i

)
(8)  

2.3.1.1. Earthquake scenario (Rcausal). A rank of the GM sets (in 
ascending order) by criteria related to the earthquake scenarios and site 
conditions is obtained through Rcausal. In this way, stricter criteria than 
those introduced in section 2.1.2 can be explored as ranking objective. 
For example, based on the PSHA results and disaggregation of the haz
ard at the site of interest, the values of Mw, RJB and Vs,30 of the most 
contributing scenario(s) can be chosen, resulting in BoundedRecPool*, a 
subset of the database BoundedRecPool used for selection. Therefore, the 
value of Rcausal for each set based on the number of records Rec included 
in BoundedRecPool* is obtained by 

Rcausal = 1 −
|Rec ∈ BoundedRecPool*|

|Rec|
(9)  

2 on a personal computer with 3 GHz Intel Xeon W CPU processor. 
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2.3.1.2. Target distribution match (Rdist). An important element of the 
proposed selection process is the ability to specify a target distribution of 
spectral accelerations (instead of only mean and standard deviation 
targets), at specific periods in the spectrum. To assess and to rank the 
resulting GM sets based on this objective, the metric value d from the 
Kolmogorov-Smirnov goodness of fit test is used [49], which is the 
maximum absolute value of the difference between the empirical (i.e. 
the one obtained from the sets) and the target cumulative distribution 
function. As an example, Fig. 3 shows the metric value d for two 
different empirical distributions X1 and X2, where the comparison to the 
same target distribution appears to be better in X1 compared to X2, even 
though X1 and X2 have the same means and standard deviations. In 
Fig. 3, it is clear that a lower d value corresponds to a better fit to the 
target distribution and is therefore assigned as Rdist for each GM set, or in 
case of multiple periods of interest, the sum of d values in all of them is 
assigned, resulting in a rank of the solutions in ascending order. 

3. Applications 

In this section, several applications of GM selection using the pro
posed procedure are presented to demonstrate its main features and 
contributions. Since multi-dimensional target selection is one of the 
main extensions of the current work, the ultimate case of three- 
component target selection is presented along with the most common, 
one-component horizontal target selection. It is considered that the 
other record selection options supported through this work, as presented 
in Table 1, are essentially extensions or simplifications of the one- or 
three-component target selection respectively, and therefore, perform
ing applications with respect to them does not lead to a deeper under
standing of the proposed approach or its efficiency. 

As mentioned earlier, efficiency in GM selection usually refers to the 
ability of the procedure to select GM sets fast and with good agreement 
with respect to the target spectra. The latter can be qualitatively assessed 
by the values of the objective functions obtained from Equations (2) and 
(3), or most commonly, quantitatively assessed schematically by the 
spectra. In this work, the applications that demonstrate successful 
spectral matching are presented in section 3.2. Reduced computation 
time is always a requirement in engineering applications. Since in the 
current procedure the time required for GM selection is in the range of 
minutes (up to a couple of hours if the application requires it), in the 
next applications the computation time is indicated only if it provides 
understanding and not to evaluate the process in terms of computation 
speed. 

A different notion of efficient GM selection is explicitly investigated 
in section 3.1, where the proposed methodology is tested for its ability to 
extract GM set(s) that form a near-global (in contrast to a local) optimum 
solution to the optimization problem. A “global” optimum means that 
the resulting GM set(s) is the optimal solution among all possible solu
tions. Not converging to global optima is a typical concern when opti
mization techniques are used to solve problems. It is proposed here that 
this application is used as a benchmark process for the various GM 

selection optimization approaches to address this issue. 

3.1. Extracting the globally optimal solution 

To examine whether a GM selection strategy provides the globally 
optimal solution, the entire solution space must be explored (i.e., test the 
outcome of the objective functions for all possible combinations of re
cords and keep the best ones), which is computationally very expensive. 
In this work, an alternative strategy is introduced explained by the al
gorithm presented above (subsequently referred as “Algorithm 1”) to 
showcase whether the proposed methodology approaches the global 
optimum. 

The process starts by providing a pool of GM records, referred to as 
RecPool, along with the admissible ranges of the causal parameters 
M(range)

w , R(range)
JB , V(range)

s,30 that form the pre-selection criteria for screening 
the pool of GM records (as would be the case in any typical GM selection 
strategy), and the number of records (nk* ) in the GM set k* along with a 
constant scale factor (SFk* ). After screening the RecPool, to create the 
BoundedRecPool, nk* GM records are selected randomly and scaled with 
SFk* , forming the set k*. The mean and standard deviation spectra of this 
set are computed by Equations (5) and (6), and they are assigned as 
targets for the optimization process. The process is then performed with 
the objective of satisfying Equations (2) and (3), where the solutions, i. 

Fig. 3. Schematic representation of the comparison of the empirical distribution functions of (a) X1, (b) X2, with a common target distribution by the metric value d.  

Fig. 4. The globally optimal solution Setk* with nk* = 7 GM records represented 
by the individual spectra (gray lines), their mean spectrum (black solid line), 
and 16th and 84th percentile spectra (black dashed lines), together with the 
results of the Algorithm 1 (corresponding blue lines) of the pareto-optimal 
solution Setk− 25, obtained after 25 iterations. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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e., GM sets k = 1, …, K, that all have nk* records, are assessed in 
approaching the already known globally optimal solution, i.e., GM set 
k*. The ratio of the number of common records in each of the k = 1,…,K 
sets and k* over nk* is obtained and the maximum value, denoted 
GlobalSolutionRatio, is the output of the process, where 
GlobalSolutionRatio = 1 means that the global solution is found. It 
should be noted that this process is identical regardless of the number of 
components utilized from the GM records. 

Algorithm 1. Globally optimal solution benchmark  

The initial pool of records RecPool comes from the NGA-West2 
database [50], which contains 21,336 (mostly) three-component GM 
records from 599 events covering a wide range of magnitudes, 
source-to-site distance and soil conditions. To screen this database, 
considering less diverge (i.e., more realistic to be used in a GM selection 
process) earthquake scenario parameters, a choice of magnitudes with 
M(range)

w ∈ [5.5, 7.9], source-to-site distances in km with R(range)
JB ∈ [0, 100]

and shear wave velocity in m/s with V(range)
s,30 ∈ [180, 360] is chosen, 

resulting in BoundedRecPool containing 682 GM records. 
With these pre-selection criteria and SFk* = 2.5, the Algorithm 1 is 

tested for GM sets of nk* = 7 records and repeated 10 times, because its 
random nature might play an important role in the outcome. The pop
ulation size is increased to 50,000 for this application to explore the 
solution space more thoroughly.3 The genetic algorithm is terminated 
after 100 iterations, resulting in a total calculation of 5 million in
dividuals. After the completion of each one of the 10 repetitions, the 
exact global optimum solution Setk* is found (i.e GlobalSolutionRatio =

7/7), as well as the exact value of the scale factor SFk* = 2.5. For each of 
the 10 repetitions of the algorithm, approximately 30 min of computa
tion time is required in order to compute all 100 iterations.4 

In Fig. 4 one run of the algorithm is demonstrated through the in
dividual spectra of the records in Setk* (gray lines), their mean5 spectrum 
(black solid line) and their 16th and 84th percentile spectra (black 
dashed lines). Note that this is the globally optimal solution and is ob
tained when the algorithm is stopped after 100 iterations. The early 
progress of the algorithm is also shown (by the corresponding blue 
lines), via the pareto-optimal solution Setk− 25, which is obtained after 
only 25 iterations. It is evident that a near-global optimal solution is 
reached after this small number of iterations, since 
GlobalSolutionRatio = 3/7 and the spectral match is of high quality. For a 
better understanding of the convergence process, note that after 25 it
erations, all 7 records of Setk* are present in the different pareto-optimal 
solutions, and hence the globally optimal solution Setk* is returned 
within the following 75 iterations due to the effect of the crossover 
operation. 

It is noteworthy that examining a total of 5 × 106 solutions during 
this optimization scheme is only a fraction of the total solution space, 

which is defined by the binomial coefficient 
(

682
7

)

≈ 1.3× 1016. In 

other words, if these 5 × 106 solutions were randomly selected to find 

Fig. 5. The globally optimal solution Setk* with nk* = 20 GM records repre
sented by the individual spectra (gray lines), their mean spectrum (black solid 
line) and 16th and 84th percentile spectra (black dashed lines), together with 
the results of the Algorithm 1 (corresponding blue lines) of the pareto-optimal 
solution Setk (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 

3 A discussion on possible changes of the population size for the optimal 
performance of the algorithm is presented in Appendix A.  

4 on a personal computer with 3 GHz Intel Xeon W CPU processor.  
5 It refers to the geometric mean. Since the arithmetic mean of the natural 

logarithm of spectral accelerations is associated with the target in Equation (2), 
it is equivalent to show and compare the geometric mean of spectral acceler
ations in the non-logarithmic domain. 

K.T. Tsalouchidis et al.                                                                                                                                                                                                                        



Soil Dynamics and Earthquake Engineering 148 (2021) 106734

9

the globally optimal solution, the probability of obtaining it would be 
approximately 3.8× 10− 10. Consequently, the efficiency of the proposed 
algorithm appears to be impeccable and the consistency in its perfor
mance, regardless of the random nature of the benchmark process, 
demonstrates its robustness. 

To aggravate the optimization problem of returning the globally 
optimum solution, nk* = 20 records is also tested here. Increasing the 
number of records in the GM set results in a smoother (i.e. less unique) 
shape in the target mean and standard deviation spectra, which means 
that multiple different solutions can converge to the globally optimum 
one. Moreover, the volume of the solution space increases significantly 

to 
(

682
20

)

≈ 1.5× 1038, i.e., approximately 1022 times larger than in 

the case of nk* = 7 records. The same procedure is performed without 
constraining the iterations, resulting in pareto-optimal solutions that 

show good agreement with the target spectra and GlobalSolutionRatio =

10/20, here presented by one solution Setk in Fig. 5, similar to Fig. 4. 
Even though the exact globally optimal solution Setk* is not returned in 
this case, it is considered that a near-global one is reached since the 
spectral match is of high quality and a high percentage is achieved in 
GlobalSolutionRatio. Details of the GM record sets appearing in Figs. 4 
and 5 are provided in Appendix A, in Table A.3 and A.2, respectively. 

3.2. Extracting GM sets that meet spectral multi-objective criteria 

3.2.1. Meeting targets in first and second order statistics of the response 
spectra 

The application presented in the predecessor of the proposed pro
cedure [41] is revisited here, extracting a three- instead of 
one-component GM set for Century City, California. In that work [41], 
the design spectrum according to ASCE (2010) was employed as the 
target mean spectrum while the target standard deviation spectrum of 
the natural logarithm of spectral accelerations was constant with σ = 0.8 
and the maximum value of scale factors was 5, similarly to other 
research endeavors and guidelines on the topic. 

Here, the same targets are utilized for both horizontal directions, a 
rather difficult multi-component target objective since the two hori
zontal components of each record are usually very similar in spectral 
shape but with some small differences in spectral amplitude. For this 
reason, similar to Ref. [31], a differentiation of 5% between the scale 
factors of the components of each record is allowed, while the same scale 
factor bound of 5 is preserved. To adopt a compatible choice for the 5% 
damped vertical design acceleration spectrum, the suggestion of the U.S. 
National Earthquake Hazards Reduction Program (NEHRP) as proposed 
in Ref. [51] is followed, which utilizes a modified version of the meth
odology developed by Campbell and Bozorgnia [52]. Details about this 
methodology and the exact calculations leading to the adopted vertical 
design acceleration spectrum can be found in Ref. [36]. The NGA-West2 
database is utilized [50], with the following earthquake scenario and 
site parameters as screening criteria: magnitudes with M(range)

w ∈ [5.5,
7.9], source-to-site distances in km with R(range)

JB ∈ [0, 100] and shear 

Fig. 6. Spectra of the individual GMs of the pareto-optimal solution Setk (gray), their mean spectra (black) and the target mean spectra (red) in (a) x, (b) y, and (c) z 
directions; (d) target standard deviation spectra (red) of the natural logarithm of spectral accelerations and the corresponding spectra of the pareto-optimal solution 
Setk in x, y and z directions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 7. Minimum, maximum and mean scores of the objective functions for all 
pareto-optimal solutions and those of Setk. 
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wave velocity in m/s with V(range)
s,30 ∈ [180, 360], resulting in 682 

three-component GM records. A wide range of periods in the spectrum is 
selected from 0.3s to 3s for both horizontal components and 0.05s–0.5s 
for the vertical component, reflecting realistic ranges of interest for 
multi-story building frame structures. Finally, it is chosen that a range of 
20–30 GM should be included in the resulting sets. 

The results of the optimization process are presented by a pareto- 
optimal solution Setk, where in Fig. 6 (a), (b) and (c) show respec
tively the x, y, and z components of the individual GM spectra (gray 
lines), their mean spectrum (black lines) and the mean target spectrum 
(red lines). In Fig. 6 (d), the standard deviation spectra of the natural 
logarithm of the spectral accelerations for x (black), y (blue), and z 
(green) components are shown along with their common target (red). 
The period ranges of interest for the horizontal and vertical components 
are enclosed by corresponding vertical dashed lines in Fig. 6 (a)–(d). 
Overall, except for the standard deviation of the vertical component 
(Fσ,z), the quality of the match in the desired period ranges appears to be 
excellent. This is also portrayed in Fig. 7, where the scores of the six 
objective functions are shown for Setk along with the minimum, 
maximum and the mean of scores for all pareto-optimal solutions. 
Compared to the scores of the other objective functions of Setk, Fσ,z ap
pears worse. 

The GM set Setk is the pareto-optimal solution obtained by the post- 
processing metric Rspectral, presented in section 2.3 when Equation (8) is 
calculated for wm,i = wσ,i = 1, i = x, y, z. This choice of weights seems 
reasonable, since it assigns equal importance to the six objective func
tions when they are summed. However, adding absolute values of the 
first and second order statistics of the spectral accelerations, from the 
three orthogonal directions, is rather arbitrary and has no physical 
meaning. The resulting spectra of a different GM set obtained for a 
different selection of weights are presented in Appendix A, through 
Figs. A.10 and A.11 similar to Figs. 6 and 7. This example demonstrates 
that a given set of weights can provide a GM set that minimizes some 
objective functions to a great extent, but is insufficient overall. It sup
ports the superiority of multi-objective selection, since it is not hindered 
by this choice prior to the optimization process, and therefore multiple 
alternatives of weight factors can be explored posteriorly, without any 
computational cost. 

3.2.2. Meeting distribution function targets at periods of the response 
spectra 

In addition to good fitting of the target mean and standard deviation 
spectra, the ability to match probability distribution targets is also 
investigated, through the effect of spectral accelerations falling into 
appropriate bins, as explained in section 2.1.2. To this end, the appli
cation presented in section 3.2.1 is revisited, this time performing one- 
component (instead of three) horizontal GM selection. The targets, 
earthquake scenario and site parameters, as well as the other options (e. 
g., the number of records in the GM sets being in the range of 20–30) 
remain the same here. Considering the lognormal distribution as the 
target, the effect of the additional objective FLHS from Equation (4) is 
examined using the resulting cumulative distributions of spectral ac
celerations at two specific periods in the spectrum range, at T = 1s and 
T = 2s. The GM selection process is repeated three times, assigning FLHS 
in different ways explained hereafter. After the optimization is com
plete, the distribution-matching post-processing metric Rdist presented in 
section 2.3 is employed to rank the pareto-optimal solutions. This is 
applied consistently in all three applications to avoid bias6 and the best 
performing GM set from each application is compared, denoted Setk1, 
Setk2 and Setk3, respectively. 

The first application, represented in Fig. 8 by Setk1, has no distribu
tion function requirements, i.e., the objective function FLHS is not 
applied. Essentially, this is a one-component simplification of the 
application in section 3.2.1. Fig. 8 (a) shows the individual GM spectra 
of Setk1, their mean and the target mean, along with the spectral ac
celerations of interest at T = 1s and T = 2s highlighted with blue and 
green markers, respectively. Fig. 8 (b) shows the standard deviation 
spectra with their target. Fig. 8 (c) and (d) show the empirical cumu
lative distributions of the spectral accelerations at T = 1s and T = 2s, 
respectively, along with the corresponding lognormal distribution 
function with the same mean and standard deviation. In the second 
example, FLHS is applied for T = 1s and in the third example, FLHS is 
applied simultaneously at T = 1s and T = 2s. The results are depicted in 

Fig. 8. Results for one-component GM selection when FLHS is not applied, represented by (a) spectra of individual GMs, their mean and target mean; (b) their 
standard deviation spectra and the target; empirical and target cumulative distribution of spectral accelerations at (c) T = 1s; and (d).T = 2s 

6 Rdist is applied for both T = 1s and T = 2s simultaneously in all three 
applications. 
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Fig. 9 (a) - (d) (Setk2) and Fig. 9 (e)–(h) (Setk3), similarly to Fig. 8 (a)–(d). 
There are 25 records in Setk1 as well as Setk2 and 20 records in Setk3. 

The quality in matching the mean and standard deviation targets of 
Setk1, Setk2 and Setk3 (Fig. 8 (a), (b) compared to the results of Fig. 9 (a), 
(b), (e), (f)) leads to the conclusion that the additional requirement of 
matching distribution functions does not obstruct the main objective of 
meeting first and second order statistics in a range of periods. Even 
though the quality of the match of Setk1 is slightly better compared to 
Setk2 and Setk3, it seems that all of them meet these targets almost 
perfectly. 

The improved match between empirical and target cumulative dis
tributions based on FLHS becomes apparent when comparing Fig. 9 (c), 
(d), (g), (h) with Fig. 8 (c) and (d). Moreover, it is interesting to compare 
Setk2 with Setk3, i.e., in the former case FLHS is applied at T = 1s and in 
the latter case FLHS is applied at T = 1s and T = 2s. It is observed that the 

match of the distribution at T = 2s is better for Setk3, without a 
compromise on the quality of the distribution at T = 1s. Therefore, the 
application of FLHS in more than one periods appears to be advantageous. 
To quantitatively assess the effect of FLHS, it is found that the number of 
empty bins NEmpty in T = 1s and T = 2s cumulatively is 12 out of 2 ×

25 = 50 for Setk1 (having 25 records) and only 1 out of 2 × 20 = 40 for 
Setk3 (having 20 records), showing the large influence it can have. It is 
well known that an increased number of records in a GM set causes the 
probability distribution of the spectral accelerations to resemble the 
lognormal [4] and this is arguably the case in all three applications here. 
However, these results show that although there are fewer records in 
Setk3 compared to Setk1, their distribution fits the lognormal distribution 
better. This is a promising effect of stratified sampling, which is 
approximated here by an LHS equivalent scheme, resulting in a 
“favorable” distribution of spectral accelerations. It appears that it can 

Fig. 9. Results for one-component GM selection, similar to Fig. 8, when FLHS is applied on T = 1s (a)–(d); and when FLHS is applied on both T = 1s and T = 2s (e)–(h).  
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be used to reduce the number of records in the GM sets while preserving 
the same quality of the distributions of spectral accelerations. Fewer 
records in a GM set means fewer response history computations and is 
generally desired. 

4. Summary and conclusions 

A robust methodology for selecting and scaling GM records has been 
proposed that is versatile for meeting targets in first and second order 
statistics of the acceleration response spectrum in a wide range of pe
riods, as well as meeting distribution function targets of spectral accel
erations at specific ordinates of the spectrum. The latter is a unique 
contribution achieved through a novel strategy in GM selection that 
mimics the LHS scheme to yield GM sets that not only fit the desired 
distribution function targets, but also very efficiently yield better results 
on a reduced number of records. Efficiency is also studied here in terms 
of the ability of the proposed optimization scheme to provide optimal 
results. To this end, a significant contribution in this work is a bench
marking algorithm introduced to assess GM selection optimization 
schemes. Through this benchmarking process, it is shown that the pro
posed methodology is able to deliver results consisting of the global (or 
near global) optimum solutions, which means that no other solution can 
be found that matches better at least one target without reducing the 
quality of the others. The current methodology utilizes evolutionary GA 
to satisfy the above targets by performing multi-objective optimization, 
which is claimed here to provide robust results. Moreover, the above 
selection capabilities are applicable in up to three-component GM, 

making the proposed approach ideal for numerous GM selection appli
cations. The methodology has been scrutinously implemented in Matlab 
and is available from the authors. When developing the software, 
emphasis was placed on guiding the user through the selection phases, 
ensuring ease of use and allowing complete flexibility in calibrating all 
of the parameters involved in the selection process. 
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Appendix A. Supplementary data and results for the applications 

Appendix A.1. Extracting the globally optimal solution 

The GM records of Setk* and Setk that appear in Figure 5 are presented here in Table A.2 and the ones of Setk* and Setk− 25 that appear in Figure 4 are 
presented in Table A.3. The common records in the sets appear at the top and are highlighted in bold, and for each record the earthquake name and the 
unique sequence number in the NGA-West2 database [50] is provided. It is noteworthy that both in Table A.2 and A.3, in addition to the common GM 
records in the sets, the non-common ones frequently come from the same earthquake event, share common features, and thus effectively substitute 
each other. 

Note that in this application where the goal is to extract the globally optimal solutions, the population size is increased to 50000 (from the default 
value being 1000 in the proposed method). This ensures that the solution space is explored thoroughly, while keeping the computation time relatively 
low. Normally, the potential user of the method would not need to adjust this value, unless a similar need to thoroughly explore the solution space is 
considered necessary. For example, if the solution space is significantly larger than the ones in the applications presented, then this could be a good 
practise to ensure better quality in the expense of speed in computations. Note that the solution spaces presented here are already large, representing 
realistic applications where a couple hundreds of records are available and a couple tens of records are required in the GM sets.  

Table A.2 
GM records of Setk* and Setk appearing in Figure 5 with the earthquake names and unique sequence numbers of the NGA-West2 database [50].   

Setk*  Setk  

no. earthquake name NGA no. earthquake name NGA no. 

1 Chi-Chi, Taiwan-04 2729 Chi-Chi, Taiwan-04 2729 
2 Chi-Chi, Taiwan-04 2733 Chi-Chi, Taiwan-04 2733 
3 Chi-Chi, Taiwan-03 2592 Chi-Chi, Taiwan-03 2592 
4 Chuetsu-oki 4895 Chuetsu-oki 4895 
5 Duzce, Turkey 1602 Duzce, Turkey 1602 
6 Landers 862 Landers 862 
7 Chi-Chi, Taiwan 1598 Chi-Chi, Taiwan 1598 
8 Chi-Chi, Taiwan 1264 Chi-Chi, Taiwan 1264 
9 Imperial Valley-06 174 Imperial Valley-06 174 

10 Iwate 5781 Iwate 5781 
11 Chi-Chi, Taiwan 1539 Chi-Chi, Taiwan 1224 
12 Chi-Chi, Taiwan-03 2651 Chi-Chi, Taiwan 1180 
13 Darfield, New Zealand 6975 Darfield, New Zealand 6927 
14 Iwate 5782 Iwate 5812 
15 Tottori, Japan 3963 Tottori, Japan 3937 
16 Chi-Chi, Taiwan-05 3215 Imperial Valley-06 175 
17 Chi-Chi, Taiwan-03 2648 Chi-Chi, Taiwan-03 2501 

(continued on next page) 

K.T. Tsalouchidis et al.                                                                                                                                                                                                                        



Soil Dynamics and Earthquake Engineering 148 (2021) 106734

13

Table A.2 (continued )  

Setk*  Setk  

no. earthquake name NGA no. earthquake name NGA no. 

18 Kocaeli, Turkey 1155 El Mayor-Cucapah 5985 
19 Whittier Narrows-01 638 Chuetsu-oki 4997 
20 Chi-Chi (aftershock 4), Taiwan 3860 Chi-Chi, Taiwan-06 3494  

Appendix A.2. Meeting targets in first and second order statistics 

An additional pareto-optimal solution to the one presented as a result of the application in 3.2.1 is shown here to demonstrate that the selection of 
weights is not straightforward and should be repeated to ensure that the final choice from the pareto-optimal solutions satisfies the requirements of the 
problem in the best way. In Figure 6, the solution Setk is obtained when all weights are assigned the same value wm,i = wσ,i = 1, i = x,y,z, and the 
scores of the objective functions are shown in Figure 7. Here, in Figure A.10 and A.11, the pareto-optimal solution is obtained when more importance 
is given to the standard deviation spectra with wm,i = 0.05 and wσ,i = 1, i = x,y,z. It can be seen that the resulting solution strongly favors the standard 
deviation match in all components and does not provide acceptable results for the mean targets.  

Table A.3 
GM records of Setk* and Setk− 25 appearing in Figure 4 with the earthquake names and unique sequence numbers of the NGA-West2 
database [50].   

Setk*  Setk− 25  

no. earthquake name NGA no. earthquake name NGA no. 

1 Chi-Chi, Taiwan-04 2732 Chi-Chi, Taiwan-04 2732 
2 Chi-Chi, Taiwan-05 2945 Chi-Chi, Taiwan-05 2945 
3 Loma Prieta 778 Loma Prieta 778 
4 Chi-Chi, Taiwan 1320 Chi-Chi, Taiwan 1598 
5 Kobe, Japan 1118 Niigata, Japan 4207 
6 El Mayor-Cucapah 5832 Morgan Hill 457 
7 Chi-Chi, Taiwan-05 2939 Taiwan SMART1(45) 3679  

Figure A.10. Spectra of the individual GMs of the pareto-optimal solution Setk (grey), their mean spectra (black) and the target mean spectra (red) in (a) x, (b) y, and 
(c) z directions; (d) target standard deviation spectra (red) of the natural logarithm of spectral accelerations and the corresponding spectra of the pareto-optimal 
solution Setk in x, y and z directions.  
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Figure A.11. Scores of the objective functions for all pareto-optimal solutions, the mean scores of all solutions and those of Setk.  
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