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A B S T R A C T

This paper presents a beam theory for analyzing the dynamic bending response of slender slightly curved
composite beams whose layers are flexibly connected and therefore subject to interlayer slip. The equations of
motion and boundary conditions are derived using Hamilton’s principle, assuming separately for each layer the
applicability of Euler–Bernoulli theory and a linear elastic relationship between the interlayer slip and the shear
traction. For the problem of a three-layer slightly curved single-span beam with symmetric layer arrangement
and soft-hinged bearings, analytical expressions for the natural frequencies and the eigenfunctions are derived.
For the arbitrarily supported two-layer beam, on the other hand, a numerical solution scheme of the combined
initial boundary value problem is presented. Several examples show how important it is to consider even very
small deviations from the straight beam axis in the prediction of the dynamic response for slender beams with
interlayer slip, in particular when all supports are immovable. The comparison of the beam solutions with
the results of much more expensive FE analyses based on plane stress elasticity proves the accuracy of the
presented theory.
1. Introduction

Layered structural members such as beams, plates and shells consist
of several layers of different materials that are joined together. If
the flexibility of the fasteners (e.g. adhesives, bolts and nails) is very
low, then the layers are assumed to be rigidly bonded. However, very
often the connection of the layers is flexible, which results in relative
displacement of the layers at the interfaces when a load is applied,
which is referred to in the literature as interlayer slip. In composite
members with flexibly bonded layers, the mechanical behavior is more
complex than in homogeneous members. This has been recognized for
a long time and corresponding theories have been developed in the past
for the analysis of composite beams with interlayer slip.

As examples of many publications on the structural analysis of
layered beams with flexible bonding, the papers [1–3] are mentioned
here. In a recent paper [4] even the rotational stiffness of the interface
between two layers, modeled according to Timoshenko theory, was
taken into account. In a more elaborate approach, [5] solved the Airy
stress function for the two-layer beam with interlayer slip assuming a
plane stress distribution. Investigations on buckling of beam columns
with interlayer slip can be found, for instance, in [6,7]. In addition,
numerous research efforts have been made to model the geometric
and material non-linear behavior of beams with interlayer slip [8–
10]. Several studies are also concerned with predicting the dynamic
response of composite beams with flexible bonding, such as [11–17].
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In all these studies it is assumed that the beam axis is straight. In
reality, however, the member axis is almost always curved, either due
to an unintentional imperfection or intentionally. Depending on the
scale and boundary conditions, such initial deflection can have a major
impact on the response of the structural member. Accordingly, there
are many papers in which corresponding theories have been proposed
to predict the response of curved beams. These papers refer either to
homogeneous beams (e.g. [18–20]) inhomogeneous beams (e.g. [21–
23]) or layered beams with rigid bonding (e.g. [24–29]). In this context,
some studies on the dynamic behavior of shells and curved panels
should also be mentioned [30–38]. A review on vibrations of curved
(and straight) layered beams can be found in [39]. However, to the
authors’ knowledge only the study by Lengyel [40,41] exists for the
static analysis of composite beams with deep curvature and interlayer
slip. For slightly curved beams, a first paper on the static analysis of
moderately large deflections of such layered members with flexible
bonding has been published only recently [42]. The dynamic response of
curved laminated beams with interlayer slip has not been investigated
at all so far.

To fill the gap, this paper presents a beam theory for the analysis
of linear free and forced small vibrations of slightly curved composite
beams with elastically bonded layers. This theory is based on a layer-
wise application of the Euler–Bernoulli theory as well as linear elastic
material behavior. After establishing the basic kinematic relations and
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the force and moment resultants for a three-layer beam, the equations
of motion and the corresponding boundary conditions are derived by
means of Hamilton’s principle. Slender beams in the low frequency
range are considered, thus shear deformation, rotational inertia and
longitudinal inertia are neglected. For a soft-hinged three-layer beam
with symmetric layer structure, analytical expressions for the natural
frequencies and eigenfunctions are found. The difference in the modal
parameters between the horizontally immovably supported slightly
curved beam and the beam with one horizontally sliding support is
elaborated. The free and forced vibration of a slightly curved two-
layer beam with arbitrary boundary conditions, on the other hand, is
determined approximately by applying the Galerkin method. The modal
parameters found with this beam theory and the vibration response
of application examples are contrasted with results from comparative
finite element (FE) analyses on numerical models based on a plane
stress state to show the accuracy of the proposed theory.

2. Basic equations

A layered beam of length 𝑙 under plane bending is considered, for
hich the following assumptions apply:

• The beam axis has a small initial deflection in the unloaded state,
which is small compared to the length 𝑙

• The beam is slender, i.e. the height of the cross-section is small
compared to the length 𝑙

• The layers are linearly elastic with arbitrary homogeneous cross-
section whose parameters are constant over the length 𝑙

• The layers are rigid in shear and the cross-section remains con-
stant

• The layers are elastically bonded in the longitudinal direction and
rigidly bonded in the vertical direction

• The dynamic response is small compared to the height of the
cross-section

Due to the flexible bond, the layers are translated longitudinally
elative to each other at the layer boundaries under load, which is
eferred to as interlayer slip. A Cartesian coordinate system with the
rigin in the beam axis at the left support is used as the reference
ystem. The 𝑥-coordinate describes the variation of the variables in the
ongitudinal direction of the member, the origin of the 𝑧-coordinate,

which is directed vertically from top to bottom, is located in the beam
axis and the 𝑦-coordinate is perpendicular to the 𝑥 − 𝑧 plane. In the
following, the equations of motion for a beam composed of three layers
subjected to the vertical distributed time-varying load 𝑝(𝑥, 𝑡) are derived
as an example as shown in Fig. 1. However, the derivation for a beam
of two layers or for a beam with more than three layers can be carried
out without additional assumptions and is thus straightforward. The
top layer is indicated with the subscript 𝑖 = 1, the central layer with
𝑖 = 2 and the bottom layer with 𝑖 = 3. The beam axis is the line
connecting the elastic centers of gravity of the composite cross-section,
which therefore corresponds to the beam axis of the associated beam in
which the layers are rigidly connected. The slight initial deflection in
the stress-free state is referred to as 𝑤̂(𝑥). Depending on the geometry
of the cross-section and elastic stiffness, the beam axis can be located
in any of the three layers. For the following representation of the
longitudinal displacement field, it is however assumed that the beam
axis is located in the second layer as depicted in Fig. 1. Nevertheless,
the formulation of the displacement field for a different position of the
beam axis can be done without additional effort.

Since the individual layers are supposed to be rigid in shear, the
kinematic assumptions of Euler–Bernoulli theory can be applied to
each layer separately. The deflection, which is superposed to the initial
deflection 𝑤̂(𝑥), is therefore, in addition to time 𝑡, only a function of
𝑥 in each fiber of the three layers: 𝑤𝑖(𝑥, 𝑡) = 𝑤(𝑥, 𝑡). The longitudinal
displacement of a point in the 𝑖th layer at 𝑥 and the distance 𝜁𝑖 from

the local center of gravity of this layer is composed of the longitudinal
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displacement 𝑢(0)𝑖 (𝑥, 𝑡) of this center of gravity and the contribution due
to the cross-sectional rotation 𝑤,𝑥(𝑥, 𝑡),

𝑢𝑖(𝑥, 𝜁𝑖, 𝑡) = 𝑢(0)𝑖 (𝑥, 𝑡) − 𝜁𝑖𝑤,𝑥(𝑥, 𝑡) 𝑖 = 1, 2, 3 (1)

As shown in Fig. 2, the longitudinal displacements of the local center
of gravity of the second and third layer 𝑢(0)2 (𝑥, 𝑡) and 𝑢(0)3 (𝑥, 𝑡) and
the longitudinal displacement of the beam axis 𝑢(∞)(𝑥, 𝑡) can then be
expressed as follows

𝑢(0)2 (𝑥, 𝑡) = 𝑢(0)1 (𝑥, 𝑡) −
(

𝑧2 − 𝑧1
)

𝑤,𝑥(𝑥, 𝑡) + 𝛥𝑢1(𝑥, 𝑡) (2)

𝑢(0)3 (𝑥, 𝑡) = 𝑢(0)1 (𝑥, 𝑡) −
(

𝑧3 − 𝑧1
)

𝑤,𝑥(𝑥, 𝑡) + 𝛥𝑢1(𝑥, 𝑡) + 𝛥𝑢2(𝑥, 𝑡) (3)

𝑢(∞)(𝑥, 𝑡) = 𝑢(0)1 (𝑥, 𝑡) + 𝑧1𝑤,𝑥(𝑥, 𝑡) + 𝛥𝑢1(𝑥, 𝑡) (4)

as a function of 𝑢(0)1 (𝑥, 𝑡), 𝑤,𝑥(𝑥, 𝑡) and the interlayer slip between the
top and the central layer 𝛥𝑢1(𝑥, 𝑡) and the interlayer slip between the
central and the bottom layer 𝛥𝑢2(𝑥, 𝑡). In the above equations 𝑧1 (𝑧3) is
the vertical coordinate from the beam axis to the centroid of the top
(bottom) layer, see Fig. 1. By rearranging Eq. (4), 𝑢(0)1 (𝑥, 𝑡) is written as
a function of 𝑢(∞)(𝑥, 𝑡),

𝑢(0)1 (𝑥, 𝑡) = 𝑢(∞)(𝑥, 𝑡) − 𝑧1𝑤,𝑥(𝑥, 𝑡) − 𝛥𝑢1(𝑥, 𝑡) (5)

Once the displacement field of the member is defined, the strains
can be introduced. For linear small amplitude vibrations, the strain
at the centroid of the 𝑖th layer is composed of the derivative of the
horizontal displacement of the centroid 𝑢(0)𝑖 (𝑥, 𝑡) with respect to 𝑥 and
the contribution 𝑤,𝑥(𝑥, 𝑡)𝑤̂,𝑥(𝑥) due to the initial deflection 𝑤̂(𝑥),

𝑒𝑖(𝑥, 𝑡) = 𝑢(0)𝑖,𝑥 (𝑥, 𝑡) +𝑤,𝑥(𝑥, 𝑡)𝑤̂,𝑥(𝑥) , 𝑖 = 1, 2, 3 (6)

For moderately large nonlinear vibrations of homogeneous slightly
curved beams, the corresponding expression can be found in [43].
However, since in the present problem only small linear vibrations of
slightly curved composite beams are analyzed, the nonlinear part of the
longitudinal strain is dropped. The strain of any fiber in the 𝑖th layer
becomes

𝜖𝑖(𝑥, 𝜁𝑖, 𝑡) = 𝑒𝑖(𝑥, 𝑡) − 𝜁𝑖𝑤,𝑥𝑥(𝑥, 𝑡)

= 𝑢(0)𝑖,𝑥 (𝑥, 𝑡) +𝑤,𝑥(𝑥, 𝑡)𝑤̂,𝑥(𝑥) − 𝜁𝑖𝑤,𝑥𝑥(𝑥, 𝑡) , 𝑖 = 1, 2, 3 (7)

Since the beam under consideration is stressed in the linear elastic
ange, Hooke’s law is applicable. Accordingly, multiplying the longi-
udinal strains 𝜖𝑖(𝑥, 𝜁𝑖) by the modulus of elasticity 𝐸𝑖 of the 𝑖th layer
eads to the longitudinal stresses in this layer. Layerwise integration of
hese stresses yields the axial forces in the individual layers,

𝑖 = 𝐸𝐴𝑖𝑒𝑖 = 𝐸𝐴𝑖
(

𝑢(0)𝑖,𝑥 +𝑤,𝑥𝑤̂,𝑥
)

, 𝑖 = 1, 2, 3 (8)

which, after inserting relations Eqs. (2), (3) and (5), can be expressed
by the applicable derivatives of the kinematic variables 𝑤, 𝑢(∞), 𝛥𝑢1, 𝛥𝑢2
as follows,

𝑁1 = 𝐸𝐴1𝑒1 , 𝑒1 =
(

𝑢(∞)
,𝑥 − 𝑧1𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥 − 𝛥𝑢1,𝑥

)

(9)

𝑁2 = 𝐸𝐴2𝑒2 , 𝑒2 =
(

𝑢(∞)
,𝑥 − 𝑧2𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥

)

(10)

𝑁3 = 𝐸𝐴3𝑒3 , 𝑒3 =
(

𝑢(∞)
,𝑥 − 𝑧3𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥 + 𝛥𝑢2,𝑥

)

(11)

where 𝐸𝐴𝑖 = 𝐸𝑖𝐴𝑖, 𝑖 = 1, 2, 3, is the axial stiffness and 𝐴𝑖 the cross-
sectional area of the 𝑖th layer. Integration of the longitudinal stresses
multiplied by 𝜁𝑖 over the 𝑖th cross-sectional area leads to the layerwise
bending moments [44],

𝑀𝑖 = −𝐸𝐽𝑖𝑤,𝑥𝑥 , 𝑖 = 1, 2, 3 (12)

with 𝐸𝐽𝑖 = 𝐸𝑖𝐽𝑖 denoting the bending stiffness and 𝐽𝑖 the area moment

of inertia about the 𝜂𝑖-axis (see Fig. 1) of the 𝑖th layer. The overall axial
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Fig. 1. Slightly curved beam composed of three elastically bonded layers.
Fig. 2. Cross-section of a three-layer beam with interlayer slip at 𝑥 in its initial (time 𝑡 = 0) and its deformed state (time 𝑡).
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force 𝑁 and the overall bending moment 𝑀 are related to the layerwise
internal forces as

𝑁 =
3
∑

𝑖=1
𝑁𝑖 (13)

𝑀 =
3
∑

𝑖=1

(

𝑀𝑖 +𝑁𝑖𝑧𝑖
)

(14)

The interlaminar shear traction 𝑡𝑠1(𝑥, 𝑡) between in the interface
between the top and the central layer is proportional the interlayer slip
𝛥𝑢1(𝑥, 𝑡), correspondingly, 𝑡𝑠2(𝑥, 𝑡) is proportional to 𝛥𝑢2(𝑥, 𝑡),

𝑡𝑠1 = 𝐾𝑠1𝛥𝑢1 , 𝑡𝑠2 = 𝐾𝑠2𝛥𝑢2 (15)

where 𝐾𝑠1 denotes the slip modulus in the upper interface and 𝐾𝑠2
the slip modulus in the lower interface. The free-body diagram of an
infinitesimal beam element in Fig. 3 shows the layerwise and overall
internal forces.

3. Boundary value problem

3.1. Application of Hamilton’s principle

After the basic relationships have been defined, the boundary value
problem is derived. The most straightforward way to do this is to use
Hamilton’s principle, as this provides not only the equations of motion
but also the boundary conditions. Here it should be noted that the
dynamic response of the beam problem at hand is fully defined by the
deflection 𝑤, the longitudinal displacement of the beam axis 𝑢(∞) and
the two interlayer slips 𝛥𝑢 and 𝛥𝑢 .
1 2

3

According to Hamilton’s principle for a conservative deformable
system, the variation of the time integral over the Lagrangian 𝐿 =
𝑇 − (𝑈 +𝑊 ) is zero [45],

∫

𝑡2

𝑡1
(𝛿𝑇 − 𝛿𝑈 − 𝛿𝑊 )𝑑𝑡 = 0 (16)

where 𝑇 denotes the kinetic energy, and 𝑈 is the potential of the
internal and 𝑊 the potential of the external forces. Since the dynamic
response of the considered structural member is studied in the lower
frequency range, the longitudinal and rotational inertia are neglected.
Only the inertia in the 𝑧-direction is considered, and thus the kinetic
energy reads

𝑇 = 1
2 ∫

𝑙

0
𝜇𝑤̇2(𝑥, 𝑡)𝑑𝑥 (17)

ith 𝜇 =
∑3
𝑖=1 𝜌𝑖𝐴𝑖 denoting the mass per unit length and 𝜌𝑖 the mass

density of the 𝑖th layer. The potential energy of the internal forces is
expressed in terms of the layerwise bending moments 𝑀𝑖 and axial
forces 𝑁𝑖 (𝑖 = 1, 2, 3) and the shear tractions 𝑡𝑠1 and 𝑡𝑠2,

𝑈 = 1
2 ∫

𝑙

0

(

3
∑

𝑖=1

(

𝑀𝑖(𝑥, 𝑡)(−𝑤,𝑥𝑥(𝑥, 𝑡)) +𝑁𝑖(𝑥, 𝑡)𝑒𝑖(𝑥, 𝑡)
)

+
2
∑

𝑗=1
𝑡𝑠𝑗 (𝑥, 𝑡)𝛥𝑢𝑗 (𝑥, 𝑡)

)

𝑑𝑥 (18)

Since the external force 𝑝(𝑥, 𝑡) is applied in the 𝑧-direction only, the
otential of the external forces is as follows

= −
𝑙
𝑝(𝑥, 𝑡)𝑤(𝑥, 𝑡)𝑑𝑥 (19)
∫0
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Fig. 3. Free-body diagram of an infinitesimal three-layer beam element at time 𝑡.
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These expressions are inserted into Eq. (16), and application of the
principles from the calculus of variations yields

∫

𝑡2

𝑡1

{

∫

𝑙

0

(

3
∑

𝑖=1
(𝜇𝑤̈ −𝑀𝑖,𝑥𝑥 −𝑁𝑖,𝑥𝑥𝑧𝑖 −𝑁𝑖𝑤̂,𝑥𝑥

−𝑁𝑖,𝑥𝑤̂,𝑥 − 𝑝)𝛿𝑤 +
3
∑

𝑖=1
(−𝑁𝑖,𝑥)𝛿𝑢(∞)

+ (𝑁1,𝑥 + 𝑡𝑠1)𝛿𝛥𝑢1 + (−𝑁3,𝑥 + 𝑡𝑠2)𝛿𝛥𝑢2
)

𝑑𝑥

+
[

3
∑

𝑖=1
(−𝑀𝑖 −𝑁𝑖𝑧𝑖)𝛿𝑤,𝑥 +

3
∑

𝑖=1
(𝑀𝑖,𝑥 +𝑁𝑖,𝑥𝑧𝑖

+𝑁𝑖𝑤̂,𝑥)𝛿𝑤 +
3
∑

𝑖=1
𝑁𝑖𝛿𝑢

(∞)

− 𝑁1𝛿𝛥𝑢1 +𝑁3𝛿𝛥𝑢2
] 𝑙

0

}

𝑑𝑡 = 0 (20)

According to the calculus of variations, the coefficients 𝛿𝑤, 𝛿𝑢(∞),
𝛿𝛥𝑢1 and 𝛿𝛥𝑢2 are independent of each other. Therefore, the expres-
sions in the brackets before these coefficients must vanish, and they
correspond to the four equations of motion of the beam problem under
consideration. In particular, combining all terms multiplied by 𝛿𝑤 and
onsidering the relations Eqs. (13) and (14) leads to the first equation
f motion,

𝑤̈ −𝑀,𝑥𝑥 −𝑁𝑤̂,𝑥𝑥 = 𝑝 (21)

ote that in this respect ∑3
𝑖=1𝑁𝑖,𝑥𝑤̂,𝑥 = 𝑤̂,𝑥

∑3
𝑖=1𝑁𝑖,𝑥 = 𝑤̂,𝑥𝑁,𝑥 = 0

ecause

,𝑥 = 0 (22)

hich results from the vanishing terms multiplied by 𝛿𝑢(∞). The further
quations of motion are related to 𝛿𝛥𝑢1 and 𝛿𝛥𝑢2 and read, compare
ith (20),

1,𝑥 + 𝑡𝑠1 = 0 (23)

3,𝑥 − 𝑡𝑠2 = 0 (24)

The boundary terms in Eq. (20) represent the pertaining classical
oundary conditions of a slightly curved three-layer beam with inter-
ayer slip without elastic constraints (springs) and lumped masses at
he boundaries. Considering again the relations Eqs. (13) and (14), the
ive boundary conditions are identified as follows,

𝑤,𝑥)𝑏 = 0 or 𝑀𝑏 = 0, 𝑤𝑏 = 0 or (𝑀,𝑥)𝑏 +𝑁𝑏(𝑤̂,𝑥)𝑏 = 0,
(∞)

𝑏 = 0 or 𝑁𝑏 = 0,

4

𝛥𝑢1)𝑏 = 0 or (𝑁1)𝑏 = 0, (𝛥𝑢2)𝑏 = 0 or (𝑁3)𝑏 = 0 (25)

here the subscript 𝑏 indicates a boundary (i.e. 𝑥 = 0 or 𝑥 = 𝑙).
It should be noted that the same set of equations of motion Eqs.

21)–(24) would be obtained by application of conservation of mo-
entum and conservation of angular momentum to the forces of the

ree-body diagram of an infinitesimal beam element shown in Fig. 3
ut with the disadvantage that such an approach does not provide the
oundary conditions.

.2. Equations of motion expressed by the governing kinematic variables

For the solution of this boundary value problem, it is advantageous
o express the equations of motion by the governing kinematic variables
, 𝑢(∞), 𝛥𝑢1, 𝛥𝑢2 and their derivatives with respect to 𝑥 and 𝑡. First, the
verall bending moment 𝑀 is written as a function of the kinematic
ariables, since this internal force enters the first equation of motion
q. (21). Substituting Eqs. (9)–(12) into Eq. (14) leads to

= −𝐸𝐽∞𝑤,𝑥𝑥 − 𝐸𝐴1𝑧1𝛥𝑢1,𝑥 + 𝐸𝐴3𝑧3𝛥𝑢2,𝑥 (26)

here 𝐸𝐽∞ is the bending stiffness of the member whose layers are
igidly bonded, and 𝐸𝐽0 is the bending stiffness of the beam whose
ayers are not bonded,

𝐽∞ = 𝐸𝐽0 +
3
∑

𝑖=1
𝐸𝐴𝑖𝑧

2
𝑖 , 𝐸𝐽0 =

3
∑

𝑖=1
𝐸𝐽𝑖 (27)

he first equation of motion is then obtained by substituting Eq. (26)
nto Eq. (21),

𝑤̈ + 𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 + 𝐸𝐴1𝑧1𝛥𝑢1,𝑥𝑥𝑥 − 𝐸𝐴3𝑧3𝛥𝑢2,𝑥𝑥𝑥 −𝑁𝑤̂,𝑥𝑥 = 𝑝 (28)

Next, Eqs. (9) through (11) are substituted into Eq. (13), yielding
he overall axial force

= 𝐸𝐴𝑒
(

𝑢(∞)
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

− 𝐸𝐴1𝛥𝑢1,𝑥 + 𝐸𝐴3𝛥𝑢2,𝑥 (29)

which is subsequently inserted into Eq. (22) to obtain the second
equation of motion,

𝐸𝐴𝑒
(

𝑢(∞)
,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

− 𝐸𝐴1𝛥𝑢1,𝑥𝑥 + 𝐸𝐴3𝛥𝑢2,𝑥𝑥 = 0 ,

𝐸𝐴𝑒 =
3
∑

𝑖=1
𝐸𝐴𝑖 (30)

Since according to Eq. (22) the overall axial force is constant along the

span, it is convenient to use the following integral representation for
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𝑁 when analyzing the vibration response,

𝑁 =
𝐸𝐴𝑒
𝑙 ∫

𝑙

0

(

𝑢(∞)
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑑𝑥 −
𝐸𝐴1
𝑙 ∫

𝑙

0
𝛥𝑢1,𝑥𝑑𝑥 +

𝐸𝐴3
𝑙 ∫

𝑙

0
𝛥𝑢2,𝑥𝑑𝑥

(31)

as used, for example, in [43] for the analysis of dynamic buckling of
homogeneous slightly curved beams.

Finally, substituting Eqs. (9), (11) and (15) into Eqs. (23) and (24)
delivers the third and fourth equation of motion,

𝐸𝐴1

(

𝑢(∞)
,𝑥𝑥 − 𝑧1𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 − 𝛥𝑢1,𝑥𝑥

)

+𝐾𝑠1𝛥𝑢1 = 0 , (32)

𝐸𝐴3

(

𝑢(∞)
,𝑥𝑥 − 𝑧3𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 + 𝛥𝑢2,𝑥𝑥

)

−𝐾𝑠2𝛥𝑢2 = 0 (33)

3.3. Classical boundary conditions expressed by the governing kinematic
variables

The boundary conditions Eq. (25) are specified for a hinged end
without shear restraints (acronym S), a hard-hinged end (H), a clamped
(C) and a free end (F). In addition, the beam can be horizontally
immovable (I) or movable (M).

Hinged support without shear restraints (soft-hinged support, S). At a
hinged support without shear restraints, referred to as soft-hinged
support, the deflection is zero,

𝑤(∞)
𝑏 = 0 (34)

Moreover, the overall moment and the normal forces in the top and the
bottom layer are zero,

𝑀 (∞)
𝑏 = 0 , (𝑁1)𝑏 = 0 , (𝑁3)𝑏 = 0 (35)

Expressed in terms of the kinematic variables according to Eqs. (26),
(9) and (11), the latter boundary conditions read

− 𝐸𝐽∞(𝑤,𝑥𝑥)𝑏 − 𝐸𝐴1𝑧1(𝛥𝑢1,𝑥)𝑏 + 𝐸𝐴3𝑧3(𝛥𝑢2,𝑥)𝑏 = 0 (36)

(𝑢(∞)
,𝑥 )𝑏 − 𝑧1(𝑤,𝑥𝑥)𝑏 + (𝑤,𝑥)𝑏(𝑤̂,𝑥)𝑏 − (𝛥𝑢1,𝑥)𝑏 = 0 (37)

(𝑢(∞)
,𝑥 )𝑏 − 𝑧3(𝑤,𝑥𝑥)𝑏 + (𝑤,𝑥)𝑏(𝑤̂,𝑥)𝑏 + (𝛥𝑢2,𝑥)𝑏 = 0 (38)

If the support is horizontally immovable, then

𝑢(∞)
𝑏 = 0 (horizontally immovable, I) (39)

and the overall axial force is transferred to the second layer, i.e. (𝑁2)𝑏 =
𝑁𝑏. In the case of a horizontally sliding support, on the other hand, the
overall normal force is zero at the boundary,

𝑁𝑏 = 0 (horizontally moveable, M) (40)

expressed in terms of the kinematic variables, Eq. (29),

𝐸𝐴𝑒
(

(𝑢(∞)
,𝑥 )𝑏 + (𝑤,𝑥)𝑏(𝑤̂,𝑥)𝑏

)

− 𝐸𝐴1(𝛥𝑢1,𝑥)𝑏 + 𝐸𝐴3(𝛥𝑢2,𝑥)𝑏 = 0 (horizontally sliding) (41)

Hard-hinged support (H). In a hard-hinged support, a rigid plate at the
end cross-section restrains the relative displacement between the layers
at the edge, i.e.

(𝛥𝑢1)𝑏 = (𝛥𝑢2)𝑏 = 0 (42)

The deflection and the overall bending moment are zero, i.e. the
boundary conditions Eqs. (34) and (36) apply. Depending on whether
the boundary is horizontally sliding or horizontally restrained, the
boundary condition Eq. (39) or Eq. (41) applies.

Rigidly clamped end (CI). No movement is possible at a rigidly clamped
end, thus in addition to zero deflection (Eq. (34)), zero horizontal
displacement (Eq. (39)) and zero interlayer slips (Eq. (42)), also the
cross-sectional rotation is zero,
(𝑤,𝑥)𝑏 = 0 (43)

5

Free end (F). At a free end, all dynamic boundary conditions are zero,
i.e.

𝑀𝑏 = 0, (𝑀,𝑥)𝑏 = 0, (𝑁1)𝑏 = 0, (𝑁3)𝑏 = 0, 𝑁𝑏 = 0 ((𝑁2)𝑏 = 0)

(44)

see Eq. (25), or expressed by the kinematic variables, the boundary
conditions according to Eqs. (36), (37), (38), (41) hold and it follows
from (𝑀,𝑥)𝑏 +𝑁𝑏(𝑤̂,𝑥)𝑏 = 0, see Eq. (26),

− 𝐸𝐽∞(𝑤,𝑥𝑥𝑥)𝑏 − 𝐸𝐴1𝑧1(𝛥𝑢1,𝑥𝑥)𝑏 + 𝐸𝐴3𝑧3(𝛥𝑢2,𝑥𝑥)𝑏 +𝑁𝑏(𝑤̂,𝑥)𝑏 = 0 (45)

As can be seen from these equations, the analytical solution of
the boundary value problem is most challenging when one end is
soft-hinged supported without shear restraints and both ends are hori-
zontally restrained, since in this case all kinematic variables are coupled
via the boundary conditions.

The complete set of equations of motion and corresponding bound-
ary conditions, which captures the linear dynamic response of slightly
curved composite beams with interlayer slip, can be solved exactly for
simple cases or is the starting point for approximate solutions.

4. Vibration analysis

In the following, the proposed theory is used to analyze the vibra-
tion response of two different beam configurations. In the first case,
the beams are composed of three symmetrically arranged layers. In
one study, both beam ends are soft-hinged supported and completely
immovable; in another study, one support of the beam is horizontally
sliding. For these boundary value problems, an analytical solution of
the dynamic response is found. In contrast, the second problem, which
involves flexibly bonded two-layer beams, is solved numerically.

4.1. Soft-hinged immovably supported three-layer beam with symmetric
layer arrangement (SI-SI)

The symmetrical layer structure simplifies the boundary value prob-
lem considerably. The bending stiffness and longitudinal stiffness of the
top and the bottom layer are equal, and also the slip modulus of both
interfaces are the same. Thus, in Eqs. (32)–(28)

𝐸𝐽3 = 𝐸𝐽1, 𝐸𝐴3 = 𝐸𝐴1, 𝐾𝑠2 = 𝐾𝑠1, 𝑧3 = −𝑧1 = 𝑑 (46)

and the beam axis coincides with the axis of the central layer, i.e. 𝑢(∞) =
𝑢(0)2 . The member is soft-hinged supported, i.e. Eqs. (34), (36)–(38) ap-
ply. Moreover, it is assumed that both ends are horizontally restrained,
thus additionally to boundary condition Eq. (34) boundary condition
Eq. (39) applies. The most significant simplifications resulting from the
symmetric layer arrangement, however concern the remaining three
dynamic boundary conditions. Subtracting Eq. (38) from Eq. (37) and
substituting the outcome into Eq. (36), reveals that

(𝑤,𝑥𝑥)𝑏 = 0 (47)

(𝛥𝑢1,𝑥)𝑏 + (𝛥𝑢2,𝑥)𝑏 = 0 (48)

i.e., the curvature (𝑤,𝑥𝑥)𝑏 is decoupled from the slope of the interlayer
slips (𝛥𝑢1,𝑥)𝑏 and (𝛥𝑢2,𝑥)𝑏. The summation of Eqs. (38) and (37) gives
the fifth boundary condition in a form that is favorable for solving this
boundary value problem,

2
(

𝑢(∞)
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑏
+ (𝛥𝑢2,𝑥 − 𝛥𝑢1,𝑥)𝑏 = 0 (49)

Note that this equation is equivalent of the overall normal force being
transferred to the central layer at the support, i.e. (𝑁2)𝑏 = (𝑁)𝑏.

Furthermore, the small initial deflection is supposed to have the
form of a sine half-wave or a multiple thereof

𝑤̂(𝑥) = 𝑤̂0 sin(𝜆𝑘𝑥) , 𝜆𝑘 =
𝑘𝜋
𝑙
, 𝑘 ∈ N+ (50)

with 𝑤̂ denoting the amplitude of the initial deflection.
0
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Free vibration analysis. As shown in previous studies (e.g. [11,46]), the
eigenfunctions for the deflection of a soft-hinged supported single-span
beam with interlayer slip and straight member axis correspond to a sine
half-wave or a multiple thereof,

𝑊 (𝑖)(𝑥) = 𝛾𝑖 sin(𝜆𝑖𝑥) , 𝜆𝑖 =
𝑖𝜋
𝑙
, 𝑖 = 1, 2, 3,… (51)

with 𝛾𝑖 denoting an arbitrary scaling coefficient of the 𝑖th mode. Since
he same boundary conditions apply as for the straight beam (i.e. 𝑤𝑏 =
𝑤,𝑥𝑥)𝑏 = 0), and the initial deflection is proportional to at least
ne of the eigenfunctions of the straight beam, the eigenfunctions of
he symmetrically layered soft-hinged supported beam are identical to
hose of the corresponding straight beam with interlayer slip.

Before the natural angular frequencies can be calculated, the eigen-
unctions 𝛥𝑈 (𝑖)

1 , 𝛥𝑈
(𝑖)
2 for the interlayer slips 𝛥𝑢1, 𝛥𝑢2 and 𝑈 (∞)(𝑖) for

he longitudinal displacement of the beam axis 𝑢(∞) are determined.
o this end, the 𝑖th eigenfunction for the deflection Eq. (51) and the

nitial deflection in the form of a sinusoidal function Eq. (50) are
ubstituted into the equations of motion Eqs. (30), (32) and (33) instead
f the corresponding kinematic variables. This set of equations is solved
nalytically together with the boundary conditions Eqs. (39), (48) and
49) with the result

𝑈 (𝑖)
1 (𝑥) = 𝛾𝑖𝜆

2
𝑖

⎛

⎜

⎜

⎝

𝑑𝜆𝑖 cos
(

𝜆𝑖𝑥
)

𝜆2𝑖 +
𝐾𝑠1
𝐸𝐴1

− 1
2
𝛽(𝑥)𝑤̂0𝛿𝑖𝑘

⎞

⎟

⎟

⎠

, 𝑖 = 1, 2, 3,… (52)

𝛥𝑈 (𝑖)
2 (𝑥) = 𝛾𝑖𝜆

2
𝑖

⎛

⎜

⎜

⎝

𝑑𝜆𝑖 cos
(

𝜆𝑖𝑥
)

𝜆2𝑖 +
𝐾𝑠1
𝐸𝐴1

+ 1
2
𝛽(𝑥)𝑤̂0𝛿𝑖𝑘

⎞

⎟

⎟

⎠

, 𝑖 = 1, 2, 3,… (53)

𝑈 (∞)(𝑖)(𝑥) = 𝛾𝑖
𝜆𝑖𝑤̂0𝑘

(𝑘 − 𝑖)(𝑘 + 𝑖)
(

𝑖 cos
(

𝜆𝑘𝑥
)

sin
(

𝜆𝑖𝑥
)

− 𝑘 cos
(

𝜆𝑖𝑥
)

sin
(

𝜆𝑘𝑥
))

,

𝑖 ≠ 𝑘 (54)

𝑈 (∞)(𝑖)(𝑥) = 𝛾𝑘𝜆
2
𝑘𝑤̂0

1
2

(

− 1
𝜆2𝑘

sin
(

𝜆2𝑘𝑥
)

+ 𝜃(𝑥)
)

, 𝑖 = 𝑘 (55)

here

𝛽(𝑥) =
𝐸𝐴𝑒𝑙 sinh

(

1
2𝜅 (𝑙 − 2𝑥)

)

4𝐸𝐴1 sinh
(

𝜅𝑙
2

)

+ 𝐸𝐴2𝜅𝑙 cosh
(

𝜅𝑙
2

) ,

𝜃(𝑥) =
2𝐸𝐴1

(

(𝑙 − 2𝑥) sinh
(

𝜅𝑙
2

)

− 𝑙 sinh
(

1
2𝜅 (𝑙 − 2𝑥)

))

4𝐸𝐴1 sinh
(

𝜅𝑙
2

)

+ 𝐸𝐴2𝜅𝑙 cosh
(

𝜅𝑙
2

)

(56)

=
(

𝐸𝐴𝑒𝐾𝑠1
𝐸𝐴1𝐸𝐴2

)1∕2
(57)

𝛿𝑖𝑘 denotes the Kronecker delta. Eqs. (52) and (53) show that the initial
deflection only affects the 𝑘th eigenfunction for the interlayer slip,
i.e. 𝛥𝑈 (𝑘)

1 and 𝛥𝑈 (𝑘)
2 are different, while the remaining eigenfunctions

are the same, i.e. 𝛥𝑈 (𝑖)
1 = 𝛥𝑈 (𝑖)

2 , 𝑖 ≠ 𝑘. Substituting the eigenfunctions
Eqs. (51) to (55) into the boundary conditions Eqs. (34), (39), (47),
(48) and (49) shows that they are satisfied, which also confirms that
the eigenfunctions of the deflection correspond to those of the straight
member.

Eventually, evaluation of Eq. (31) with the eigenfunctions of the
kinematic variables leads to the following modal expression of the
overall normal force 𝑁 ,

𝑁 (𝑖)
𝑒𝑓 =

𝜓
2
𝛾𝑘𝑤̂0𝜆

2
𝑘𝛿𝑖𝑘 , 𝑖 = 1, 2, 3,… (58)

where

𝜓 =
𝐸𝐴𝑒𝐸𝐴2𝜅𝑙 cosh

(

𝜅𝑙
2

)

4𝐸𝐴 sinh
(

𝜅𝑙
)

+ 𝐸𝐴 𝜅𝑙 cosh
(

𝜅𝑙
) (59)
1 2 2 2

6

Accordingly, only the 𝑘th modal overall normal force is non-zero,
indicating that the initial deflection 𝑤̂ induces this internal force.

To determine the natural angular frequencies 𝜔𝑖, 𝑖 = 1, 2, 3,…, the
inematic variables and the normal force are assumed as

(𝑥, 𝑡) = 𝑊 (𝑖)(𝑥) sin𝜔𝑖𝑡 , 𝛥𝑢1(𝑥, 𝑡) = 𝛥𝑈 (𝑖)
1 (𝑥) sin𝜔𝑖𝑡 ,

𝑢2(𝑥, 𝑡) = 𝛥𝑈 (𝑖)
2 (𝑥) sin𝜔𝑖𝑡 ,

(𝑡) = 𝑁 (𝑖)
𝑒𝑓 sin𝜔𝑖𝑡 (60)

nd inserted into the homogeneous form of the fourth equation of
otion Eq. (28) (i.e. 𝑝(𝑥, 𝑡) = 0). This finally leads to

𝑖 =
⎛

⎜

⎜

⎝

1
𝜇
𝜆4𝑖

(

𝜆2𝑖 + 𝛼
2)

(

𝛼2

𝐸𝐽∞
+

𝜆2𝑖
𝐸𝐽0

)−1

+ 1
2𝜇
𝜓𝜆4𝑘𝑤̂

2
0𝛿𝑖𝑘

⎞

⎟

⎟

⎠

1∕2

,

𝑖 = 1, 2, 3,… (61)

where

𝛼 =
(

𝐸𝐽∞𝐾𝑠1
𝐸𝐴1𝐸𝐽0

)1∕2
(62)

This equation shows that only the 𝑘th natural angular frequency, whose
corresponding eigenfunction is proportional to the initial deflection, is
affected by the initial deflection.

Forced vibration analysis. Once the natural frequencies and the eigen-
functions are known, modal analysis (e.g. [47]) is applied to deter-
mine the forced beam vibrations. To this end, the deflection, the two
interlayer slips and the normal force are modally expanded,

𝑤(𝑥, 𝑡) =
∞
∑

𝑖=1
𝑊 (𝑖)(𝑥)𝑌𝑖(𝑡) , 𝛥𝑢1(𝑥, 𝑡) =

∞
∑

𝑖=1
𝛥𝑈 (𝑖)

1 (𝑥)𝑌𝑖(𝑡) ,

𝑢2(𝑥, 𝑡) =
∞
∑

𝑖=1
𝛥𝑈 (𝑖)

2 (𝑥)𝑌𝑖(𝑡) ,

(∞)(𝑥, 𝑡) =
∞
∑

𝑖=1
𝑈 (∞)(𝑖)𝑌𝑖(𝑡) , 𝑁(𝑡) = 𝑁 (𝑘)

𝑒𝑓 𝑌𝑘(𝑡) (63)

hese modal series are inserted into the equation of motion Eq. (28),
hich is multiplied by the 𝑗th eigenfunction 𝑊𝑗 . Integration of this
xpression over the beam length 𝑙 and choosing the scale factor for
he eigenfunctions of one, i.e. 𝛾𝑖 = 1, 𝑖 = 1, 2, 3,…, provides the modal
quations for the modal coordinates 𝑌𝑖,

̈𝑖 + 𝜔2
𝑖 𝑌𝑖 =

2
𝜇𝑙
𝑝𝑖 , 𝑖 = 1, 2, 3,… (64)

with the modal load

𝑝𝑖(𝑡) = ∫

𝑙

0
𝑊 (𝑖)(𝑥)𝑝(𝑥, 𝑡)𝑑𝑥 , 𝑖 = 1, 2, 3,… (65)

By adding modal damping in analogy to the single-degree-of free-
om oscillator, characterized by the modal damping coefficient 𝜁𝑖, 𝑖 =
, 2, 3,…, the effect of the damping is also taken into account in a simple
anner (e.g. [47]),

̈𝑖 + 2𝜁𝑖𝜔𝑖𝑌̇𝑖 + 𝜔2
𝑖 𝑌𝑖 =

2
𝜇𝑙
𝑝𝑖 , 𝑖 = 1, 2, 3,… (66)

The solution of these equations is obtained by standard methods
of linear vibration theory. Substituting the modal coordinates 𝑌𝑖, 𝑖 =
1, 2, 3,…, back into the modal series Eq. (63), which are approximated
by a finite number of modes, yields the vibration response of the beam
under consideration.

4.2. Three-layer beam with symmetric layer arrangement with one horizon-
tally sliding support

Again, a symmetrically layered beam with interlayer slip is consid-
ered as defined in Eq. (46), but the support at the right boundary 𝑥 = 𝑙
is horizontally sliding (M), i.e. 𝑢(∞)(𝑥 = 𝑙) ≠ 0. Apart from that, the
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supports can be soft-hinged (S), hard-hinged (H), clamped (C), or free
(F).

According to Eq. (25), 𝑢(∞)(𝑥 = 𝑙) ≠ 0 implies that at this boundary
he axial force is zero, 𝑁(𝑥 = 𝑙) = 0. Consequently, the axial force

along the entire span is zero, 𝑁(𝑥) = 0, 0 ≤ 𝑥 ≤ 𝑙, since 𝑁,𝑥(𝑥) =
(Eq. (22)). This, together with the symmetrical layer arrangement,

esults in 𝛥𝑢1(𝑥) = 𝛥𝑢2(𝑥), and the boundary value problem is simplified
onsiderably. Thus, Eq. (28) becomes

𝑤̈ + 𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 − 2𝐸𝐴1𝑑𝛥𝑢1,𝑥𝑥𝑥 = 𝑝 (67)

urthermore, it follows from Eq. (29) that
(∞)
,𝑥 +𝑤,𝑥𝑤̂,𝑥 = 0 (68)

herefore, the two equations of motion Eqs. (32) and (33) reduce to a
ingle equation,

𝐴1

(

𝑑𝑤,𝑥𝑥𝑥 − 𝛥𝑢1,𝑥𝑥
)

+𝐾𝑠1𝛥𝑢1 = 0 (69)

qs. (67) and (69) correspond to the equations of motion of the straight
hree-layer beam with symmetrically arranged layers and interlayer slip
nown from the literature. Hence, the deflection and the interlayer slip
f the slightly curved beam are equal to those of the corresponding
eam with straight beam axis since the boundary conditions defined in
ection 3.3 also simplify to those of the straight beam, for instance for
soft-hinged support (S)

𝑏 = 0 , (𝑤,𝑥𝑥)𝑏 = 0 , (𝛥𝑢1,𝑥)𝑏 = 0 (70)

The solution of equations of motion Eqs. (67) and (69) for the
traight beam with interlayer slip along with the boundary conditions
as been know for a long time, and reference is therefore made to
he relevant literature (e.g. [11,12,14,15]). However, it should only be
oted here that these two equations and the corresponding boundary
onditions can be decoupled from each other for simpler solving and
xpressed by one equation only in 𝑤 and a second equation only in 𝛥𝑢1
see e.g. [15]). For instance, for the deflection 𝑤 a partial differential
quation of sixth order results.

However, unlike the straight beam, the longitudinal displacement
f the central axis 𝑢(∞) is non-zero and results from Eq. (68) with the
oundary condition 𝑢(∞)(𝑥 = 0) = 0 after 𝑤 has been computed.

ree and forced vibration analysis of a soft-hinged beam (SI-SM). As an
xample, consider a symmetrically laminated beam with interlayer slip,
oft-hinged supported at both ends (SI-SM) and slightly curved in the
orm of a sine half-wave or a multiple of it, see Eq. (50). As discussed
bove, the deflection 𝑤(𝑥, 𝑡) corresponds to that of the beam with
traight beam axis and thus the natural angular frequencies 𝜔𝑖 are those
f the straight beam [1,12],

𝑖 =
⎛

⎜

⎜

⎝

1
𝜇
𝜆4𝑖

(

𝜆2𝑖 + 𝛼
2)

(

𝛼2

𝐸𝐽∞
+

𝜆2𝑖
𝐸𝐽0

)−1
⎞

⎟

⎟

⎠

1∕2

, 𝑖 = 1, 2, 3,… (71)

and the eigenfunctions 𝑊 (𝑖)(𝑥) for the deflection given in Eq. (51).
Eq. (69) represents not only the relation between 𝑤 and 𝛥𝑢1 but also
the relation between the 𝑖th eigenfunction 𝑊 (𝑖) for the deflection and
the 𝑖th eigenfunction 𝛥𝑈 (𝑖)

1 (𝑥) for the interlayer slip. Therefore, 𝑊 (𝑖)(𝑥)
(Eq. (51)) is substituted into Eq. (69), which is then solved together
with the boundary conditions 𝛥𝑈 (𝑖)

1,𝑥(𝑥 = 0) = 𝛥𝑈 (𝑖)
1,𝑥(𝑥 = 𝑙) = 0 for

𝛥𝑈 (𝑖)
1 (𝑥),

𝛥𝑈 (𝑖)
1 (𝑥) = 𝛥𝑈 (𝑖)

2 (𝑥) = 𝛾𝑖
𝑑𝜆3𝑖 cos

(

𝜆𝑖𝑥
)

𝜆2𝑖 +
𝐾𝑠1
𝐸𝐴1

, 𝑖 = 1, 2, 3,… (72)

The eigenfunctions 𝑈 (∞)(𝑖)(𝑥) for the longitudinal displacement of
he central axis are obtained from Eq. (68), into which the 𝑊 (𝑖)(𝑥)
Eq. (51)) and 𝑤̂(𝑥) (Eq. (50)) are inserted, together with the boundary
7

ondition 𝑈 (∞)(𝑖)(𝑥 = 0) = 0. For the 𝑖th mode, whose deflection eigen-
unction is proportional to the 𝑘th member of the initial deflection, the
esult is

(∞)(𝑘)(𝑥) = 𝛾𝑘𝜆
2
𝑘𝑤̂0

1
2

(

− 1
𝜆2𝑘

sin
(

𝜆2𝑘𝑥
)

− 𝑥
)

, 𝑖 = 𝑘 (73)

For the modes 𝑖 ≠ 𝑘 the same expression (Eq. (54)) is found as for the
horizontally immovably supported beam.

Once the modal parameters are known, 𝑤(𝑥, 𝑡) and 𝛥𝑢1(𝑥, 𝑡) are
modally expanded according to Eq. (63). The subsequent application
of modal analysis to Eq. (67) leads to the decoupled modal equations
Eq. (64) or with added damping Eq. (66). The modal coordinates 𝑌𝑖
obtained from these equations are substituted into the modal expansion
of 𝑤(𝑥, 𝑡), 𝛥𝑢1(𝑥, 𝑡) and 𝑢(∞)(𝑥, 𝑡) approximated by a finite number of
modes.

4.3. Three-layer beam example problems

In the first example, the natural frequencies and eigenfunctions of
a symmetrically layered slightly curved beam with rectangular cross-
section are computed, which has the following dimensions: layer thick-
nesses ℎ1 = ℎ3 = 0.01 m, ℎ2 = 0.0102 m; layer width 𝑏 = 0.1 m; span
width of 𝑙 = 1.0 m. The material properties are characterized by the
following parameters: Young’s modulus of the face layers 𝐸1 = 𝐸3 =
.0 ⋅1010 N/m2; Young’s modulus of the core layer 𝐸2 = 1.0 ⋅1010 N/m2;
lip modulus 𝐾𝑠1 = 1.0 ⋅ 109 N/m2; density of the face layers 𝜌1 = 𝜌3 =
700 kg/m3; density of the core layer 𝜌2 = 1000 kg/m3. The product of
he layer interaction parameter 𝛼 (Eq. (62)) and the length 𝑙 is 𝛼𝑙 = 13.3,
hich corresponds to a moderate interaction of the layers [2]. The
amping is set to zero to ensure comparability with the FE solution.
wo cases of the soft-hinged supported beam are considered. In the first
ase, both supports are horizontally immovable (SI-SI), in the second
ase the support at 𝑥 = 𝑙 is horizontally sliding (SI-SM).

The outcomes of the proposed beam theory are set in contrast to the
esults of a more elaborate finite element (FE) model assuming plane
tress elasticity. This comparative model, whose solution is found with
he software package Abaqus v. 2016 [48], does not require the Euler–
ernoulli hypothesis and is therefore more accurate than the beam
heory, but is numerically much more expensive. In the FE model, the
hree layers are discretized with quadrilateral plane elements with eight
odes. A Poisson’s ratio of 0.3 is assumed for the material of the layers.
etween the layers, two very thin cohesive zones with a thickness
f 0.1 mm, (i.e. ℎ1∕100) are provided to simulate the flexible layer
nteraction. These zones are discretized with linear cohesive elements
ith four nodes per element. The tangential stiffness of these elements

orresponds to the slip modulus 𝐾𝑠1, for the normal stiffness a very
arge value of 10, 000𝐾𝑠1 is applied, as this quantity is infinite in the
eam model. The height of the middle layer is reduced by the thickness
f the cohesive zones (i.e. ℎ2 = 0.01 m) so that the total height of
he beam remains the same. In the FE model a kinematic coupling of
he outer surfaces of the middle layer at an additional node describe
he soft-hinged supports. The FE model has about 40,000 degrees of
reedom, compared to the 𝐽 = 11 degrees of freedom of the beam model
i.e. number of eigenfunctions included in the analysis).

First, the natural frequencies of the immovably soft-hinged sup-
orted beam (SI-SI) are considered, whose initial deflection in the
orm of a sine half-wave 𝑤̂(𝑥) = 𝑤̂0 sin(𝜋𝑥∕𝑙) is proportional to the

first deflection eigenfunction of the straight beam. Fig. 4(a) shows
the first five natural frequencies 𝜔𝑖, 𝑖 = 1,… , 5, as a function of the
amplitude of the initial deflection 𝑤̂0 normalized with the beam length
𝑙 in the range 0 ≤ |𝑤̂0∕𝑙| ≤ 0.08. The natural frequencies 𝜔𝑖 are
divided by the fundamental frequency of the straight beam 𝜔1(𝑤̂0∕𝑙 =
0) = 383.7 rad/s. Since the beam is symmetrically layered, the natural
frequencies apply to both negative and positive initial deflection ±𝑤̂0∕𝑙.
The normalized natural frequencies as a result of the presented beam
theory are shown with continuous lines. As observed and discussed
earlier, only the natural frequency whose deflection eigenfunction is
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Fig. 4. First five natural frequencies as a function of the normalized amplitude of the initial deflection. Initial deflection (a) sine half-wave, (b) sine wave. Three-layer beam.
Soft-hinged horizontally immovably supported.
Fig. 5. First and second eigenfunction of the (a) deflection, (b) longitudinal displacement of the central axis, (c) upper interlayer slip, (d) lower interlayer slip. Initial deflection:
ine half-wave. Three-layer beam. Soft-hinged horizontally immovably supported.
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roportional to the initial deflection is affected by the initial deflection.
his natural frequency increases with increasing 𝑤̂0 and corresponds

to the fundamental frequency up to a ratio |𝑤̂0∕𝑙| = 0.0524, and to
the second natural frequency for |𝑤̂0∕𝑙| > 0.0524. That is, for |𝑤̂0∕𝑙| >
0.0524, the fundamental eigenfunction is a sine wave and the second
eigenfunction is a sine half-wave. For discrete values of the amplitude
of the initial deflection, these natural frequencies were also determined
numerically by plane stress FE analyses, which are shown as markers
in this figure. The comparison shows that in the whole studied range
of 𝑤̂0∕𝑙, the considered natural frequencies of beam theory and plane
stress theory agree very well. While for very small amplitudes 𝑤̂0∕𝑙
of the initial deflection up to 1% of the beam length both solutions
are practically identical, the deviation of the beam theory solution
increases slightly with increasing 𝑤̂0∕𝑙. For the largest considered initial
deflection of 𝑤̂0∕𝑙 = ±0.08, the fifth natural frequency 𝜔5 of the beam
theory is 3.53% larger than that of the plane stress FE analysis.
 t

8

For the case 𝑤̂0∕𝑙 = ±0.03, Fig. 5 shows the first two eigenfunctions
for the deflection 𝑊 (1) and 𝑊 (2) (Fig. 5(a)), the longitudinal displace-
ment of the central axis 𝑈 (∞)(1) and 𝑈 (∞)(2) (Fig. 5(b)), the upper
interlayer slip 𝛥𝑈 (1)

1 and 𝛥𝑈 (2)
1 (Fig. 5(c)), and the lower interlayer

slip 𝛥𝑈 (1)
2 and 𝛥𝑈 (2)

2 (Fig. 5(d)) as a result of the beam theory (solid
ines) and the plane stress FE analyses (dashed lines). As can be seen,
he eigenfunctions of the two theories are virtually congruent, which
onfirms the proposed beam theory. The results also visualize that the
nitial deflection has no influence on the eigenfunction of the deflection
Fig. 5(a)), but on the shape of the first eigenfunction of the interlayer
lips 𝛥𝑈 (1)

1 and 𝛥𝑈 (1)
2 (Fig. 5(c) and (d)). The comparison of Fig. 5(c)

and (d) shows that 𝛥𝑈 (1)
1 and 𝛥𝑈 (1)

2 are different, while for the second
mode 𝛥𝑈 (2)

1 and 𝛥𝑈 (2)
2 are identical and the same as for the straight

eam.
In addition, the first two eigenfunctions for the interlayer slips and

he longitudinal displacement are shown in Fig. 6 for this beam with
he same initial deflection, but which is now horizontally sliding at the
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Fig. 6. First and second eigenfunction of the (a) upper interlayer slip, (b) lower interlayer slip, (c) longitudinal displacement of the central axis. Initial deflection: sine half-wave.
hree-layer beam. Soft-hinged supported, right support horizontally sliding.
ight support (SI-SM). In this case, the initial deflection has no influence
on the eigenfunctions of the interlayer slips 𝛥𝑈 (𝑖)

1 , 𝛥𝑈 (1)
2 and, as in

the case of the straight beam, they are identical for the upper and
lower interlayer slips, 𝛥𝑈 (𝑖)

1 = 𝛥𝑈 (𝑖)
2 (Fig. 6(a) and (b)). In contrast

to the straight beam, however, the eigenfunctions 𝑈 (∞)(1) and 𝑈 (∞)(2)

shown in Fig. 6(c) are non-zero. The natural frequencies as well as
the eigenfunctions of the deflection correspond to those of the straight
beam and are therefore not shown. Fig. 6 also demonstrates that the
beam theory and the plane stress FE analysis provide virtually the same
eigenfunctions for these boundary conditions as well.

In the second example, the initial deflection of the immovably
soft-hinged supported beam (SI-SI) is proportional to the deflection
eigenfunction of the second mode of the straight beam (𝑘 = 2 in
Eqs. (50), (52)–(55)): 𝑤̂(𝑥) = 𝑤̂0 sin(2𝜋𝑥∕𝑙). As Fig. 4(b) shows, only
the natural frequency of this mode increases with increasing 𝑤̂0∕𝑙,
while the other eigenfunctions correspond to those of the straight beam.
For this initial deflection in the form of a sine wave, up to 𝑤̂0∕𝑙 ≈
±0.03, the considered natural frequencies of the beam theory agree very
well with those of the FE plane stress outcomes. For the fundamental
frequency this agreement is given for the whole considered range of
0 ≤ |𝑤̂0∕𝑙| ≤ 0.08, while for the higher modes the difference increases
with increasing 𝑤̂0∕𝑙. The reason for this is the much stronger curvature
at the same amplitude 𝑤̂0∕𝑙 compared to the sine half-wave of the first
example, which cannot be considered as a small initial curvature (i.e., it
is deep curvature). At 𝑤̂0∕𝑙 = ±0.08 the second natural frequency based
on the beam theory is already 30.8% larger than that of the FE plane
stress prediction. Also for this beam with an initial deflection in the
form of a sine wave, the first two eigenfunctions for the kinematic
variables are shown in Fig. 7 as an example for the amplitude of initial
deflection 𝑤̂0∕𝑙 = ±0.03. Again, the results of the beam theory agree
very well with the outcomes of the plane stress FE analyses.

As a third example, the forced vibrations of the immovably soft-
hinged supported beam (SI-SI) with an initial deflection according to a
sine half-wave 𝑤̂(𝑥) = 𝑤̂0 sin(𝜋𝑥∕𝑙) with 𝑤̂0∕𝑙 = −0.01 are considered.

The time-harmonic load 𝑝(𝑥, 𝑡) = 𝑝0 (𝐻(𝑥) −𝐻(𝑥 − 𝑙∕2)) sin(𝜈𝑡), which is

9

equally distributed over the left half of the beam, is applied at time
𝑡 = 0; 𝐻(.) denotes the Heaviside function. The excitation frequency
𝜈 is 1.3 times the first natural frequency of the slightly curved beam,
i.e. 𝜈∕𝜔1 = 1.3. For the beam solution, the computation time in Math-
ematica v. 12.1.1 (computer with an 8-core Intel Xeon W processor)
was a few seconds, whereas the FE analysis with Abaqus took 78 min
on the same computer. In the following figures, the kinematic response
quantities are presented as a ratio to the static deflection of the slightly
curved beam 𝑤𝑆 (0.5𝑙)∕𝑝0 = 5.24 ⋅ 10−7 m2/N, due to the load 𝑝𝑆 (𝑥) =
𝑝0 (𝐻(𝑥) −𝐻(𝑥 − 𝑙∕2)). The time 𝑡 is normalized with the fundamental
period 𝑇1 of the with initial deflection, with 𝑇1 = 0.0145 s. Fig. 8(a)
shows the time history of the normalized deflection in the center of the
slightly curved beam (black line) as well as the corresponding plane
stress FE solution (red dashed line with black markers). In addition,
this response variable is also depicted for the straight beam (blue line).
In Fig. 8(b), the deflection along the beam length is shown for the time
instant 𝑡∕𝑇1 = 5.225. These figures demonstrate that, on the one hand,
the presented beam theory reproduces the deflection very accurately
and the deviation from the plane stress FE solution is negligible. The
deflection is also asymmetric along the span due to the asymmetric load
distribution. In comparison with the response of the straight beam, on
the other hand, it becomes obvious what a large influence this very
small initial deflection (1% of the span 𝑙) has on the deflection response:
the response amplitude changes and a phase shift can be seen due to
the change of the fundamental frequency.

The time history of the upper and lower interlayer slip 𝛥𝑢1 and 𝛥𝑢2
at the right end of the beam in Fig. 8(c) illustrates even more clearly the
effect of the initial deflection on the response. With the straight beam,
the amplitude of 𝛥𝑢1 is about three times smaller than for the slightly
curved beam. Fig. 8(d) shows that the upper and lower interlayer
slips are the same in the interior of the beam, while they split in the
sections of the beam ends where they have a different curvature. In
contrast, for the straight symmetrically layered linear beam, the upper

and lower interlayer slips are identical. Also these two figures illustrate
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Fig. 7. First and second eigenfunction of the (a) deflection, (b) longitudinal displacement of the central axis, (c) upper interlayer slip, (d) lower interlayer slip. Initial deflection:
ine wave. Three-layer beam. Soft-hinged horizontally immovably supported.
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he excellent agreement of the response prediction of the beam theory
nd the FE analysis.

Fig. 8(e), which shows the normalized longitudinal displacement of
he central axis 𝑢(∞) at 𝑥∕𝑙 = 0.1𝑙 as a function of 𝑡∕𝑇1, again proves the
ccuracy of beam theory for this example. The plot of 𝑢(∞) versus 𝑥∕𝑙
s included in Fig. 8(f). For the straight beam, 𝑢(∞)(𝑥, 𝑡) = 0.

In addition, Fig. 9(a) shows the time history of the total normal
orce 𝑁(0.5𝑙) and the layerwise normal forces 𝑁1(0.5𝑙), 𝑁2(0.5𝑙) and
3(0.5𝑙) in the center of the beam, normalized by the static overall axial

orce at midspan 𝑁𝑆 (0.5𝑙) due to the static load 𝑝𝑆 (𝑥) applied to the
slightly curved beam, 𝑁𝑆 (0.5𝑙)∕𝑝0 = −1.362 m. The distribution of the
normal forces along the beam length at time 𝑡∕𝑇1 = 5.225 in Fig. 9(b)
demonstrates that the boundary conditions 𝑁1(𝑥 = 0, 𝑙) = 𝑁3(𝑥 = 0, 𝑙) =
0 and 𝑁2(𝑥 = 0, 𝑙) = 𝑁(𝑥 = 0, 𝑙) are fulfilled. Finally, Fig. 9(c) and
(d) shows the time history of the overall bending moment 𝑀(0.5𝑙) and
the partial bending moments 𝑀1(0.5𝑙), 𝑀2(0.5𝑙), 𝑀3(0.5𝑙) at 𝑥 = 0.5𝑙
and their distribution over 𝑥∕𝑙 at the same time instant, where these
quantities are divided by the static overall axial bending moment at
midspan 𝑀𝑆 (0.5𝑙) of the beam with initial deflection, 𝑀𝑆 (0.5𝑙)∕𝑝0 =
4.891 ⋅ 10−2 m2.

4.4. Two-layer beam

In another application example, the natural frequencies, eigenfunc-
tions and forced vibrations of a slightly curved two-layer beam with
interlayer slip are sought with an approximation method. For the two-
layer beam 𝐸𝐴3 ≡ 0, 𝐸𝐽3 ≡ 0, 𝜌3𝐴3 ≡ 0, 𝐾𝑠2 ≡ 0, 𝛥𝑢2 ≡ 0, which
lso simplifies the boundary value problem at hand. Instead of four
inematic variables, the dynamic response is fully captured by the three
inematic variables 𝑤, 𝑢(∞) and 𝛥𝑢1.

Approximate procedure of analysis. The Galerkin method [44] is an effi-
cient procedure used to solve the considered boundary value problem.
To this end, the deflection 𝑤(𝑥, 𝑡) is approximated by the following Ritz
 E

10
approach [24],

𝑤(𝑥, 𝑡) ≈ 𝑤∗(𝑥, 𝑡) =
𝐽
∑

𝑗=𝑗𝑎

𝑞𝑗 (𝑡)𝜙𝑗 (𝑥) , 𝜙𝑗 (𝑥) =
(𝑥
𝑙

)𝑗 (
1 − 𝑥

𝑙

)𝑗𝑏
(74)

with the shape functions 𝜙𝑗 (𝑥) in form of a polynomial and the corre-
sponding general coordinates 𝑞𝑗 (𝑡). In the Galerkin method, the kine-

atic boundary conditions must be satisfied. This is achieved by a
uitable choice of 𝑗𝑎 for the actual geometric boundary condition for
he deflection 𝑤 at 𝑥 = 0 and by a suitable choice of 𝑗𝑏 for the actual
eometric boundary condition for 𝑤 at 𝑥 = 𝑙 as follows [24]

ree end (F) at 𝑥 = 0 ∶ 𝑗𝑎 = 0 at 𝑥 = 𝑙 ∶ 𝑗𝑏 = 0 (75)
soft-hinged support (S),

hard-hinged support (H) at 𝑥 = 0 ∶ 𝑗𝑎 = 1 at 𝑥 = 𝑙 ∶ 𝑗𝑏 = 1 (76)

clamped end (C) at 𝑥 = 0 ∶ 𝑗𝑎 = 2 at 𝑥 = 𝑙 ∶ 𝑗𝑏 = 2 (77)

For example, if a cantilever is considered that is clamped at 𝑥 = 0,
𝑤(0) = 𝑤,𝑥(0) = 0 must be satisfied, which is achieved by 𝑗𝑎 = 2.

t the free end at 𝑥 = 𝑙 there are no geometric boundary conditions
o be fulfilled, thus 𝑗𝑏 = 0. The more series members 𝐽 are included
n Eq. (74), the better the dynamic boundary conditions and the dy-
amic response are approximated. It should be noted, however, that
lternatively other methods such as generalized differential quadrature
ethods [49] could be used to solve this boundary value problem. For
recent application of this method to a similar problem see [32].

In the first step, the Ritz approximation of 𝑤 Eq. (74) is inserted
nto the two equations of motion Eqs. (30) and (32) (with 𝐸𝐴3 = 0),
hich are subsequently solved for 𝛥𝑢1 and 𝑢(∞) taking into account the
revailing boundary conditions. For each end two boundary conditions
ust be fulfilled, i.e. for a soft-hinged support the boundary conditions
qs. (37) and (39) (horizontally restraint, SI) or Eq. (41) (horizontally
liding, SM), for a hard-hinged support and clamped end the boundary
onditions Eqs. (39) and (42) (horizontally restraint, HI and CI) or
q. (41) (horizontally sliding, HM and CM), and for a free end (F)
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mmovably supported. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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he boundary conditions Eqs. (37) and (41). The solution can be found
nalytically for instance with the software packages Mathematica [50]
r Maple [51]. 𝛥𝑢1 and 𝑢(∞) are then available as a function of the
eneralized coordinates 𝑞𝑗 , 𝑗 = 𝑗𝑎,… , 𝐽 , and subsequently denoted as
𝑢∗1 and 𝑢(∞)∗,

𝑢∗1(𝑥, 𝑡) =
𝐽
∑

𝑗=𝑗𝑎

𝑞𝑗 (𝑡)𝜙̄𝑗 (𝑥) , 𝑢(∞)∗(𝑥, 𝑡) =
𝐽
∑

𝑗=𝑗𝑎

𝑞𝑗 (𝑡) ̄̄𝜙𝑗 (𝑥) (78)

where 𝜙̄𝑗 (𝑥) and ̄̄𝜙𝑗 (𝑥) denote the functions approximating the shape of
𝑢1 and 𝑢(∞), respectively, resulting from the procedure described above.

The first derivatives of 𝑤∗, 𝛥𝑢∗1 and 𝑢(∞)∗ with respect to 𝑥 are
subsequently substituted in the integral representation of the normal
force 𝑁(𝑡) according to Eq. (31), which is then also a function of
𝑞𝑗 (referred to as 𝑁∗). Eventually, the applicable derivatives of 𝑤∗,
𝛥𝑢∗1 and 𝑢(∞)∗ with respect to 𝑡 and 𝑥 as well as 𝑁∗ are inserted
nto the equation of motion Eq. (28), and according to the Galerkin
ethod [44], multiplied by the shape function 𝜙𝑘 and integrated over

he span 𝑙. This procedure is repeated (𝐽 − 𝑗 + 1) times for each shape
𝑎

11
unction. In general, the chosen set of shape functions do not satisfy
he dynamic boundary conditions, and thus the work of the boundary
orces must be added [44],

∫

𝑙

0

(

𝜇𝑤̈∗ + 𝐸𝐽∞𝑤∗
,𝑥𝑥𝑥𝑥 + 𝐸𝐴1𝑧1𝛥𝑢

∗
1,𝑥𝑥𝑥 −𝑁

∗𝑤̂,𝑥𝑥 − 𝑝
)

𝜙𝑖𝑑𝑥 −𝑀∗
𝑏 (𝜙𝑖,𝑥)𝑏

+
(

(𝑀∗
,𝑥)𝑏 +𝑁

∗
𝑏 (𝑤̂,𝑥)𝑏

)

(𝜙𝑖)𝑏 = 0 , 𝑖 = 𝑗𝑎,… , 𝐽 (79)

hese equations are integrated by parts twice with respect to 𝑥 in order
o reduce the order of the derivatives with respect to 𝑥 by two. Since in
eneral the shape functions violate the dynamic boundary conditions,
he negative work of the boundary forces appears in the resulting set
f equations, which however cancels out with the positive work of the
oundary forces apparent in Eq. (79),

∫

𝑙

0

((

𝐸𝐽∞𝑤
∗
,𝑥𝑥 + 𝐸𝐴1𝑧1𝛥𝑢

∗
1,𝑥

)

𝜙𝑖,𝑥𝑥 +𝑁∗𝑤̂,𝑥𝜙𝑖,𝑥

+
(

𝜇𝑤̈∗ − 𝑝
)

𝜙𝑖
)

𝑑𝑥 = 0 , 𝑖 = 𝑗𝑎,… , 𝐽 (80)
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A

Fig. 9. Time history of the overall and layerwise internal forces (left) and their distribution along the beam axis at a given time instant (right). (a,b) axial forces, (c,d) bending
moments. Three-layer beam with initial deflection and straight axis, respectively. Soft-hinged horizontally immovably supported.
𝑖

𝚽

𝐪

i
m

𝑌

The evaluation of the integrals yields (𝐽 − 𝑗𝑎 + 1) ordinary coupled
differential equations in 𝑞𝑗 (𝑡),
𝐽
∑

𝑗=𝑗𝑎

(

𝑚∗
𝑖𝑗𝑞𝑗 + 𝑘

∗
𝑖𝑗𝑞𝑗

)

= 𝑝∗𝑖 , 𝑖 = 𝑗𝑎,… , 𝐽 (81)

with

𝑚∗
𝑖𝑗 = 𝜇 ∫

𝑙

0
𝜙𝑖(𝑥)𝜙𝑗 (𝑥)𝑑𝑥 , 𝑝∗𝑖 (𝑡) = ∫

𝑙

0
𝑝(𝑥, 𝑡)𝜙𝑖(𝑥)𝑑𝑥 ,

𝑘∗𝑖𝑗 = ∫

𝑙

0

(

(

𝐸𝐽∞𝜙𝑗,𝑥𝑥(𝑥) + 𝐸𝐴1𝑧1𝜙̄𝑗,𝑥(𝑥)
)

𝜙𝑖,𝑥𝑥(𝑥)

−𝑁 (𝑗)∗
𝑠 𝑤̂,𝑥𝑥(𝑥)𝜙𝑖(𝑥)

)

𝑑𝑥 , (82)

𝑁 (𝑗)∗
𝑠 =

𝐸𝐴𝑒
𝑙 ∫

𝑙

0

(

̄̄𝜙𝑗,𝑥(𝑥) + 𝜙𝑗,𝑥(𝑥)𝑤̂,𝑥(𝑥)
)

𝑑𝑥 −
𝐸𝐴1
𝑙 ∫

𝑙

0
𝜙̄𝑗,𝑥(𝑥)𝑑𝑥

or alternatively in matrix notation

𝐌∗𝐪̈ +𝐊∗𝐪 = 𝐩∗ , 𝐪 = {𝑞𝑗𝑎,… , 𝑞𝑗 ,… , 𝑞𝐿}⊺ , 𝐩∗ = {𝑝∗𝑗𝑎,… , 𝑝∗𝑗 ,… , 𝑝∗𝐿}
⊺

(83)

with 𝐌∗ denoting the mass matrix composed of the mass coefficients
𝑚∗
𝑖𝑗 and 𝐊∗ the stiffness matrix composed of the stiffness coefficients

𝑘∗𝑖𝑗 . Eq. (83) can be solved for 𝑞𝑗 (𝑡), 𝑗 = 𝑗𝑎,… , 𝐽 , by numerical standard
solvers.

It is, however, advantageous to decouple this set of coupled linear
equations with the means of modal analysis, since in the resulting
modal equations in the form of the SDOF oscillator damping can be
taken into account simply by adding it modally as in an SDOF system.
The (𝐽 − 𝑗𝑎 + 1) natural angular frequencies 𝜔∗

𝑗 and eigenvectors 𝚽∗
𝑗 of

the system discretized with the Ritz approach Eq. (74), on which the
modal analysis is based, follow from
(

𝐊∗ − 𝜔∗2𝐌∗)𝚽∗ = 𝟎 (84)

n approximation of the 𝑖th eigenfunctions 𝑊 (𝑖)(𝑥), 𝛥𝑈 (𝑖)
1 (𝑥), 𝑈∞(𝑖) is

obtained by substituting the components 𝛷∗(𝑖) (𝑗 = 𝑗𝑎,… , 𝐽 ) of the
𝑗

12
th eigenvector 𝚽∗
𝑖 in Eqs. (74) and (78) instead of the generalized

coordinates 𝑞𝑗 ,

𝑊 (𝑗)∗(𝑥) =
𝐽
∑

𝑗=𝑗𝑎

𝛷∗(𝑖)
𝑗 𝜙𝑗 (𝑥) , 𝛥𝑈 (𝑗)∗

1 (𝑥) =
𝐽
∑

𝑗=𝑗𝑎

𝛷∗(𝑖)
𝑗 𝜙̄𝑗 (𝑥) ,

𝑈∞(𝑗)∗(𝑥) =
𝐽
∑

𝑗=𝑗𝑎

𝛷∗(𝑖)
𝑗

̄̄𝜙𝑗 (𝑥)

(85)

Inserting the modal expansion of 𝐪 with respect to the eigenvectors
∗
𝑖 ,

(𝑡) =
𝐽−𝑗𝑎+1
∑

𝑖=1
𝑌 ◦
𝑖 (𝑡)𝚽

∗
𝑖 (86)

nto Eq. (83) and successive pre-multiplication with 𝚽∗⊺
𝑖 leads to the

odal oscillator equations in 𝑌 ◦
𝑖 ,

̈ ◦
𝑖 + 2𝜁𝑖𝜔∗

𝑖 𝑌̇
◦
𝑖 + 𝜔∗2

𝑖 𝑌
◦
𝑖 =

𝑝◦𝑖
𝑚◦
𝑖
, 𝑝◦𝑖 = 𝚽∗⊺

𝑖 𝐩∗ ,

𝑚◦
𝑖 = 𝚽∗⊺

𝑖 𝐌∗𝚽∗
𝑖 , 𝑖 = 1,… , 𝐽 − 𝑗𝑎 + 1 (87)

which can be solved with the standard methods of linear vibration
theory. As described before, damping was added modally in Eq. (87).
Substituting of 𝑌 ∗

𝑖 (𝑡), 𝑖 = 1,… , 𝐽 − 𝑗𝑎 + 1, into Eq. (86) yields the
generalized coordinates 𝑞𝑗 , 𝑗 = 𝑗𝑎,… , 𝐽 , that are subsequently inserted
into the expressions for 𝑤∗ (Eq. (74)), 𝛥𝑢∗1 and 𝑢(∞)∗ (Eq. (78)), which
approximate the kinematic variables 𝑤, 𝛥𝑢1 and 𝑢(∞).

4.5. Two-layer beam example problems

In the following application examples, two-layer beams with the
following dimensions are considered: Length 𝑙 = 1.0 m, cross-sectional
dimensions of the two layers ℎ1 = 0.004 m, ℎ2 = 0.0261 m, 𝑏1 = 𝑏2 =
0.1 m. The material parameters are as follows: 𝐸1 = 7.0 ⋅ 1010 N/m2,
𝐸 = 1.0 ⋅ 1010 N/m2, 𝐾 = 1.0 ⋅ 109 N/m2, 𝜌 = 2700 kg/m, 𝜌 =
2 𝑠1 1 2
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Fig. 10. First five natural frequencies as a function of the normalized amplitude of the initial deflection. Initial deflection (a) sine half-wave, (b) sine wave. Two-layer beam.
Clamped-soft-hinged horizontally immovably supported.
Fig. 11. First and second eigenfunction of the (a) deflection, (b) longitudinal displacement of the central axis, (c) interlayer slip. Initial deflection: sine half-wave. Two-layer beam.
lamped-soft-hinged horizontally immovably supported.
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−
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000 kg/m. These parameters result in a layer interaction parameter 𝛼
or the two-layer beam (see e.g. [2]),

=
(

𝐾𝑠1

(

𝐸𝐴𝑒
𝐸𝐴1𝐸𝐴2

+
(ℎ1∕2 + ℎ2∕2)2

𝐸𝐽0

))1∕2

(88)

imes length 𝑙 of 𝛼𝑙 = 15.0. On the left side the beam is clamped, on
he right side soft-hinged supported. The horizontal movement is con-
trained on both supports (CI-SI). Convergence studies have shown that
he 11 shape functions approximate sufficiently accurately the response
f the present examples. The results of the proposed beam theory are
gain contrasted with finite element solutions assuming a plane stress
tate. The finite element models created in Abaqus have 34,910 degrees
f freedom. In these models, the thickness of the cohesive elements of
he interlayer is 0.0001 m as for the three-layer beams. The height ℎ2
s reduced by this value so that the total height of the beams remains
he same as in the beam models.

In the first example, the first five natural frequencies 𝜔1, 𝜔2, 𝜔3,
, 𝜔 of the beam are analyzed, whose initial deflection follows a
4 5

13
ine half-wave: 𝑤̂(𝑥) = 𝑤̂0 sin(𝜋𝑥∕𝑙). Due to the asymmetric layer ar-
angement, the modal parameters also depend on the sign of the initial
eflection (in contrast to the symmetrically layered beam). Therefore,
n Fig. 10(a), the natural frequencies are depicted as a function of the
aximum initial deflection (normalized by the length 𝑙) in the range
0.08 ≤ 𝑤̂0∕𝑙 ≤ 0.08. Here, the natural frequencies are divided by the

undamental frequency of the straight beam 𝜔1(𝑤̂0 = 0) = 496.6 rad/s.
he comparison of the beam solution shown with solid lines with the
esults of the FE analysis (represented by markers) demonstrates that
n the whole range of 𝑤̂0∕𝑙 the first four natural angular frequencies

are reproduced very well by the presented beam theory. For the fifth
natural frequency, the largest deviation from the ‘‘exact’’ FE solution
is 7.73%, which occurs at a relatively large initial deflection 𝑤̂0 of 8%
of the beam length. Up to a initial deflection amplitude 𝑤̂0 of ±5% of
the beam length, the initial deflection mainly affects the fundamental
frequency 𝜔1, which increases in this range with increasing 𝑤̂0∕𝑙. The
reason for this is that the initial deflection has like the first eigenfunc-

tion for the deflection no node, as can be seen in Fig. 11(a) for the beam
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Fig. 12. Time history of the kinematic variables at midspan (left column) and their distribution along the beam axis at a given time instant (right column): (a,b) deflection, (c,d)
interlayer slip, (e,f) longitudinal displacement of the central axis. Two-layer beam with initial deflection and straight axis, respectively. Left end clamped, right end soft-hinged
horizontally immovably supported.
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with the initial deflection 𝑤̂0∕𝑙 = −0.03. For initial deflection amplitude
ratios |𝑤̂0∕𝑙| > 0.05, the second natural frequency increases with 𝑤̂0 and
the first frequency has approximately the value of the second natural
frequency of the straight beam.

Fig. 11(a) shows the first and second eigenfunctions 𝑊 (1) and 𝑊 (2)

for the deflection of the beam with initial deflection 𝑤̂0∕𝑙 = −0.03 and
he straight beam, respectively. As observed, these eigenfunctions of
he two beams have a similar shape, but their maxima shift to the right
ue to the initial deflection. The initial deflection has a much more
ignificant influence on the first two eigenfunctions 𝑈 (∞)(1) and 𝑈 (∞)(2)

f the longitudinal displacement of the beam axis, as can be seen in
ig. 11(b). While the first eigenfunction 𝑈 (∞)(1) of the slightly curved
eam has two nodes, 𝑈 (∞)(1) of the straight beam has only one. For
he eigenfunctions of the interlayer slip 𝛥𝑈 (1)

1 and 𝛥𝑈 (2)
1 , especially the

irst one is influenced by the initial deflection, as Fig. 11(c) shows, the
econd eigenfunction is visibly different only in the region of the right
oft-hinged support. The also shown solutions from the plane stress FE
nalyses are practically identical with all considered eigenfunctions of
he beam theory.
 T

14
When the beam has an initial deflection in the form of a sine wave,
̂ (𝑥) = 𝑤̂0 sin(2𝜋𝑥∕𝑙), which has a node just like the second eigenfunc-
ion for the deflection, the first natural angular 𝜔1 is hardly affected
y this initial deflection, as can be seen from Fig. 10(b). Up to a initial
eflection of 𝑤̂0∕𝑙 = ±0.025 the second natural frequency 𝜔2 increases
ith 𝑤̂0∕𝑙, in the range 0.025 < 𝑤̂0∕𝑙 < 0.045 the third natural frequency

ncreases and so on. The comparison with the FE solution shows that
he fundamental frequency 𝜔1 can be estimated very well by the beam
heory in the whole considered range of initial deflection amplitude,
hile the second, third and fourth natural angular frequencies are well

eproduced up to a ratio of 𝑤̂0∕𝑙 ≈ ±0.03. As described before, the
econd natural angular frequency 𝜔2 increases up to a initial deflection

of |𝑤̂0|∕𝑙 ≈ 0.025. While according to the beam theory this frequency
emains constant for |𝑤̂0|∕𝑙 > 0.025, the plane stress FE analysis shows
hat 𝜔2 actually decreases again when |𝑤̂0|∕𝑙 > 0.025.

Finally, the forced vibration response of the two-layer beam is
iscussed, whose beam axis is slightly curved in the form of a sine
alf-wave, 𝑤̂(𝑥) = 𝑤̂0 sin(𝜋𝑥∕𝑙) with 𝑤̂0 = −0.03 m, and is induced by a
ime-harmonic uniform load 𝑝(𝑥, 𝑡) = 𝑝0 sin(𝜈𝑡) switched on at time 𝑡 = 0.

he excitation frequency 𝜈 is 1.3 times the fundamental frequency 𝜔1
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𝑤

Fig. 13. Time history of the overall and layerwise internal forces (left) and their distribution along the beam axis at a given time instant (right). (a,b) axial forces, (c,d) bending
moments. Two-layer beam with initial deflection and straight axis, respectively. Left end clamped, right end soft-hinged horizontally immovably supported.
of the beam with initial deflection. The kinematic variables shown in
Fig. 12 are normalized by the static deflection of the slightly curved
beam at midspan, 𝑤𝑆 (𝑥 = 0.5𝑙), due to the load 𝑝(𝑥) = 𝑝0, with
𝑆 (0.5.𝑙)∕𝑝0 = 4.53⋅10−7 m2/N. The time 𝑡 is also made non-dimensional

by division with the fundamental period of the slightly curved beam
𝑇1 = 7.47 ⋅ 10−3 s. The plots in the left column of this figure show the
time histories of the deflection at midspan (Fig. 12(a)), the interlayer
slip at the right end of the beam (Fig. 12(c)), and the horizontal
displacement of the central axis at 𝑥∕𝑙 = 0.8𝑙. The plots in the right
column depict the distribution of these quantities over 𝑥∕𝑙 at time
𝑡∕𝑇1 = 1.754 (Fig. 12(b,d,e)). The comparison of the beam solution with
the result of the plane stress FE analysis demonstrates once more a very
good agreement with hardly visible deviations. It should be noted here
that in this example, the computational time for the FE analysis with
Abaqus was about 205 min, while the solution with beam theory with
Mathematica on the same computer (8-core Intel Xeon W processor)
was found in less than a minute.

In contrast, the kinematic response of the straight beam deviates
strongly from that of the slightly curved one, as can also be seen in
Fig. 12. For instance, the maximum value of the interlayer slip at the
right support is less than 10% of the one of the straight beam, see
Fig. 12(c). Moreover, the horizontal displacement of the central axis
of the straight beam is zero, Fig. 12(e).

Finally, Fig. 13 shows the normal force, Fig. 13(a,b), and the mo-
ment, Fig. 13(c,d), of the two layers as well as the overall beam. The
normal forces are normalized with the overall normal force 𝑁𝑆 (0.5𝑙) in
the beam center due to the static load with 𝑁𝑆 (0.5𝑙)∕𝑝0 = 2.851 m,
the moments with the overall moment 𝑀𝑆 (0.5𝑙) in the beam center
subjected this static load with 𝑀𝑆 (0.5𝑙)∕𝑝0 = 0.01775 m2. Fig. 13(d)
shows that at the right support the total moment 𝑀 is virtually zero,
i.e. the selected number of 𝐽 = 11 shape functions 𝜑𝑗 (𝑥) is sufficient to
approximate the dynamic boundary condition 𝑀(𝑙, 𝑡) = 0 accurately.

5. Summary and conclusions

Based on the fundamental linearized kinematic relations, a layer-

wise application of Euler–Bernoulli theory and a linear constitutive

15
law for the interlayer slip, the equations of motion and boundary
conditions of slightly curved composite beams with flexibly bonded
layers were derived using Hamilton’s principle. The resulting initial–
boundary value problem was solved analytically for the symmetrically
layered three-layer beam soft-hinged at both ends. When both supports
are horizontally immovable and the initial deflection is proportional
to one eigenfunction of the deflection of the straight beam, then the
eigenfunctions of the deflection of the straight beam are equal to those
of the slightly curved member. Compared to the straight beam, the
initial deflection leads to an increase in that natural frequency whose
mode is proportional to the initial deflection, and the corresponding
eigenfunctions of the upper and lower interlayer slip are different. The
other natural frequencies coincide with those of the straight beam, and
the natural functions of the upper and lower interlayer slip are identical
and also correspond to those of the straight member. Unlike the straight
beam, the eigenfunctions of the longitudinal displacement of the beam
axis are non-zero.

When one of the two supports of the slightly curved member
slides horizontally, the natural frequencies, the eigenfunctions of the
deflection and the interlayer slips correspond to those of the straight
beam. However, in contrast to the straight beam, the eigenfunction
of the longitudinal displacement of the central axis, whose mode is
proportional to the initial deflection, is non-zero.

Since for arbitrary boundary conditions of the considered slightly
curved composite beams with arbitrary arrangement of the layers the
analytical solution of the present boundary value problem is either very
costly or not possible, a numerical procedure for the computation of the
natural frequencies, eigenfunctions and forced vibration response based
on Galerkin’s method is adapted on the example of a two-layer beam
with interlayer slip.

Several application examples demonstrate the large influence of
initial deflection on the dynamics of slender composite beams whose
layers are flexibly connected. In addition, finite element analyses were
performed where, assuming a plane stress state, the considered struc-
tures were discretized with continuum elements. The results of the
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presented beam theory are in excellent agreement with the results
of these finite element analyses for a wide range of initial deflection
amplitude, which confirms the accuracy of this theory. This comparison
also illustrates the efficiency of the beam theory in comparison with
the much more computational demanding and time consuming finite
element analyses of the continuum model.
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