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Abstract A new semi-analytical approach to analyze the dynamic response of railway bridges subjected to
high-speed trains is presented. The bridge is modeled as an Euler–Bernoulli beam on viscoelastic supports
that account for the flexibility and damping of the underlying soil. The track is represented by an Euler–
Bernoulli beamon viscoelastic bedding. Complexmodal expansion of the bridge and trackmodels is performed
considering non-classical damping, and coupling of the two subsystems is achieved by component mode
synthesis (CMS). The resulting system of equations is coupled with a moving mass–spring–damper (MSD)
system of the passing train using a discrete substructuring technique (DST). To validate the presentedmodeling
approach, its results are compared with those of a finite element model. In an application, the influence of the
soil–structure interaction, the track subsystem, and geometric imperfections due to track irregularities on the
dynamic response of an example bridge is demonstrated.

1 Introduction

In the last two decades, the importance of the dynamics of railway bridges has grown considerably due to the
increased development of high-speed railway lines. In fact, at high, so-called critical train speeds, resonance
phenomena occur more frequently in bridge structures, resulting from excitation by the moving axle loads at
constant spacing, as well as from track irregularities and wheel hunting movements. Resonance phenomena
in railway bridges usually do not lead to a loss of load-bearing capacity, but to the exceeding of the maximum
allowable accelerations of the bridge deck. In such cases, the ballast bed becomes instable, reducing the
maintenance intervals for the track or requiring a reduction in train speed. In catastrophic conditions, the
change in track position may even lead to train derailments. The numerical prediction of the dynamic response
of railway bridges is therefore of great importance.

First studies on the dynamic behavior of railway bridges date back to the nineteenth century (e.g., [32,38]),
as described in the comprehensive overview of early contributions in [16]. The simplest approaches dealing
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with these problems include the modeling of the bridge as a beam-like structure subjected to moving single
loads, which correspond to the axle loads of the train [13,17,36]. In more complex models, the bridge is
represented by a 3D finite element (FE) model and the train as a 3D mass–spring–damper (MSD) system [40]
in which rigid bodies are connected by lumped spring–damper elements [31,46]. To determine the dynamic
response of the coupled system, in a classical approach, both subsystems are first treated individually and
then coupled via a coupling condition at the point of contact [45]. However, these models can only be created
with great effort and do not allow parameter studies or stochastic simulations. The simplest model approach
to explicitly consider the dynamic interaction between train and bridge consists of a beam for the bridge and
a plane MSD system for the train [41,44]. These, as well as other simplifying models (e.g., [10] and [22]),
are suitable for computationally intensive investigations of the failure probability of railway bridges using
stochastic simulations [21]. In these simplified beam models, the track is not explicitly modeled. An exception
is the model presented in [3], where the track is represented as an additional beam, which rests on viscoelastic
bedding on the bridge and the adjacent areas to be connected. For the coupling of the subsystems of the bridge
beam and track beam, the authors of [3] used a variant of the so-called component mode synthesis (CMS).

A recent contribution on vehicle–bridge interaction [33] proposed a method to decouple the vehicle–bridge
interaction problem, taking the influence of the traversing vehicle on the natural frequencies and damping of
the bridge [34] into account. Other recent studies have shown that the soil–structure interaction can have a
significant impact on the prediction of the dynamic bridge response [5,35,37,42]. Discretization of the half-
space and foundations by means of finite elements or boundary elements [18,30,37] leads to a computational
effort that is hardly feasible. Alternatively, the soil can be represented in a simplifiedmanner by spring–damper
elements below the bridge supports [11,39]. In a recent paper [20], such a beammodel on viscoelastic supports
crossed by a movingMSD system was developed. The solution of this coupled non-classically damped system
was found by means of a dynamic substructuring technique (DST), and the approach of the MSD system at
the beam and its departure after crossing the beam were approximated by simplifying assumptions.

The aim of the present contribution is to extend this non-classically damped model of the bridge beam [20]
by a track on viscoelastic bedding. The CMS approach for simply supported single-span beams presented in
[3] serves as a basis for considering the track substructure as a separate beam. The proposed model is thus
able to capture the load distribution by the track on the bridge structure. Consequently, there is no need for
simplified assumptions for the approach and departure conditions of the train, as described in [20]. In addition,
track irregularities are accounted for by appropriate irregularity profile functions [8]. This way, the proposed
model captures the dynamic train–track–bridge–soil interaction including track irregularities and provides a
solid basis for further numerical investigations.

In the present paper, first the models and the corresponding equations of motion of the individual subsys-
tems, track, bridge–soil, and train, are described. A modal expansion of the soil–bridge and track subsystems
is performed, and the coupling of the subsystem is achieved using CMS [2,3]. This set of equations is then
coupled with the MSD system of the train using a DST and subsequently solved numerically. In order to
validate the proposed model, a numerical study is carried out comparing the results of the presented method
with those of a finite element model. Further numerical investigations include the comparison of the response
with and without track substructure and the results with and without soil–structure interaction, with aspects
of each subsystem discussed. Finally, some important findings on the consideration of rail irregularities are
presented.

2 Modeling of the train–track–bridge–soil system

For the present investigations, the interaction system consisting of the high-speed train moving at constant
speed v, the track, the bridge with foundation, and the soil is modeled as a plane system, which is shown
in Fig. 1. The rails and the slender bridge are both modeled as Euler–Bernoulli beams with constant cross-
section. The rail system on top of the bridge is resting on a viscoelastic Winkler bedding, which represents
the mechanical properties of the track and the underlying subgrade. Rail irregularities are taken into account
by introducing random irregularity profile functions on the rail beam surface [8], which describe the deviation
from a perfectly smooth track. The viscoelastic bearings at both ends of the bridge beam represent the stiffness
and damping of the supporting soil. To account for themass of the foundation and the soil above the foundation,
lumped masses at each end of the bridge are added. It is assumed that a conventional train composed of Nc
individual vehicles crosses the bridge. Each vehicle, which consists of a car body, two bogies, and four axles,
is modeled as a mass–spring–damper (MSD) system with ten degrees of freedom (DOFs).
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Fig. 1 Viscoelastically supported single-span bridge model with track crossed by a planar MSD model, which represents the j th
train vehicle

3 Equations of motion and boundary conditions

The interacting system shown in Fig. 1 is at first split into the subsystems of the track, the bridge–soil, and the
train. In this Section, the equations of motions of each subsystem are presented.

3.1 Track subsystem

The Euler–Bernoulli beam with the length L r, which represents the track substructure, has a constant mass per
unit length ρAr and a constant flexural rigidity E Ir and rests on a viscoelastic Winkler bedding with stiffness
coefficient kf(x) and damping coefficient cf(x). The bedding parameters can be different in the bridge section
(then denoted as kfb and cfb) and in the area of the subsoil (then denoted as kf0 and cf0). The origin of the axial
coordinate x = 0 is located at the left viscoelastic bridge bearing. In the model, the theoretically infinitely
long track superstructure is considered to be simply supported at both ends. To ensure that the effects of these
“artificially” introduced boundary conditions on the system response at the bridge are negligible, the track in
the model must have the following minimum length before and after the bridge [3,12]:

L0 ≥ 2π 4

√
4E Ir
kf0

. (1)

The deflection wr(x, t) of the track model is governed by the following equation of motion [9]:

ρArẅr(x, t) + E Irwr,xxxx (x, t) = −qr(x, t) + fr(x, t). (2)

The distributed force qr(x, t) results from the viscoelastic bedding counteracting the displacement of the track,

qr(x, t) =kf(x) (wr(x, t) − wb(x, t)� (x, 0, Lb))

+ cf(x) (ẇr(x, t) − ẇb(x, t)�(x, 0, Lb)) ,
(3)
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Fig. 2 Track–bridge–soil subsystem subjected to one moving interaction load and free-body diagram separating the track and
the bridge–soil subsystems

where wb denotes the vertical displacement of the beam representing the bridge substructure of length Lb, as
shown in Fig. 2. The window function �(x, 0, Lb) = H(x) − H(x − Lb) composed of the Heaviside step
functions H(x) and H(x − Lb) delimits the range of the viscoelastic bedding on top of the bridge beam from
the remaining track beam area. It thus indicates that the bridge deflection wb(x, t) has an effect on the force
qr(x, t) only over the bridge span Lb.

The second part of the forcing function in Eq. (2), fr(x, t), captures the effect of the interaction forces
between the rails and the vehicles,

fr(x, t) =
Nc∑
j=1

n( j)
a∑

k=1

F ( j)
k (t)δ

(
x − x ( j)

k (t)
)

�
(
t, t ( j)Ak , t ( j)Dk

)
. (4)

Here, F ( j)
k (t) denotes the interaction force between the kth axle of the j th vehicle, which is at time t at the axle

position x ( j)
k (t) = vt−l( j)k −L0,with l

( j)
k being the initial distance from the left support of the track at x = −L0,

as shown in Figs. 1 and 2. Consequently, the kth axle of the j th vehicle arrives at the trackmodel at time instance
t ( j)Ak = l( j)k /v and leaves the track at time t ( j)Dk = (l( j)k + 2L0 + Lb)/v. The Dirac delta function δ

(
x − x ( j)

k (t)
)

defines the position of F ( j)
k (t) at x ( j)

k (t), and the window function �(t, t ( j)Ak , t ( j)Dk ) = H(t − t ( j)Ak )− H(t − t ( j)Dk )

controls the time range in which F ( j)
k (t) crosses the track beam. The variable n( j)

a denotes the number of axle

loads of the j th vehicle (note that for the considered conventional train n( j)
a = 4 and k = 1, 2, 3, 4).

The boundary value problem is completed by the pinned boundary conditions of the track model,

wr (x = −L0, t) = 0, wr (x = Lb + L0, t) = 0

wr,xx (x = −L0, t) = 0, wr,xx (x = Lb + L0, t) = 0.
(5)
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3.2 Bridge–soil subsystem

The half-space (soil) below the vertically excited rigid bridge foundations is represented in a simplifiedmanner
by spring–damper elements [11] located below the bridge bearings, as shown in Fig. 1. Assuming that the
half-space is homogeneous, the spring stiffness kb and the viscous damping parameter cb of these elements
can be estimated, for instance, based on the Wolf cone model [39],

kb = ρsc2wA0

z0
, cb = ρscwA0, (6)

where

z0 = π

4
(1 − ν)

(
cw
cs

)2

r0. (7)

ρs is the density of the soil, A0 the contact area of the foundation, r0 = √
A0/π the equivalent radius of a

circular plate with the same area as the foundation, and cs = √
G/ρs the shear velocity with G denoting the

shear modulus of the soil. Depending on Poisson’s ratio ν of the subsoil, the variable cw is either equal to the
compression wave velocity cp or twice the shear wave velocity cs of the homogeneous half-space,

cw =
⎧⎨
⎩
cp =

√
Es
ρs

ν ≤ 1/3

2cs = 2
√

G
ρs

1/3 < ν ≤ 1/2
, (8)

with the constrained modulus Es of soil, which is related to the shear modulusG by Es = 2G(1−ν)/(1−2ν).
The dynamic stiffness decreases with increasing frequency, but since the stiffness coefficient kb is a static
quantity, for soils with a Poisson’s ratio ν > 1/3, additionally the lumped mass m̃g must be considered [39],

m̃g = 2.4√
π

(
ν − 1

3

)
ρsA

(3/2)
0 . (9)

The lumped mass mb located at both bridge bearings represents thus the mass of the bridge foundations
m̃1, the mass of the soil above the foundations m̃2, and the lumped soil mass m̃g, i.e., mb = m̃1 + m̃2 + m̃g.

The vertical displacementwb(x, t) of the Euler–Bernoulli beamwith constant mass per unit length ρAb and
constant flexural rigidity E Ib satisfies the following partial differential equation [9] in the range 0 ≤ x ≤ Lb:

ρAbẅb(x, t) + E Ibwb,xxxx (x, t) = qb(x, t), (10)

where
qb(x, t) = kf(x) (wr(x, t) − wb(x, t)) + cf(x) (ẇr(x, t) − ẇb(x, t)) (11)

is the force that is transferred to the bridge via the viscoelastic Winkler bedding, as shown in Fig. 2. The
corresponding boundary conditions of the present beam problem are [20]

(x = 0) : mbẅb(0, t) + cbẇb(0, t) + kbwb(0, t) + E Ibwb,xxx (0, t) = 0,

wb,xx (0, t) = 0,

(x = Lb) : mbẅb (Lb, t) + cbẇb (Lb, t) + kbwb (Lb, t) − E Ibwb,xxx (Lb, t) = 0,

wb,xx (Lb, t) = 0.

(12)

3.3 Train subsystem

The planar model of the j th vehicle of the considered conventional train is composed of seven rigid bodies
with mass, i.e., the car body (subscript “p”), two bogies (subscript “s”), and four axles (subscript “a”), which
are connected by spring–damper elements, as shown in Fig. 1. The model with a total of 10 DOFs has three
rotational DOFs (rotation of the car body ϕ

( j)
p and of the bogies ϕ

( j)
s1 and ϕ

( j)
s2 ) and seven translational DOFs

(vertical axle displacements u( j)
a1 , u

( j)
a2 , u

( j)
a3 , u

( j)
a4 ; vertical displacement of the center of gravity of the car body
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u( j)
p ; vertical displacement of the center of gravity of the bogies u( j)

s1 , u( j)
s2 ) [23,27], which are combined in the

vector u( j)
c ,

u( j)
c =

[
u( j)
p , ϕ( j)

p , u( j)
s1 , ϕ

( j)
s1 , u( j)

s2 , ϕ
( j)
s2 , u( j)

a1 , u( j)
a2 , u( j)

a3 , u( j)
a4

]T
. (13)

Neglecting the horizontal interaction between the Nc individual vehicles, the combined equations ofmotion
of the complete train can be written as [31]

Mcüc + Ccu̇c + Kcuc = Fc, (14)

withMc, Cc, andKc being the mass, damping, and stiffness matrices of the train resulting from the individual
system matrices of each vehicle,

Mc = diag
[
M(1)

c , . . . ,M( j)
c , . . . ,M(Nc)

c

]
,

Cc = diag
[
C(1)
c , . . . ,C( j)

c , . . . ,C(Nc)
c

]
,

Kc = diag
[
K(1)

c , . . . ,K( j)
c , . . . ,K(Nc)

c

]
,

uc =
[
u(1)
c , . . . ,u( j)

c , . . . ,u(Nc)
c

]T
. (15)

The vehicle system matrices M( j)
c ,C( j)

c ,K( j)
c can be found in [20,31]. The force vector

Fc =
[
F(1)
c ,F(2)

c , . . . ,F(Nc)
c

]T
(16)

is composed of the individual interaction force vectors (Fig. 1)

F( j)
c =

[
0, 0, 0, 0, 0, 0, F ( j)

as + F ( j)
a1 , F ( j)

as + F ( j)
a2 , F ( j)

as + F ( j)
a3 , F ( j)

as + F ( j)
a4

]T
(17)

between the vehicle and the rail substructures at the position of each axle of the Nc vehicles. Each interaction
force in turn consists of a dynamic component, F ( j)

ak (k = 1, . . . , 4), and a static component F ( j)
as ,

F ( j)
as = g

4

(
m( j)

p + 2m( j)
s + 4m( j)

a

)
, (18)

which is simply the gravity load of the vehicle distributed over the four axles, with g denoting the acceleration
of gravity. In state space, the equations of motion of the train (Eq. 15) become [20]

Acḋc + Bcdc = fc, (19)

with

Ac =
[
Cc Mc
Mc 0

]
, Bc =

[
Kc 0
0 −Mc

]
, fc =

[
Fc
0

]
, dc =

[
uc
u̇c

]
. (20)

4 Coupling of the bridge–soil and the track subsystems

The coupling of the bridge–soil subsystem with the track subsystem is achieved by CMS as proposed in [2].
The basis for the application of CMS is the modal expansion of the deformations of these substructures using
the substructure eigenfunctions. The underlying modal properties of the non-classically damped subsystems
are given in Appendix A (bridge–soil subsystem) and B (track subsystem).
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(a)

(b)

(c)

Fig. 3 a Track deflection w
(f)
r (x, t) due to the interaction force F ( j)

k (t). b Track deflection w
(b)
r (x, t) resulting from the bridge

displacement wb(x, t). c System with total deflection of the rail wr(x, t) and bridge displacement wb(x, t)

4.1 Series expansion of the response variables

The response of the bridge–soil subsystem is approximated by the expansion of wb into Nb complex modes
of the corresponding stand-alone viscoelastically supported beam model,

wb(x, t) ≈
Nb∑
m=1

y(m)
b (t)�(m)

b (x) +
Nb∑
m=1

ȳ(m)
b (t)�̄(m)

b (x). (21)

In Eq. (21), �
(m)
b (x) is the mth complex eigenfunction (see Eq. (54), Appendix A) and y(m)

b the mth modal

coordinate of the stand-alone viscoelastically supported bridge beam, and �̄
(m)
b (x) and ȳ(m)

b are the complex
conjugate equivalents.

The applied CMS is based on a separation of the track displacement wr(x, t) into two parts [3],

wr(x, t) = w(f)
r (x, t) + w(b)

r (x, t), (22)

wherew
(f)
r (x, t) is the response of the track fixed at the interface with the bridge substructure due to the forcing

function fr(x, t) and is thus governed by the equation of motion (Eq. (2)) without the quantities related to the
bridge displacement wb. Accordingly, w

(f)
r (x, t) is approximated by the modal series

w(f)
r (x, t) ≈

Nr∑
n=1

y(n)
r (t)�(n)

r (x) +
Nr∑
n=1

ȳ(n)
r (t)�̄(n)

r (x) (23)

using the first Nr complex eigenfunctions of the track substructure�
(n)
r (x), n = 1, . . . , Nr (Eqs. (65) and (72),

Appendix B). y(n)
r and ȳ(n)

r denote the nth modal coordinate of the track subsystem and its complex conjugate,
respectively.

The second portionw
(b)
r (x, t) denotes the track response induced by the displacement of the bedding at the

interface to the bridge beam (i.e., the bridge displacement wb) [3]. Figure 3 shows the idea of this separation
graphically.
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As discussed in [3], the response contribution w
(b)
r is expressed by a series expansion based on the modal

coordinates of the bridge y(m)
b (t) and ȳ(m)

b (t),

w(b)
r (x, t) ≈

Nb∑
m=1

y(m)
b (t)	(m)

r (x) +
Nb∑
m=1

ȳ(m)
b (t)	̄(m)

r (x), (24)

with	
(m)
r (x) and 	̄

(m)
r (x) denoting themth shape function of the track and its complex conjugate, respectively.

An appropriate shape function can be derived from the mth eigenfunction �
(m)
b (x) of the bridge substructure

by dropping fr and the time-dependent terms in Eqs. (2) and (3) and inserting the mth modal contribution of
w

(b)
r and wb, i.e., w

(b)(m)
r (x, t) = 	

(m)
r (x)y(m)

b (t) and w
(m)
b (x, t) = �

(m)
b (x)y(m)

b (t). This yields the following

quasi-static relationship between 	
(m)
r (x) and �

(m)
b (x) in the form of an ordinary differential equation of the

fourth order,
E Ir	

(m)
r,xxxx (x) + kf(x)	

(m)
r (x) = kf(x)�

(m)
b (x)� (x, 0, Lb) . (25)

Equation (25) is solved numerically in combination with the boundary conditions of the track substructure
(Eq. (5)). The corresponding complex conjugate 	̄

(m)
r is related to �̄

(m)
b accordingly.

4.2 Component mode synthesis

In the initial step, the equations of motion of the bridge–soil and the track subsystems, as shown in Eq. (2) and
Eq. (10), are rewritten as[

ρAb 0
0 ρAr

] [
ẅb(x, t)
ẅr(x, t)

]
+
[
E Ib 0
0 E Ir

] [
wb,xxxx (x, t)
wr,xxxx (x, t)

]

=
[−kf kf

kf −kf

] [
wb(x, t)
wr(x, t)

]
+
[−cf cf

cf −cf

] [
ẇb(x, t)
ẇr(x, t)

]
+
[
0
fr

]
. (26)

The series approximations of the response variables wb, w
(b)
r , and w

(f)
r , shown in Eqs. (21), (23), and (24), are

also written in a compact manner,[
wb(x, t)
wr(x, t)

]
=
[

wb(x, t)
w

(b)
r (x, t) + w

(f)
r (x, t)

]
= �hB, (27)

with

� =
[

�b(x)T 0
�r(x)T �r(x)T

]
, hB =

[
yb(t)
yr(t)

]
. (28)

The matrix � is composed of the vector �b(x) of the complex eigenfunctions of the bridge–soil subsystem,
the vector �r(x) of the complex eigenfunctions of the track subsystem, and the vector �r(x) of the shape
functions,

�b =
[
�

(1)
b , �

(2)
b , . . . , �

(Nb)
b , �̄

(1)
b , �̄

(2)
b , . . . , �̄

(Nb)
b

]T
,

�r =
[
�(1)

r , �(2)
r , . . . , �(Nr)

r , �̄(1)
r , �̄(2)

r , . . . , �̄(Nr)
r

]T
,

�r =
[
	(1)

r , 	(2)
r , . . . , 	(Nb)

r , 	̄(1)
r , 	̄(2)

r , . . . , 	̄(Nb)
r

]T
.

(29)

The vector hB combines the two vectors yb(t) and yr(t) of the subsystem modal coordinates,

yb =
[
y(1)
b , y(2)

b , . . . , y(Nb)
b , ȳ(1)

b , ȳ(2)
b , . . . , ȳ(Nb)

b

]T
,

yr =
[
y(1)
r , y(2)

r , . . . , y(Nr)
r , ȳ(1)

r , ȳ(2)
r , . . . , ȳ(Nr)

r

]T
.

(30)

In the second step, in the combined equations of motion of the bridge–soil and the track subsystems
(Eq. (26)) the response variables are substituted by the series approximation specified in Eq. (27). Subsequent
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pre-multiplication by �T, and integration over the track length −L0 ≤ x ≤ Lb + L0 leads with the relation
between the modal accelerations and velocities [20,28],[

ÿb
ÿr

]
=
[
Sbẏb
Srẏr

]
(31)

Sb = diag
[
s(1)
b , s(2)

b , . . . , s(Nb)
b , s̄(1)

b , s̄(2)
b , . . . , s̄(Nb)

b

]
,

Sr = diag
[
s(1)
r , s(2)

r , . . . , s(Nr)
r , s̄(1)

r , s̄(2)
r , . . . , s̄(Nr)

r

]
(32)

finally to the following coupled set of equations track–bridge–soil subsystem in terms of its modal coordinates,

ABḣB + BBhB = fB. (33)

The members of the diagonal matrices Sb and Sr: s
(m)
b , s̄(m)

b ,m = 1, . . . , Nb; s
(n)
r , s̄(n)

r , n = 1, . . . , Nr,
are the complex natural frequencies of the bridge–soil and track substructures and their complex conjugate
counterparts, respectively (see Appendices A and B). The system matrices AB and BB,

AB =
[
Ab + 
MbSb + 
Cb MbrSr + Cbr
MrbSb + Crb Ar

]
,

BB =
[
Bb + 
Kb 0
0 Br

]
, (34)

are composed of several sub-matrices, which are explained in the following. The two diagonal sub-matrices
Ab and Bb contain the coefficients for the orthogonality conditions of the eigenfunctions of the bridge–soil
subsystem a(m)

b , ā(m)
b , b(m)

b , b̄(m)
b , m = 1, . . . , Nb,

Ab = diag
[
a(1)
b , a(2)

b , . . . , a(Nb)
b , ā(1)

b , ā(2)
b , . . . , ā(Nb)

b

]
,

Bb = diag
[
b(1)
b , b(2)

b , . . . , b(Nb)
b , b̄(1)

b , b̄(2)
b , . . . , b̄(Nb)

b

]
,

(35)

described in detail in Appendix A. The corresponding matrices for the stand-alone track subsystem, Ar and
Br, read as

Ar = diag
[
a(1)
r , a(2)

r , . . . , a(Nr)
r , ā(1)

r , ā(2)
r , . . . , ā(Nr)

r

]
,

Br = diag
[
b(1)
r , b(2)

r , . . . , b(Nr)
r , b̄(1)

r , b̄(2)
r , . . . , b̄(Nr)

r

]
.

(36)

Details on the coefficients a(n)
r , ā(n)

r , b(n)
r , b̄(n)

r , n = 1, . . . , Nr, in these matrices are found in Appendix B. The
sub-matrices 
Mb, 
Cb, and 
Kb read as


Mb = ρAr

∫ Lb+L0

−L0

�r�
T
r dx,


Cb = − cfb

(∫ Lb

0
�b�

T
r dx +

(∫ Lb

0
�b�

T
r dx

)T

−
∫ Lb

0
�b�

T
b dx

)
+
∫ Lb+L0

−L0

cf�r�
T
r dx,


Kb = − kfb

(∫ Lb

0
�b�

T
r dx +

(∫ Lb

0
�b�

T
r dx

)T

−
∫ Lb

0
�b�

T
b dx

)
+
∫ Lb+L0

−L0

kf�r�
T
r dx

+E Ir

∫ Lb+L0

−L0

�r�
T
r,xxxxdx, (37)



4592 P. König et al.

and the sub-matrices

Mbr = MT
rb = ρAr

∫ Lb+L0

−L0

�r�
T
r dx,

Cbr = CT
rb =

∫ Lb+L0

−L0

cf�r�
T
r dx − cfb

∫ Lb

0
�b�

T
r dx

(38)

result from coupling of the bridge–soil and the track subsystems.
The force vector fB in Eq. (33),

fB =
[
fb
fr

]
, (39)

captures the effect of the vehicle interaction forces F ( j)
k , j = 1, . . . , Nc, k = 1, . . . , 4 (for the considered four

axle vehicles), separately for the bridge–soil subsystem by the vector fb and for the track subsystem by the
vector fr. The vector fb reads as

fb =
Nc∑
j=1

Ψ ( j)
r �( j)F( j) , F( j) =

[
F ( j)
1 , F ( j)

2 , F ( j)
3 , F ( j)

4

]T
, (40)

where
�( j) = diag

[
�(t, t ( j)A1 , t ( j)D1 ), �(t, t ( j)A2 , t ( j)D2 ), �

(
t, t ( j)A3 , t ( j)D3

)
, �

(
t, t ( j)A4 , t ( j)D4

)]
(41)

and
Ψ ( j)

r =
[
�r

(
x ( j)
1

)
, �r

(
x ( j)
2

)
, �r

(
x ( j)
3

)
, �r

(
x ( j)
4

)]
, (42)

with x ( j)
i (i = 1, . . . , 4) corresponding to the axle position of each of the four axles of the j th vehicle. The

vector fr is computed according to

fr =
Nc∑
j=1

Φ( j)
r �( j)F( j), (43)

where
Φ( j)

r =
[
�r

(
x ( j)
1

)
, �r

(
x ( j)
2

)
, �r

(
x ( j)
3

)
, �r

(
x ( j)
4

)]
. (44)

In case of a single load model, where interaction forces in F( j) are assumed to be constant and of known
value (i.e., the static axle loads of the train), Eq. (33) can be solved numerically by applying the fourth-order
Runge–Kutta method [6].

5 Coupling of the track–bridge–soil and the train subsystems

First, the equations ofmotion of the track–bridge–soil subsystem, as shown in Eq. (33), and the train subsystem,
as shown in Eq. (19), are written in a compact manner,

A∗ẋ∗(t) + B∗x∗(t) = f∗(t), (45)

where

A∗ = diag [AB,Ac] , B∗ = diag [BB,Bc] , x∗(t) =
[
hB
dc

]
, f∗(t) =

[
fB
fc

]
. (46)

In Eq. (45), the DOFs at the interface of the two subsystems are still decoupled. The coupling of the axle and
the rail displacements is achieved by the so-called corresponding assumption [45].

According to this assumption, the displacement of each axle of the train corresponds to the underlying rail
displacement including track irregularity, as shown in Figs. 1 and 4. The wheels are thus assumed to be in rigid
contact with the rails, and lift-off is not possible. Approximating the displacement of the track beam wr by a
modal series with Nr modes (Eq. (24)), the corresponding assumption yields the vertical displacement of the
kth axle (k = 1, . . . , 4)) of the j th vehicle at the position x ( j)

k (t) as follows:
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u( j)
ak

(
x ( j)
k

)
= wr

(
x ( j)
k , t

)
+ Iirr

(
x ( j)
k

)

≈
Nr∑
n=1

�(n)
r

(
x ( j)
k

)
y(n)
r (t) +

Nr∑
n=1

�̄(n)
r

(
x ( j)
k

)
ȳ(n)
r (t)

+
Nb∑
m=1

	(m)
r

(
x ( j)
k

)
y(m)
b (t) +

Nb∑
m=1

	̄(m)
r

(
x ( j)
k

)
ȳ(m)
b (t) + Iirr

(
x ( j)
k

)
. (47)

The variable Iirr denotes a random irregularity profile function, which is applied to the track surface, to consider
track irregularities, as shown in Fig. 4. The generation of the random irregularity functions is based on power
spectral density functions, as described in detail in [8]. The corresponding expressions for the axle velocity
and axle acceleration, as shown in Eqs. (76) and (77), are specified in Appendix C. These relations leave the
DOFs of the axles and the modal coordinates of the track coupled.

According to the corresponding assumption, the interaction forces between the track beam and the vehicle
are equal. Thus, for example, the axle force F ( j)

ak (t) corresponds to the interaction force F ( j)
k (t) on the track

(Fig. 1).
The compatibility conditions Eqs. (47), (76), and (77) allow the application of a DST by condensation of the

DOFs involved in these relations into the modal coordinates of the track beam substructure. This condensation
reads as

x∗(t) = �1(t)x(t) + �2(t)ẋ(t) + ϒ(t), x(t) =
[
hb, d̃c

]T
,

ẋ∗(t) = �̇1(t)x(t) + �1(t)ẋ(t) + �̇2(t)ẋ(t) + �2(t)ẍ(t) + ϒ̇(t), (48)

with �1(t) and �2(t) serving as time-dependent transformation matrices and ϒ(t) including the irregularities
of the track evaluated at the positions of the vehicle axis. These quantities are specified in Appendix C,
Eqs. (78) and (79). The vector d̃c is the vector dc (see Eq. (20)) without the DOFs of the train axles. The
transformation according to Eq. (48) imposes the corresponding assumption into the two subsystems, which
are thus consolidated.

Next, Eq. (48) is inserted into Eq. (45) and pre-multiplied by �T
1 (t), which leads to the combined equations

of motion of the interacting track–bridge–soil–train system,

A(t)ẋ(t) + B(t)x(t) = f(t), (49)

where
A(t) = �T

1 (t)
(
A∗�1(t) + A∗�̇2(t) + A∗�2(t)S + B∗�2(t)

)
,

B(t) = �T
1 (t)

(
A∗�̇1(t) + B∗�1(t)

)
,

f(t) = �T
1 (t)

(
f∗(t) − A∗ϒ̇(t) − B∗ϒ(t)

)
.

(50)

In the matrix S,
S = diag

[
Sb,Sr, INc

d
dt

]
. (51)

Fig. 4 Corresponding assumption coupling axle and rail displacements (modified from [20])
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Fig. 5 Steps of the model implementation

Table 1 Properties of the soil/foundation and resulting parameters at the bridge boundaries

Properties soil/foundation Parameters bridge-boundaries
Variable Value Unit Variable Value Unit

Es 2 · 108 N/m2 kb 1.276 · 109 N/m
ν 0.3 – cb 3.229 · 107 kg/s
ρs 2263 kg/m3 mb 3 · 105 kg
A0 48 m2

m̃1 + m̃2 3 · 105 kg

INc denotes the identity matrix of order of the length of d̃c. Note that only the static axle loads (Eqs. (16)

and (17)) remain in the force vector f(t), and the dynamic interaction forces F ( j)
ak (t) and F ( j)

k (t) cancel each
other out when f∗(t) is pre-multiplied by �T

1 (t). The coupled set of equations of motion (Eq. (49)) with time-
dependent system matrices is solved by applying the Runge–Kutta method [6]. The steps involved with the
solution procedure of the proposed model are summarized in Fig. 5.

6 Application

6.1 Validation

To validate the proposed semi-analytical modeling approach implemented in MATLAB [25], the results of an
application example are compared with those of an FE model created in the software suite Abaqus [1]. To this
end, a single-span bridge of length Lb = 21 m, flexural rigidity E Ib = 2.6 · 1010 Nm2, and mass per unit
length ρAb = 7083 kg/m, resting on a moderately stiffness soil with parameters given in Table 1 is considered.

From the soil parameters, by applying Eq. (6) the stiffness and damping coefficients of the spring and
damper below the bridge ends are obtained as kb = 1.276 · 109 N/m2 and cb = 3.229 · 107 Ns/m2. Since the
transient dynamical analysis in Abaqus does not use modal superposition, in the FE model modal damping
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Fig. 6 Two-degree-of-freedom MSD system

Table 2 Parameters of two-degree-of-freedom ICE 3 train model [26]

Component Variable Value Unit

1/4 car body mass + 1/2 bogie mass ms 15125 kg
Axle mass ma 1800 kg
Suspension stiffness ka 1.764 · 106 N/m
Suspension damping ca 4.800 · 104 Ns/m

cannot be implemented. Therefore, to ensure comparability of the results, structural damping is not considered
in this example. The parameters of the track subsystem are as follows [3,7]: flexural rigidity E Ir = 8.6 · 106
Nm2, mass per unit length ρAr = 103 kg/m, bedding stiffness coefficient kf = 1.316 · 108 N/m2, and bedding
damping coefficient cf = 6.42 · 104 Ns/m2. The length of the track before and after the bridge is chosen as
L0 = 30 m, which is much larger than the minimum value according to Eq. (1) (3.21 m). To capture track
irregularities, the random irregularity profile Iirr(x) shown in Fig. 7 is assigned to the rail. This irregularity
profile was created by a stochastic superposition of J harmonic functions as described in [8] with the following
input parameters: number of harmonic functions J = 1000, characteristic frequencies �c = 0.8246 rad/m,
�r = 0.0206 rad/m, �s = 0.4380 rad/m, half distance between rails l = 0.72 m, factor for moderate rail
quality A = 1.0891 · 10−6, spatial frequency range [π/50, π] rad/m. For details on this procedure and the
meaning of the input parameters, it is referred to [8].

In this validation example, the bridge–track system is crossed by the simpleMSD system shown in Fig. 6 at
constant speed v = 80 m/s. That is, instead of a full vehicle with four axles, this MSD system with parameters
specified in Table 2 represents a single axle, half a bogie, and a quarter of a car body of a standard ICE 3
train [26]. The corresponding system matrices Ac, Bc, force vector fc, and vector of degrees of freedom uc of
Eq. (20) read as

Ac =
⎡
⎢⎣

ca − ca ms 0
−ca ca 0 ma
ms 0 0 0
0 ma 0 0

⎤
⎥⎦ ,

Bc =
⎡
⎢⎣

ka − ka 0 0
−ka ka 0 0
0 0 ms 0
0 0 0 ma

⎤
⎥⎦ , (52)

fc =
⎡
⎢⎣

0
Fas
0
0

⎤
⎥⎦ , uc =

⎡
⎢⎣
us
ua
u̇s
u̇a

⎤
⎥⎦ , (53)

with Fas denoting the static axle load.
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Table 3 First six natural complex frequencies of the considered bridge subsystem, the corresponding natural frequencies, and
equivalent damping ratios. Natural frequencies of the simply supported bridge subsystem (last column)

Mode m Complex nat. frequ. s(m)
b (rad/s) Nat. frequency f (m)

b (Hz) Damping ratio ζ
(m)
b (%) Nat. frequency (ss) f (m)

b (Hz)

1 −1.35 + 42.10i 6.70 3.21 6.82
2 −49.90 + 38.43i 6.12 79.22 27.29
3 −50.07 + 41.31i 6.58 77.14 61.39
4 −2.23 + 174.79i 27.81 1.28 109.11
5 −1.10 + 389.91i 62.06 0.28 170.42
6 −0.64 + 690.21i 109.85 0.09 245.29

Fig. 7 Used irregularity profile

When computing the dynamic response using the proposed semi-analytical approach, Nb = 8 modes of
the stand-alone bridge substructure are taken into account. In Table 3, the first six complex natural frequencies
of these modes and the corresponding natural frequencies ( f (m)

b = Im(s(m)
b )/2π = �

(m)
b /2π) and equivalent

modal damping ratios due to the dashpot dampers at the beam ends are listed. As can be seen, the second and
third modes are heavily damped with an equivalent damping ratio of close to 80%. In the last column of Table 3
also, the first six natural frequencies of the corresponding simply supported bridge (i.e., the subsoil is assumed
to be rigid) are listed, showing that the two highly damped modes of the viscoelastically supported structure
do not appear but instead the second natural frequency of the simply supported beam is almost identical with
the fourth of the viscoelastically supported one.

With high values of the bedding coefficient kf , the deflection and acceleration of the rail become very
isolated around a single load leading to a high number of modes required to accurately describe the deformed
shape if modal superposition is applied. This fact, albeit mentioned in the literature (e.g., [14]), is oftentimes
overlookedwhenmodal superposition is used in railwaybridgedynamics andwasnot discussed in [3].However,
in the presence of track irregularities the modal series of the track substructure must be approximated by a
significantly large number of these modes to correctly predict the bridge response. In the present validation
example, up to Nr = 200 modes of the track subsystem are considered in the response analysis.

In the Abaqus FE model used for validation, the bridge and the track subsystems are discretized by Euler–
Bernoulli beam elements of type B23 with an element size of 0.06125 m. To match the rail irregularity profile
(Fig. 7) of the semi-analytical model, the element nodes of the rail beam are simply offset from the axis of
the perfectly straight and smooth track by the amount of the irregularity at the corresponding position x . The
viscoelastic bedding of the track is represented by a series of discrete spring and dashpot elements also spaced
0.06125 m apart. The MSD system is modeled as two rigid body lumped masses connected by discrete spring
and dashpot elements. Since only the vertical motion of the two lumped masses is considered, the rotational
DOFs of the lumped masses are constrained to be zero. The DOF in the horizontal direction is pre-defined by
the speed v = 80 m/s and the initial position at the left support of the rail beam. The vertical DOF of the upper
lumped mass is unconstrained, and the contact between axle mass and rail beam is achieved by a so-called
slide line, which models the rigid connection according to the corresponding assumption.
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(a) (b)

Fig. 8 a Bridge deflection, and b rail deflection at the position x = 1/4Lb

Figure 8a shows the vertical displacement of the bridge at the position x = 1/4Lb and Fig. 8b the deflection
of the rail at the same location in the time range from 0.2 to 0.8 s. Within this time frame, the MSD system
enters the bridge at time tB =0.375 s and leaves it at time tC =0.6375 s. The black dashed line is the result
of the analysis on the FE model, and the other lines show the response of the proposed model considering
different numbers of modes Nr in approximating the dynamic response portion w

(f)
r of the track subsystem

according to Eq. (23). From Fig. 8a, it can be seen that the FE reference solution for the bridge displacement
wb and the solution of the proposed model are practically identical regardless of the number of rail modes Nr

considered. Since even for Nr = 0 this response quantity is predicted very well (i.e., w(f)
r = 0), the dynamic

track response w
(f)
r does not affect the vertical displacement of the bridge wb. In contrast, for the prediction of

the total track deflection wr, Nr = 100 modes of the track substructure must be included in the approximation
of w

(f)
r , so that the time history of the FE reference solution and that of the proposed model coincide, as shown

in Fig. 8b.
Since in most cases the acceleration of the bridge deck is decisive for the assessment of the probability of

failure of railway bridges under high-speed trains [22], the calculation of the bridge acceleration is of particular
importance. Therefore, Fig. 9a shows this response quantity of the bridge and in Fig. 9b of the track at the same
position in the same time frame. It can be seen that for the “exact" prediction of the bridge acceleration Nr = 100
modes of the tack subsystem are necessary. If the portion w

(f)
r is neglected (i.e., Nr = 0), the maximum bridge

acceleration of 1.33 m/s2 is underestimated by about 15 %. In contrast, the adequate prediction of the track
acceleration already requires Nr = 200 modes, since the acceleration at the point where the MSD system
is currently located is almost singular. However, it should be noted that in general the track acceleration is
of minor importance and is therefore not calculated. An underestimation of the bridge acceleration of a few
percent is generally also not a problem. From this discussion, a major advantage of the proposed calculation
methodology already becomes obvious, namely that the number of modes (and thus the number of degrees
of freedom) of the two subsystems included in the calculation can be chosen differently and adapted to the
problem.

From this first comparative study, it canbe concluded that the proposedmethod can accurately and efficiently
calculate the response of this model.

6.2 Example problem

To further investigate the capabilities of the proposed model, several comparative studies are performed. The
bridge considered is the same as in the validation example; however, now a constant modal damping ratio
of ζ̃

(m)
b = 0.5 % (m = 1, . . . Nb) is added to each mode of the bridge to account for structural damping.

The structure is subjected to an ICE3 train composed of Nc = 8 vehicles, each modeled as a 10-DOF MSD
system as depicted in Fig. 1. Each of the vehicles is considered identical, with parameters listed in Table 4 and
variables referring to Fig. 1. A full list of all parameters of this train type can be found in [26], and for the
system matrices Mc, Cc, Kc of the planar MSD system, it is referred to [20]. In the initial studies, a perfectly
straight and smooth track is assumed (i.e., no track irregularities are taken into account).
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(a) (b)

Fig. 9 a Bridge acceleration, and b rail acceleration at the position x = 1/4Lb

Table 4 Parameters of the 10-DOF MSD vehicle model [26]

Parameter Variables Value Unit

Mass mp, ms, ma 53500, 3500, 1800 kg
Mass moment of inertia Ip, Is 1690, 4.569 103kgm2

Dimension hs, ha 17.375, 2.5 m
Suspension stiffness ks, ka 820, 17460 kN/m
Suspension damping cs, ca 90, 48 kNs/m

As before, the beam response wb is approximated by Nb = 8 series terms and thus also the contribution
w

(b)
r of the track deflection. In two different approaches, once in the series representation of the dynamic track

deformation w
(f)
r according to Eq. (23) Nr = 100 modes are considered, and the second time this response

contribution is neglected, w
(f)
r = 0, i.e., Nr = 0. In a sequence of computations, the speed of the train is

incrementally increased in the range 10 m/s ≤ v ≤ 90 m/s, and the maximum bridge deflection and the
maximum bridge acceleration are recorded and plotted against the speed. The resulting representation of the
peak response as a function of v, referred to as response spectra, is shown in Fig. 10. Here, the results on
the left, as shown in Fig. 10a, depict the maximum absolute beam deflection max|wb,rel| = max|(wb(x, t) −
(wb(0, t) + x(wb(Lb, t) − wb(0, t))/Lb))|, which corresponds to the vertical displacement without the rigid
body displacement due to the support displacements. The right subfigure, as shown in Fig. 10b, contains the
maximum absolute acceleration response of the bridge.

As can be observed, these response spectra exhibit local peaks related to resonance effects resulting from
the regular axle spacing of the moving MSD system. These peaks are found close to the so-called resonance
speeds, defined as v

(m)
j = f (m)

b d/j (j=1,2,3,…), which are directly related to the mth natural frequency of
the bridge and the characteristic length of the train d [41]. The characteristic length indicates the distance at
which the moving load pattern of the train repeats and corresponds to the vehicle length d = 24.775 m of the
considered train. While this definition is exact in the case of a single load model (i.e., the train is represented
only by its static axle loads) in combination with a bridge beam model without track, the observed peak values
are slightly shifted as a result of the MSD train model due to the additional effects of train mass, damping, and
stiffness. In Fig. 10b, some significant resonance speeds are specified, all associated with the first and fourth
bridgemodes, keeping inmind that for the viscoelastically supported bridge, the second and thirdmodes (Table
3) do not induce resonance effects due to the strongly damped nature of these modes. The most important
finding of this study is that the deflection of the bridge is virtually unaffected by setting w

(f)
r = 0, while the

bridge acceleration is slightly overestimated only in the speed range between 65 and 76 m/s.
To illustrate the influence of soil properties on the bridge response, in Fig. 11 the outcomes of the viscoelas-

tically supported structure (referred to as "flexibly supported") are compared with results of the corresponding
simply supported bridge, i.e., the subsoil is assumed to be rigid (referred to as "rigidly supported"), both
based on Nr = 100 modes for w

(f)
r . It can be clearly seen that, in wide speed ranges, both the deflection and

acceleration are much larger for the rigidly supported bridge than for the bridge on a medium-stiff subsoil.
This difference is particularly significant at resonance, and, for instance, at the maximum acceleration near
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(a) (b)

Fig. 10 a Maximum absolute bridge deflection, and b maximum absolute bridge acceleration for the flexibly supported bridge

(a) (b)

Fig. 11 aMaximum absolute bridge deflection, and bmaximum absolute bridge acceleration for the flexibly and rigidly supported
bridges

the resonance speed v
(1)
2 it is more than 60%. This result demonstrates how important it can be to include the

properties of the subsoil when calculating the response, albeit often ignored in standard models. In addition,
this Figure shows the response spectra of the simply supported bridge for w

(f)
r = 0 (i.e., Nr = 0). Here, it can

be seen that for the maximum accelerations in the speed range between 65 and 76 m/s a slight overestimation
occurs compared to the solution considering w

(f)
r (Nr = 100).

Subsequently, the influence of the track on the predicted bridge response is investigated, which is also
not considered in the common beam models. Figure 12 therefore shows, in addition to the results of the
proposed model, the solution for the corresponding viscoelastically supported beam without track (referred
to as “flexibly supported, no track"). In the latter model, following a recently introduced method [20], the
load distribution shortly before and after the bridge is considered in a simplified manner by an approach and
a departure phase of lengths La and Ld, respectively. Due to the very isolated deflection of the track around
the axle loads, the lengths La = Ld = 1 m were used. For speeds v > 30 m/s, the deflection of the bridge
based on the model without rail and the model presented here agree very well, as shown in Fig. 12a, while
in the lower speed range the model without track subsystem overestimates this response quantity. However,
the predicted peak accelerations shown in Fig. 12b depend strongly on the model approach in the entire speed
range. The accelerations predicted with the proposed model are significantly lower than those of the model
without rail. This behavior is explained by the improved description of the load distribution over the track
subsystem as well as possible damping effects due to ballast damping. This result emphasizes the need to take
the track subsystem into account when computing the bridge acceleration, but in many cases, this is usually not
done. As an additional reference, the results of a rigidly supported bridge without track (referred to as “rigidly
supported, no track") are included in Fig. 12, again showing the significantly higher acceleration response if
the interaction with the underlying soil is neglected.

In this study assuming a perfectly straight and smooth track, no substantial influence of the number of
considered rail modes (in w

(f)
r ) on the bridge response was observed for the flexibly supported structure.
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(a)(b)

Fig. 12 aMaximum absolute bridge deflection, and bmaximum absolute bridge acceleration for the flexibly and rigidly supported
bridges, with and without the track

(a) (b)

Fig. 13 aMaximum absolute bridge deflection, and bmaximum absolute bridge acceleration, with andwithout track irregularities

To verify this behavior in the presence of track irregularities, the computations are repeated with Nr = 0
and Nr = 100 track modes, respectively, however, assigning the random rail irregularity profile Iirr for a
moderate quality track shown in Fig. 7 to the track. Figure 13, which compares the bridge response for the
system with and without track irregularity, shows now a larger effect of these modes on the bridge acceleration
when irregularities of the track are considered. This effect is more pronounced in the case of the flexibly
supported beam, since the maximum acceleration is underestimated by up to 16.7% when w

(f)
r is neglected

(i.e., Nr = 0), compared to the result based on Nr = 100. Further preliminary comparative calculations have
shown that the magnitude of this deviation can be even much larger when other track parameters are used and
rail irregularities of a poor quality track are considered. In contrast, the maximum deflection of the bridge
remains largely unaffected by the number of rail modes considered, even in the case of track irregularities,
as shown in Fig. 13a. From this study, it can be concluded that the dynamic track deflection w

(f)
r has little

effect on bridge displacement, but is more important for accurately predicting the bridge acceleration in the
presence of rail irregularities.

7 Summary and conclusions

In this paper, a novel methodology for predicting the response of railway bridges subjected to high-speed
trains was presented, based on component mode synthesis and a discrete substructuring technique. In the beam
model of the bridge, both the soil under the foundations and the track are included in a simplified manner. The
coupling of the plane mass–spring–damper model of the train and the non-classically damped soil–bridge–
track interaction model is achieved with the so-called corresponding assumption. A major advantage of the
proposed methodology is that the number of modes (and thus the number of degrees of freedom) of the tack
and the soil–bridge subsystem included in the analysis can be chosen differently and adapted to the problem.
A comparative calculation with a less efficient finite element model proved the accuracy of this approach. The
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proposed approach allows to investigate effects like soil–structure interaction, bridge–track interaction as well
as bridge–train interaction efficiently and with relatively low numerical effort.

An example bridge was used to show the influence of the subsoil, track, and track irregularities on the
numerically predicted bridge response. From these results, the following preliminary conclusions can be
drawn:

– The results support the well-known fact that dynamic bridge deflection is generally less sensitive to model
detail than bridge acceleration

– Depending on its properties, the soil can have a significant impact on the predicted bridge response, in
particular at higher speeds and resonance. Due to the radiation damping, over wide speed ranges the
response of the model with soil is smaller than for the rigidly supported bridge model. At certain train
speeds, however, an increase of the response can occur due to the frequency reduction and the occurrence
of additional natural frequencies.

– Consideration of the track in the model leads to a reduction in the bridge acceleration due to the load-
distributing effect and the damping of the track bed. In contrast, the bridge deflection is hardly influenced
by the track model.

– The dynamic response of the track has little effect on the bridge response if the track is perfectly straight
and smooth. However, if track irregularities are taken into account, the dynamics of the track can no longer
be neglected when calculating the bridge acceleration, in particular in the higher speed range.

The general validity of these conclusions needs to be substantiated by further extensive parameter studies.
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Appendix A: Modal properties of the bridge–soil substructure

The eigenfunctions of the Euler–Bernoulli beam bridge substructure [9,43]

�(x) = C1 sin
λx

L
+ C2 cos

λx

L
+ C3 sinh

λx

L
+ C4 cosh

λx

L
(54)

are adjusted to the boundary conditions (Eq. (12)). Since the beam is non-classically damped due to the
spring–damper elements below the bearings, the infinite number of eigenvalues λb resulting from zeroing the
coefficient determinant of the four corresponding equations appears in complex conjugate pairs, referred to
as λ

(m)
b , (m = 1, . . . ,∞) and its conjugate complex counterpart as λ̄

(m)
b . The mth complex natural frequency

s(m)
b of the stand-alone beam, which is related to the mth eigenvalue λ

(m)
b according to

(
s(m)
b

)2 = −
(
λ

(m)
b

)4
L4
b

E Ib
ρAb

(55)

http://creativecommons.org/licenses/by/4.0/
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is composed of a real and an imaginary part, s(m)
b = σ

(m)
b + i�(m)

b [4,29]. The corresponding conjugate

complex frequency is denoted as s̄(m)
b = σ

(m)
b − i�(m)

b . The real part σ (m)
b of s(m)

b is referred to as decay rate

and the imaginary part �(m)
b as the damped mth natural frequency. The absolute value of s(m)

b is the so-called
pseudo-undamped natural frequency of the bridge beam,

ω
(m)
b =

∣∣∣s(m)
b

∣∣∣ =
√(

σ
(m)
b

)2 +
(
�

(m)
b

)2
, (56)

and the ratio

ζ
(m)
b =

−�
(
s(m)
b

)
∣∣∣s(m)
b

∣∣∣ = −σ
(m)
b

ω
(m)
b

(57)

corresponds to themth modal equivalent damping ratio [19] of the non-classically damped beam substructure.
This equivalent damping coefficient takes into account the damping due to the dashpot dampers at the ends
of the bridge. If the structural damping of the beam is also to be considered, this is simply done by adding
the mth modal structural damping ζ̃

(m)
b coefficient to the mth modal equivalent damping coefficient ζ (m)

b , i.e.,

ζ̃
(m)
b + ζ

(m)
b [20]. In this case, the mth complex natural frequency becomes [20]

s(m)
b = −ω

(m)
b

(
ζ

(m)
b + ζ̃

(m)
b

)
+ iω(m)

b

√
1 −

(
ζ

(m)
b + ζ̃

(m)
b

)2
. (58)

By inserting the unmodified eigenvalues λ
(m)
b into Eq. (54), three of the constants C (m)

1 ,C (m)
2 ,C (m)

3 ,C (m)
4 of

the mth eigenfunction �
(m)
b (x) can be expressed by the fourth. This constant can be scaled arbitrarily. The

corresponding conjugate complex eigenfunction is denoted as �̄
(m)
b (x).

The orthogonality relations of the eigenfunctions read as [15,20,24]

a(m)
b δlm = cb

(
�

(m)
b (0)�(l)

b (0) + �
(m)
b (Lb)�

(l)
b (Lb)

)
+
(
s(l)
b + s(m)

b

)(
ρbAb

∫ Lb

0
�

(m)
b (x)�(l)

b (x)dx

+ mb

(
�

(m)
b (0)�(l)

b (0) + �
(m)
b (Lb)�

(l)
b (Lb)

))
,

(59)

b(m)
b δlm = kb

(
�

(m)
b (0)�(l)

b (0) + �
(m)
b (Lb)�

(l)
b (Lb)

)
+ E Ib

∫ Lb

0
�

(m)
b,xx (x)�

(l)
b,xx (x)dx

−
(
s(m)
b s(l)

b

)(
ρbAb

∫ Lb

0
�

(m)
b (x)�(l)

b (x)dx

+ mb

(
�

(m)
b (0)�(l)

b (0) + �
(m)
b (Lb)�

(l)
b (Lb)

))
. (60)

The normalizing constants a(m)
b = 2s(m)

b M (m)
b and b(m)

b = −2
(
s(m)
b

)2
M (m)

b are both related to the generalized

modal mass M (m)
b , which can be expressed as

M (m)
b = cb

2s(m)
b

((
�

(m)
b (0)

)2 +
(
�

(m)
b (Lb)

)2)

+ ρbAb

∫ Lb

0

(
�

(m)
b (x)

)2
dx + mb

((
�

(m)
b (0)

)2 +
(
�

(m)
b (Lb)

)2)
.

(61)
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Appendix B: Modal properties of the track substructure

The eigenvalue problem of the track substructure beam model is derived from the homogeneous form of the
equation of motion (Eq. (2)),

E Ir�r,xxxx (x) + (
s2r ρAr + srcf(x) + kf(x)

)
�r(x) = 0, (62)

and the relations ẏr = sr yr and ÿr = s2r yr resulting from the general expression yr(t) = Ce(sr t) [20,28].
Conveniently, the natural frequencies of this substructure are found considering one half of the track model,
because the piecewise differently bedded beam model is symmetric, and thus symmetry and antimetry of the
eigenfunctions apply. For the analysis of eigenmodes, half the beam is first divided into the segment above
the soil and the segment above the bridge. The local axial coordinate of the segment above the soil is denoted
as x1 = x + L0 and has its origin at the left end of the track (Fig. 1, point (A)), whereas the axial coordinate
for the section above the bridge denoted as x2 = x has its origin at the left viscoelastic bridge bearing (Fig. 1,
point (B)). The eigenvalue problem now written separately for each beam segment,

E Ir�r0,xxxx (x1) + (
s2r ρAr + srcf0 + kf0

)
�r0(x1) = 0 for 0 ≤ x1 ≤ L0, (63)

E Ir�rb,xxxx (x2) + (
s2r ρAr + srcfb + kfb

)
�rb(x2) = 0 for 0 < x2 ≤ Lb/2, (64)

yields the eigenmodes in the form of Eq. (54) [9,43],

�r0 (x1) = Cr0(1) sin
λr0x1
L0

+ Cr0(2) cos
λr0x1
L0

+ Cr0(3) sinh
λr0x1
L0

+ Cr0(4) cosh
λr0x1
L0

,

�rb (x1) = Crb(1) sin
λrbx2
Lb/2

+ Crb(2) cos
λrbx2
Lb/2

+ Crb(3) sinh
λrbx2
Lb/2

+ Crb(4) cosh
λrbx2
Lb/2

, (65)

where

λr0 = L0
4

√
− s2r ρAr + srcr0 + kf0

E Ir
, λrb = Lb

2
4

√
− s2r ρAr + srcrb + kfb

E Ir
. (66)

The eigenvalue λr0 can be expressed in terms of the eigenvalue λrb by solving the equation for λrb in Eq. (66)
for the eigenfrequency sr,

sr = 1

2ρAr

(
−cfb ±

√
c2fb − 4kfbρAr − λ4rbE IrρAr

L4
0

)
, (67)

and inserting this relation in the expression for λr0. Adjusting Eq. (65) to the boundary conditions at the left
end of the beam,

�r0 (x1 = 0) = 0, �r0,xx (x1 = 0) = 0, (68)

the continuity conditions between the beam segments,

�r0 (x1 = L0) = �rb (x2 = 0) , �r0,x (x1 = L0) = �rb,x (x2 = 0) ,

�r0,xx (x1 = L0) = �rb,xx (x2 = 0) , �r0,xxx (x1 = L0) = �rb,xxx (x2 = 0) ,
(69)

and the continuity conditions at the center of the track beam,

antimetry : �rb (x2 = Lb/2) = 0, �rb,xx (x2 = Lb/2) = 0,

symmetry : �rb,x (x2 = Lb/2) = 0, �rb,xxx (x2 = Lb/2) = 0,
(70)

and zeroing the coefficient determinant of the four corresponding equations yields the eigenvalues λ
(n)
rb , (n =

1, . . . , ∞) and their complex conjugate counterparts λ̄
(n)
rb . The nth complex frequency can be expressed as

s(n)
r = σ

(n)
r + i�(n)

r with the complex conjugate counterpart s̄(n)
r = σ

(n)
r − i�(n)

r . The pseudo-undamped
natural frequency ω

(n)
r as well as the modal equivalent damping ratio ζ

(n)
r can be found in analogy to Eqs. (56)
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and (57). Structural damping can be considered in analogy to Eq. (58) by adding the nth modal structural
damping ζ̃

(n)
r to the nth equivalent damping coefficient ζ (n)

r ,

s(n)
r = −ω(n)

r

(
ζ (n)
r + ζ̃ (n)

r

)
+ iω(n)

r

√
1 −

(
ζ

(n)
r + ζ̃

(n)
r

)2
. (71)

The resulting eigenvalues λ
(n)
rb are inserted in the corresponding set of eight equations to express seven of the

coefficients C (n)
r0(1), C

(n)
r0(2), C

(n)
r0(3), C

(n)
r0(4), C

(n)
rb(1), C

(n)
rb(2), C

(n)
rb(3), C

(n)
rb(4) by the eighth, which can be scaled arbi-

trarily. Eventually, the eigenfunctions of the total track substructure composed of the sectional eigenfunctions
of Eq. (65) read as

�(n)
r (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�
(n)
r0 (x + L0)

�
(n)
rb (x)

�
(n)
rb (Lb − x)

�
(n)
r0 (Lb + L0 − x)

−�
(n)
rb (Lb − x)

−�
(n)
r0 (Lb + L0 − x)

−L0 ≤ x ≤ 0
0 < x ≤ Lb/2
Lb/2 < x ≤ Lb
Lb < x ≤ Lb + L0

}
symmetric
(n = 1, 3, 5, . . .)

Lb/2 < x ≤ Lb
Lb < x ≤ Lb + L0

}
antimetric
(n = 2, 4, 6, . . .)

, (72)

For the corresponding complex conjugate �̄
(n)
r (x) the same relations apply.

The orthogonality relations can be derived as [15,20,24]

a(n)
r δmn =

∫ Lb+L0

−L0

cf(x)�
(n)
r (x)�(m)

r (x)dx

+
(
s(m)
r + s(n)

r

)
ρAr

∫ Lb+L0

−L0

�(n)
r (x)�(m)

r (x)dx, (73)

b(n)
r δmn =

∫ Lb+L0

−L0

kf(x)�
(n)
r (x)�(m)

r (x)dx

+E Ir

∫ Lb+L0

−L0

�(n)
r,xx (x)�

(m)
r,xx (x)dx

−
(
s(n)
r s(m)

r

)
ρAr

∫ Lb+L0

−L0

�(n)
r (x)�(m)

r (x)dx (74)

with a(n)
r = 2s(n)

r M (n)
r and b(n)

r = −2
(
s(n)
r

)2
M (n)

r related to modal mass M (n)
r ,

M (n)
r = 1

2s(n)
r

∫ Lr+L0

−L0

cf(x)
(
�(n)

r (x)
)2

dx + ρAr

∫ Lr+L0

−L0

(
�(n)

r (x)
)2

dx, (75)
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Appendix C: Substructure consolidation

Given that �̇
(n)
r (x = x ( j)

k (t)) = d�(n)
r

dt = ∂�
(n)
r

∂x
∂x ( j)

k
∂t = v�

(n)
r,x (x

( j)
k ) and 	̇

(n)
r (x = x ( j)

k (t)) = d	(n)
r
dt =

∂	
(n)
r

∂x
∂x ( j)

k
∂t = v	

(n)
r,x (x ( j)

k ), the velocity and acceleration of the wheel at position x ( j)
k (t) are expressed as

u̇( j)
ak (x ( j)

k ) = ẇr

(
x ( j)
k , t

)
+ İirr

(
x ( j)
k

)
≈

Nr∑
n=1

(
v�(n)

r,x

(
x ( j)
k

)
y(n)
r (t) + �(n)

r

(
x ( j)
k

)
ẏ(n)
r (t)

)

+
Nr∑
n=1

(
v�̄(n)

r,x

(
x ( j)
k

)
ȳ(n)
r (t) + �̄(n)

r

(
x ( j)
k

) ˙̄y(n)
r (t)

)

+
Nb∑
m=1

(
v	(m)

r,x

(
x ( j)
k

)
y(m)
b (t) + 	(m)

r

(
x ( j)
k

)
ẏ(m)
b (t)

)

+
Nb∑
m=1

(
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r,x

(
x ( j)
k

)
ȳ(m)
b (t) + 	̄(m)

r (x ( j)
k ) ˙̄y(m)

b (t)
)

+ İirr(x
( j)
k )

(76)

and

ü( j)
ak

(
x ( j)
k

)
= ẅr

(
x ( j)
k , t

)
+ Ïirr

(
x ( j)
k

)
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Nr∑
n=1

(
v2�(n)
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(
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k

)
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( j)
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(
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(
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)
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r,x

(
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(
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) ¨̄y(m)
b (t)

)
+ Ïirr

(
x ( j)
k

)
.

(77)

The time-dependent transformation matrices �1(t) and �2(t) in Eq. (48) read as

�1(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ib 0 0 0 . . . 0 0 0 . . . 0
0 Ir 0 0 . . . 0 0 0 . . . 0

D(1)
Ψ r

D(1)
Φr

Jc 0 . . . 0 0 0 . . . 0

D(2)
Ψ r

D(2)
Φr

0 Jc . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...

D(Nc)
Ψr

D(Nc)
Φr

0 0 . . . Jc 0 0 . . . 0

Ḋ(1)
Ψ r

Ḋ(1)
Φr

0 0 . . . 0 Jc 0 . . . 0

Ḋ(2)
Ψ r

Ḋ(2)
Φr

0 0 . . . 0 0 Jc . . . 0
...

...
...

...
. . .

...
...

...
. . .

...

Ḋ(Nc)
Ψr

Ḋ(Nc)
Φr

0 0 . . . 0 0 0 . . . Jc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (78)
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�2(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
. . .

...
0 0 0 0 . . . 0 0 0 . . . 0

D(1)
Ψ r

D(1)
Φr

0 0 . . . 0 0 0 . . . 0

D(2)
Ψ r

D(2)
Φr

0 0 . . . 0 0 0 . . . 0
...

...
...

... . . .
...

...
...

. . .
...

D(Nc)
Ψr

D(Nc)
Φr

0 0 . . . 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(79)

with Ib being an identity matrix of dimension [2Nb×2Nb] and Ir the identity matrix of dimension [2Nr×2Nr].
The matrix

Jc =
[
I[6×6]
c
0[4×6]

]
(80)

indicates the DOFs of the vehicle body and bogies of the j th vehicle by including the identity matrix Ic and
setting the remaining rows, corresponding to the DOFs of the four axles, to zero. The sub-matrices

D( j)
Ψ r

(t) =
[

0[6×2Nb]

�( j)(t)Ψ ( j)T
r (t)

]
, D( j)

Φr
(t) =

[
0[6×2Nr ]

�( j)(t)Φ( j)T
r (t)

]
(81)

are composed of the shape functions and eigenfunctions of the track evaluated at the axle positions x ( j)
k (t)

with �( j)(t) as the previously defined window function only allowing the displacements of axles between
beginning and end of the track to be non-zero. The vector

ϒ(t) =
[
0, I(1)irr (t), I(2)irr (t), . . . , I(Nc)

irr (t)
]T

(82)

with

I( j)irr (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0[6×1]

�
(
t, t ( j)A1 , t ( j)D1

)
Iirr

(
x ( j)
1 (t)

)
�
(
t, t ( j)A2 , t ( j)D2

)
Iirr

(
x ( j)
2 (t)

)
�
(
t, t ( j)A3 , t ( j)D3

)
Iirr

(
x ( j)
3 (t)

)
�
(
t, t ( j)A4 , t ( j)D4

)
Iirr

(
x ( j)
4 (t)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(83)

is the j th sub-vector containing the irregularity profiles at the four axle positions of the j th vehicle. The vector
0 in (82) has 2Nb + 2Nr entries, representing the DOFs of the bridge and track.
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