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A B S T R A C T

A semi-analytical approach based on a lumped parameter model is presented for the analysis of the dynamic
interaction system of train, track, bridge, and subsoil. Herein, the bridge and the track are modeled as Euler–
Bernoulli beams, which are connected through the viscoelastic track bed. The viscoelastic supports of the bridge
model capture the flexibility and damping of the subsoil below the foundations. Complex modal expansion
of the deformation approximates the response of the non-classically damped bridge-soil subsystem, while
a Rayleigh–Ritz approximation is used to efficiently describe the track deflection. To achieve the coupling
of the mechanical equations of these subsystems, a variant of component mode synthesis (CMS) is applied.
The mass–spring–damper (MSD) system representing the moving train is coupled to the resulting system of
equations for the track-bridge-soil subsystem by a discrete substructuring technique (DST). Geometric track
irregularities describing the deviation of the track from perfectly straight and smooth are accounted for by
random irregularity profile functions. The results of the proposed model are compared with a finite element
model to validate the modeling approach. In an application example, the effects of track irregularities and the
influence of the track on the dynamic response of a bridge are discussed. The comparison of results with and
without soil–structure interaction of the bridge outlines the great influence of the subsoil properties on the
dynamic response in case of resonance.
. Introduction

In recent years, the steady expansion of railway networks for high-
peed traffic around the world has led to increased interest in predicting
he dynamic behavior of railway bridges. However, the first investiga-
ions into the dynamic behavior of railway bridges were already carried
ut in 1849 by Willis and Stokes [1,2], in response to the collapse
f the Chester Railway Bridge. Since at so-called resonant speeds the
eriodic excitation due to the constant axle spacing, track irregulari-
ies, or wheel hunting movements leads to significant amplification of
isplacements and accelerations, the consideration of these phenomena
s of great importance for the design and assessment of railway bridges.

hile this dynamic amplification usually does not lead to a loss of load-
earing capacity of modern railway bridges, it increases fatigue damage
ver time and excessive accelerations can lead to ballast instability.
his decrease in ballast stability leads to changes of the track positions
nd possible derailments, which must be prevented by shortening track
aintenance intervals. A comprehensive review of early contributions

o dynamic response prediction of railway bridges can be found in the
ooks by Frýba [3,4]. These early works deal with the discretization
f the train subsystem as moving single loads, which correspond to
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the axle loads of the train, and simple representations of moving
mass–spring–damper (MSD) systems. In the herein used classical modal
analysis, damping is usually assumed as negligible or proportional to
the mass and/or stiffness of the bridge. Therefore, the solution of
these systems is limited to classical damping. However, if one takes
into account the damping due to wave propagation in the subsoil,
modeled for example by discrete dashpots at the bridge bearings, a
complex modal expansion is required to solve the moving load problem.
Contributions dealing with this problem include [5–7], all of which are
based on the fundamental work of Foss [8] on decoupling the equations
of motion of non-proportionally damped lumped parameter systems.
In the contribution of [9] and [10], an envelope impact formula is
developed for a single-span bridge on elastic supports subjected to a
series of moving loads and effects of resonance and cancellation are
analyzed. This solution is expanded in [11], also including discrete
dashpots at the bridge bearings, accounting for radiation damping of
the subsoil. In a recent paper, [12], the solution for an Euler–Bernoulli
beam on viscoelastic supports subject to an MSD system of the train
was presented.
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These insightful but also computationally efficient models are often
in competition with more detailed models where the bridge is rep-
resented by a 3D finite element (FE) model crossed by MSD systems
of varying degrees of sophistication [13–15]. However, due to the
high computational cost, the explicit consideration of the soil in these
models is hardly possible and is therefore neglected, although its large
influence on the dynamic response has already been demonstrated
by numerous authors [16–21]. Recent work on the decoupling of
the vehicle-bridge interaction has been published in [22,23], which
takes into account the influence of the moving vehicle on the natural
frequencies and damping of the bridge and allows for a computationally
efficient treatment of the vehicle-bridge interaction problem.

Another aspect is geometric irregularities of the track, which are
not known a priori due to their randomness and have to be dealt
with by stochastic simulations [24,25] if the probability of failure is
considered directly. Such analyses, however, require a large number of
computations and therefore a high computational efficiency, thus only
simple beam models crossed by MSD systems of the train have been
treated without considering the track substructure in [25–27].

In a recent contribution by the authors of this paper, [28], the
component mode synthesis (CMS) approach of [29] was combined with
the non-classically damped model of the bridge [12] to account for
the soil–structure interaction as well as the load-distributing effects
of the dynamically interacting track. This model, based on the com-
plex modal expansion of the individual subsystems of the track and
bridge beams, was used to discuss the contributions of the different
dynamic subsystems on the response prediction. In particular, the
effects of soil–structure interaction were demonstrated, indicating the
great potential of response predictions with a realistic representation
of damping related to wave propagation in the subsoil. However, the
modal expansion-based approximation of the track substructure deflec-
tion requires consideration of a large number of track modes, because
of the very isolated nature of the rail deflection around axle load. While
the number of track modes considered was found to have little effect on
the response prediction of the bridge in the case of a perfectly straight
track, the presence of track irregularities required a number of 100
track modes to accurately predict the response of the bridge for the
example used in [28], making this approach computationally rather
inefficient.

In the present contribution, therefore, a much more efficient ap-
proach to describing the response of the track subsystem is proposed to
avoid the modal expansion of the isolated nature of the track deflection
in [28]. In a simplifying Rayleigh–Ritz approximation of the deflection
of the stand-alone track subsystem, the quasi-static deflection shape
of an infinitely long beam on elastic bedding is used to describe the
vertical response of the track, amplified by the presence of geomet-
ric imperfections in the form of track irregularities. This simplified
representation of the track is then coupled with the non-classically
damped bridge beam according to the CMS used in [29] and [28]. The
subsequent coupling with the train MSD system is achieved by applying
a discrete substructuring technique (DST) that couples the degrees
of freedom (DOFs) of the train axles with the rail deflection. This
modeling strategy significantly reduces the number of DOFs required to
compute the structural response and thus improves computational effi-
ciency, making the model well suited for extensive parametric studies
as well as stochastic simulations with track irregularities.

In order to validate the proposed modeling approach, the results
of this approach are compared with those of an FE model in a simple
example. In addition, comparative calculations are carried out with the
model of [28], which show the benefits of the proposed method and
provide further insight into the dynamic effects of the track on the
bridge response. Furthermore, the effects of soil–structure interaction
are discussed based on a comparative study.
2
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2. Modeling approach and equations of motion

For the analysis of the dynamic response of the considered interac-
tion system consisting of a single-span bridge with the foundation on
subsoil and the track crossed by a high-speed train with constant speed
𝑣, a planar lumped parameter model is used, which is shown in Fig. 1.
The conventional train considered here as an example is composed
of 𝑁c individual vehicles. The individual vehicles are modeled as
moving mass–spring–damper systems consisting of a vehicle body, two
bogies, and four axles, with, in total ten DOFs per vehicle. The slender
bridge and the track are both modeled as uniform beams according
to the Euler–Bernoulli beam theory. However, it should be noted that
any other beam model, such as the Timoshenko beam, can be used
without changing the computational approach presented here. Taking
into account ballast stiffness and damping, the track consists of the rails
resting on viscoelastic bedding. The bridge foundation is idealized by a
lumped mass at each end of the bridge, with the stiffness and damping
of the underlying soil represented by viscoelastic supports [12]. This
model has already been used in a recent paper by the authors [28] to
analyze the response of this dynamic interaction system. However, in
order to understand the novel approach of this paper, the equations of
motion and associated boundary conditions are also presented below.

The complete system illustrated in Fig. 1 is divided into the subsys-
tems of the track, the bridge and the foundation on subsoil, and the
train.

2.1. Track subsystem

The infinitely long Euler–Bernoulli beam representing the rails is
considered to be uniform, with constant flexural rigidity 𝐸𝐼r and
constant mass per unit length 𝜌𝐴r . It rests on a viscoelastic rail bed

ith stiffness coefficient 𝑘f and damping coefficient 𝑐f . For the present
investigation, these coefficients are considered as constant values. As
depicted in Fig. 1, the axial coordinate 𝑥 has its origin at the left bearing
of the bridge. In the present modeling approach, axle loads are applied
to the track only in the section −𝐿0 ≤ 𝑥 ≤ 𝐿b + 𝐿0, assuming that
loads applied before and after this section do not result in a dynamic
response of the bridge substructure. Therefore, the length 𝐿0 before and
after the bridge must be chosen sufficiently large, which can be ensured
by defining the lower limit as [28–30],

𝐿0 ≥ 2𝜋 4

√

4𝐸𝐼r
𝑘f

(1)

Idealizing the track with these assumptions, the equations of motion
for its deflection 𝑤r can be expressed as follows,

𝜌𝐴r𝑤̈r (𝑥, 𝑡) + 𝐸𝐼r𝑤r,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = −𝑞r (𝑥, 𝑡) + 𝑓r (𝑥, 𝑡) (2)

Herein, the distributed force counteracting the deformation of the rail
bed, denoted as 𝑞r (𝑥, 𝑡), is given by

r (𝑥, 𝑡) =𝑘f
(

𝑤r (𝑥, 𝑡) −𝑤b(𝑥, 𝑡)𝛱(𝑥, 0, 𝐿b)
)

+ 𝑐f
(

𝑤̇r (𝑥, 𝑡) − 𝑤̇b(𝑥, 𝑡)𝛱(𝑥, 0, 𝐿b)
) (3)

ith 𝑤b(𝑥, 𝑡) denoting the vertical displacement of the bridge beam of
he length 𝐿b. The section where 𝑞r (𝑥, 𝑡) is proportional to the relative
ertical displacement and velocity between rails and bridge (i.e. 0 ≤ 𝑥 ≤
b) is bounded by the window function 𝛱(𝑥, 0, 𝐿b) = 𝐻(𝑥)−𝐻(𝑥−𝐿b),
hich consists of the two Heaviside step functions 𝐻(𝑥) and 𝐻(𝑥−𝐿b),

espectively.
The train-rail interaction forces applied to the track are captured

ith the function 𝑓r (𝑥, 𝑡),

r (𝑥, 𝑡) =
𝑁a
∑

𝑘=1
𝐹𝑘(𝑡)𝛿

(

𝑥 − 𝑥𝑘(𝑡)
)

𝛱(𝑡, 𝑡A𝑘, 𝑡D𝑘) (4)

n this equation, 𝐹𝑘(𝑡) represents the interaction force of the train at

he 𝑘th axle position 𝑥𝑘(𝑡) = 𝑣𝑡− 𝑙𝑘 −𝐿0 (𝑘 = 1,… , 𝑁a), where −𝑙𝑘 −𝐿0
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Fig. 1. Planar MSD model of the 𝑗th vehicle crossing the track resting on the bridge with viscoelastic supports.
Source: Modified from [28].
Fig. 2. Track-bridge-soil subsystem subjected to one moving interaction load and free-body diagram separating the track and the bridge-soil subsystems.
Source: Modified from [28].
is equal to the initial position of 𝐹𝑘(𝑡) (c.f. Figs. 1 and 2). For the
conventional train model considered, the number of axles for each of
the 𝑁c vehicles is four, resulting in 𝑁a = 4𝑁c axles of the train. The
window function 𝛱(𝑡, 𝑡A𝑘, 𝑡D𝑘) = 𝐻(𝑡− 𝑡A𝑘)−𝐻(𝑡− 𝑡D𝑘) controls the time
frame between 𝑡A𝑘 = 𝑙𝑘∕𝑣 and 𝑡D𝑘 = (𝑙𝑘 + 2𝐿0 + 𝐿b)∕𝑣 in which 𝐹𝑘(𝑡)
rosses the considered section of the track.

.2. Bridge-soil subsystem

The bridge-soil subsystem modeled as Euler–Bernoulli beam with
onstant mass per unit length 𝜌𝐴b and constant flexural stiffness 𝐸𝐼b,
overned by the well-known partial differential equation in terms of
he vertical displacement 𝑤b(𝑥, 𝑡) [31]

𝜌𝐴b𝑤̈b(𝑥, 𝑡) + 𝐸𝐼b𝑤b,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑞b(𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 𝐿b (5)

is stressed by the force

𝑞 (𝑥, 𝑡) = 𝑘
(

𝑤 (𝑥, 𝑡) −𝑤 (𝑥, 𝑡)
)

+ 𝑐
(

𝑤̇ (𝑥, 𝑡) − 𝑤̇ (𝑥, 𝑡)
)

(6)
3

b f r b f r b
transmitted through the Winkler bedding, as shown in Fig. 2.
The discrete spring–damper element at each end of the beam rep-

resents, in a simplified way, the soil below the bridge foundation [32],
which is primarily excited to vibrate vertically. The spring stiffness 𝑘b
and damping parameter 𝑐b of this element,

𝑘b =
𝜌s𝑐2w𝐴0

𝑧0
, 𝑐b = 𝜌s𝑐w𝐴0 ,

𝑧0 =
𝜋
4
(1 − 𝜈)

(

𝑐w
𝑐s

)2
𝑟0

(7)

follow from the cone model of Wolf [33] under the assumption of
a homogeneous subsoil. Here 𝜌s is the density of the subsoil, 𝐴0
represents the area of contact of the foundation, and the equivalent
radius of a circular plate with the same area as the foundation is found
according to 𝑟0 =

√

𝐴0∕𝜋. In the expression for the shear wave velocity
𝑐s =

√

𝐺∕𝜌s, 𝐺 is the shear modulus of the soil. If the Poisson’s ratio 𝜈 of
the soil is less than 1∕3, then the variable 𝑐 represents the compression
w
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wave speed 𝑐p, for 1∕3 < 𝜈 ≤ 1∕2 the double shear wave speed 𝑐s of the
homogeneous soil [33],

𝑐w =

⎧

⎪

⎨

⎪

⎩

𝑐p =
√

𝐸s
𝜌s

𝜈 ≤ 1∕3

2𝑐s = 2
√

𝐺
𝜌s

1∕3 < 𝜈 ≤ 1∕2
(8)

he constrained modulus 𝐸s is related to the shear modulus 𝐺 through
s = 2𝐺(1−𝜈)∕(1−2𝜈). The stiffness coefficient 𝑘b is a static quantity, but

ince the actual stiffness becomes smaller with increasing frequency,
he lumped mass

̃ g =
2.4
√

𝜋

(

𝜈 − 1
3

)

𝜌s𝐴
(3∕2)
0 (9)

ust also be taken into account in the model for soils with a Poisson’s
atio 𝜈 > 1∕3 [33].

The lumped mass 𝑚b at the two ends of the bridge model is com-
osed of the mass of the bridge foundation 𝑚̃1, the mass of the soil
bove the foundation 𝑚̃2 and the lumped soil mass 𝑚̃g, 𝑚b = 𝑚̃1+𝑚̃2+𝑚̃g.

Considering this lumped mass and the spring–damper elements at
each end, the boundary conditions of the Euler–Bernoulli beam read
as [12,28]

(𝑥 = 0) ∶ 𝑚b𝑤̈b(0, 𝑡) + 𝑐b𝑤̇b(0, 𝑡) + 𝑘b𝑤b(0, 𝑡)

+ 𝐸𝐼b𝑤b,𝑥𝑥𝑥(0, 𝑡) = 0,

𝑤b,𝑥𝑥(0, 𝑡) = 0

(𝑥 = 𝐿b) ∶ 𝑚b𝑤̈b(𝐿b, 𝑡) + 𝑐b𝑤̇b(𝐿b, 𝑡) + 𝑘b𝑤b(𝐿b, 𝑡)

− 𝐸𝐼b𝑤b,𝑥𝑥𝑥(𝐿b, 𝑡) = 0,

𝑤b,𝑥𝑥(𝐿b, 𝑡) = 0

(10)

2.3. Train subsystem

The vehicle body (subscript ‘‘p’’), the two bogies (subscript ‘‘s’’)
and the four axles with wheels (subscript ‘‘a’’) of the 𝑗th vehicle are
represented in the model as rigid bodies with mass connected by
spring–damper elements, as shown in Fig. 1. The ten DOFs of this model
are composed of three rotational DOFs (rotations of the car body 𝜑(𝑗)

p
and the bogies 𝜑(𝑗)

s1 and 𝜑(𝑗)
s2 ) and seven translational DOFs (vertical axle

displacements 𝑢a4(𝑗−1)+𝑙 (𝑙 = 1,… , 4 axles of the 𝑗th vehicle); vertical
displacement of the wagon body 𝑢(𝑗)p ; vertical displacement of the bogies
𝑢(𝑗)s1 , 𝑢(𝑗)s2 ) [34,35], are combined in the vector 𝐮(𝑗)c ,

𝐮(𝑗)c =
[

𝑢(𝑗)p , 𝜑(𝑗)
p , 𝑢(𝑗)s1 , 𝜑

(𝑗)
s1 , 𝑢

(𝑗)
s2 , 𝜑

(𝑗)
s2 , 𝑢a4(𝑗−1)+1, 𝑢a4(𝑗−1)+2, 𝑢a4(𝑗−1)+3,

𝑢a4(𝑗−1)+4
]T

(11)

Herein the index 4(𝑗−1)+ 𝑙 relates the 𝑙th axle of the 𝑗th vehicle to the
global axle number 𝑘, thus 𝑘 = 4(𝑗 − 1) + 𝑙.

Since the horizontal interaction between the 𝑁c individual vehicles
is neglected, the combined equations of motion of the entire train
read [14]

𝐌c𝐮̈c + 𝐂c𝐮̇c +𝐊c𝐮c = 𝐅c (12)

where 𝐌c, 𝐂c and 𝐊c represent the mass, damping and stiffness ma-
trices of the train, which are composed of the system matrices of the
individual vehicles,

𝐌c = diag
[

𝐌(1)
c ,𝐌(2)

c ,… ,𝐌(𝑁c)
c

]

, 𝐂c = diag
[

𝐂(1)
c ,𝐂(2)

c ,… ,𝐂(𝑁c)
c

]

𝐊c = diag
[

𝐊(1)
c ,𝐊(2)

c ,… ,𝐊(𝑁c)
c

]

, 𝐮c =
[

𝐮(1)c ,𝐮(2)c ,… ,𝐮(𝑁c)
c

]T (13)

The vehicle system matrices 𝐌(𝑗)
c ,𝐂(𝑗)

c ,𝐊(𝑗)
c are specified in [12,14]. The

interaction forces between the vehicle and the track subsystems at the
position of each axle of the 𝑁c vehicles shown in Fig. 1,

𝐅(𝑗)
c =

[

0, 0, 0, 0, 0, 0, 𝐹 (𝑗)
as + 𝐹a4(𝑗−1)+1, 𝐹

(𝑗)
as + 𝐹a4(𝑗−1)+2, 𝐹

(𝑗)
as + 𝐹a4(𝑗−1)+3,

𝐹 (𝑗) + 𝐹
]T

(14)
4

as a4(𝑗−1)+4 t
are combined in the force vector

𝐅c =
[

𝐅(1)
c ,𝐅(2)

c ,… ,𝐅(𝑁c)
c

]T
(15)

Each interaction force consists of a dynamic component, 𝐹a4(𝑗−1)+𝑙 and
a static component 𝐹 (𝑗)

as from the vehicle gravity load distributed over
the four axles,

𝐹 (𝑗)
as =

𝑔
4

(

𝑚(𝑗)
p + 2𝑚(𝑗)

s + 4𝑚(𝑗)
a

)

(16)

here 𝑔 denotes the acceleration of gravity.

. Approach for the analysis of the bridge-soil and the track sub-
ystems

Based on the CMS method proposed in [28,36], in the follow-
ng the bridge-soil and track subsystems are coupled. In contrast to
he modal series expansion of the deformations of both subsystems
roposed in [29], however, only the response of the non-classically
amped bridge-soil subsystem is approximated by a modal series. The
isplacement of the stand-alone track, on the other hand, is described
y a Rayleigh–Ritz approximation. The modal properties of the bridge-
round subsystem can be found in Appendix A, while in Appendix B
he approximation of the track substructure is described.

.1. Series expansion of the response variables

The modal series expansion of the vertical displacement 𝑤b(𝑥, 𝑡) of
he bridge-soil subsystem into 𝑁b complex modes results in

b(𝑥, 𝑡) ≈
𝑁b
∑

𝑚=1
𝑦(𝑚)b (𝑡)𝛷(𝑚)

b (𝑥) +
𝑁b
∑

𝑚=1
𝑦̄(𝑚)b (𝑡)𝛷̄(𝑚)

b (𝑥) (17)

ith 𝛷(𝑚)
b (𝑥) denoting the 𝑚th complex eigenfunction and 𝛷̄(𝑚)

b (𝑥) its
omplex conjugate counterpart (see Eq. (A.1), Appendix A). The vari-
bles 𝑦(𝑚)b and 𝑦̄(𝑚)b are the corresponding complex modal coordinate and
ts complex conjugate equivalent, respectively.

According to the CMS method used in [28,29], the displacement
r (𝑥, 𝑡) of the track is decomposed into two parts,

r (𝑥, 𝑡) = 𝑤(f )
r (𝑥, 𝑡) +𝑤(b)

r (𝑥, 𝑡) (18)

he variable 𝑤(f )
r (𝑥, 𝑡) represents the deflection of the stand-alone track

n viscoelastic bedding (i.e. Fig. 3(a)) induced by the interaction force
r (𝑥, 𝑡), governed by the equation of motion Eq. (2) without the terms
ssociated with the bridge displacement 𝑤b. As a novelty and in con-
rast to the approach used in [28], 𝑤(f )

r (𝑥, 𝑡) is approximated in the sense
f Rayleigh–Ritz by a sum of individual deflection shapes,

(f )
r (𝑥, 𝑡) ≈

𝑁a
∑

𝑘=1
𝜑r (𝑥 − 𝑥𝑘(𝑡))𝑦r𝑘(𝑡) (19)

erein 𝜑r (𝑥−𝑥𝑘(𝑡)) is the 𝑘th static deflection shape of the stand-alone
rack on elastic bedding (see Eq. (B.1)) centered around the 𝑘th axle at
he position 𝑥𝑘(𝑡), due to the single load 𝐹𝑘(𝑡). The 𝑘th deflection shape
s scaled to the maximum value of one at the respective axle position
− 𝑥𝑘(𝑡) = 0 and is moving together with the corresponding axle load
𝑘(𝑡) in axial direction at the constant train speed 𝑣. Each of these
eflection shapes is assumed to adequately describe the deflection of
he stand-alone track on viscoelastic bedding due to the corresponding
xle load, thus the number of Rayleigh–Ritz approximations in Eq. (19)
s equal to the number of axles of the train 𝑁a. The 𝑘th deflection shape
s multiplied with the time-dependent coordinate 𝑦r𝑘(𝑡), to represent
he deflection resulting from the 𝑘th interaction force 𝐹𝑘. In contrast
o the detailed descriptions of the track deflection, used for example
n [4,37,38] this approach allows for an efficient approximation of the
esponse contribution 𝑤(f )

r (𝑥, 𝑡).
The second contribution in Eq. (18), 𝑤(b)

r (𝑥, 𝑡), can be thought of as

he track response contribution due to the bridge displacement 𝑤b [29],
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r (𝑥, 𝑡) of the track on viscoelastic bedding resulting from the interaction force 𝐹𝑘(𝑡), (b) deflection 𝑤(b)
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the bridge deformation and (c) combined deflection of the track 𝑤r (𝑥, 𝑡) and displacement of the bridge 𝑤b(𝑥, 𝑡).
ource: Modified from [28].
s visualized in Fig. 3(b). According to [29], 𝑤(b)
r is modally expanded,

nvolving the modal coordinates 𝑦(𝑚)b (𝑡) and 𝑦̄(𝑚)b (𝑡) [28],

𝑤(b)
r (𝑥, 𝑡) ≈

𝑁b
∑

𝑚=1
𝑦(𝑚)b (𝑡)𝛹 (𝑚)

r (𝑥) +
𝑁b
∑

𝑚=1
𝑦̄(𝑚)b (𝑡)𝛹̄ (𝑚)

r (𝑥) (20)

where 𝛹 (𝑚)
r (𝑥) is an appropriately chosen shape function of the track

and 𝛹̄ (𝑚)
r (𝑥) its complex conjugate counterpart. To find a suitable set

of shape functions, the 𝑚th modal contribution of the deformations
𝑤(b)(𝑚)

r (𝑥, 𝑡) = 𝛹 (𝑚)
r (𝑥)𝑦(𝑚)b (𝑡) and 𝑤(𝑚)

b (𝑥, 𝑡) = 𝛷(𝑚)
b (𝑥)𝑦(𝑚)b (𝑡) are substituted

into Eqs. (2) and (3) without the time-dependent terms, yielding the
following quasi-static relation,

𝐸𝐼r𝛹
(𝑚)
r,𝑥𝑥𝑥𝑥(𝑥) + 𝑘f (𝑥)𝛹 (𝑚)

r (𝑥) = 𝑘f (𝑥)𝛷
(𝑚)
b (𝑥)𝛱(𝑥, 0, 𝐿b) (21)

This differential equation, which relates the unknown 𝑚th shape func-
tion of the track 𝛹 (𝑚)

r (𝑥) to the known 𝑚th eigenfunction of the bridge
𝛷(𝑚)

b (𝑥), is solved numerically for 𝛹 (𝑚)
r (𝑥). However, this numerical

solution requires the definition of artificial boundary conditions in the
track beam as shown in Fig. 3,

𝑤(b)
r (𝑥 = −𝐿0, 𝑡) = 0, 𝑤(b)

r (𝑥 = 𝐿b + 𝐿0, 𝑡) = 0

𝑤(b)
r,𝑥𝑥(𝑥 = −𝐿0, 𝑡) = 0, 𝑤(b)

r,𝑥𝑥(𝑥 = 𝐿b + 𝐿0, 𝑡) = 0
(22)

thus limiting 𝑤(b)
r to the range −𝐿0 ≤ 𝑥 ≤ 𝐿b + 𝐿0. Since the track

deflection resulting from the displacement of the bridge approaches
zero with increasing distance from the bridge, the position of these
artificial boundary conditions is chosen at 𝑥 = −𝐿0 and 𝑥 = 𝐿b +
𝐿0, which satisfies Eq. (1). Accordingly, the complex conjugate 𝛹̄ (𝑚)

r
associated with 𝛷̄(𝑚)

b can be found.

3.2. Coupling of the soil-bridge and the track subsystem

First, the equations of motion of the soil-bridge and the track
subsystem (Eq. (5) and (2)) are put into the following form,
[

𝜌𝐴b 0
0 𝜌𝐴r

] [

𝑤̈b(𝑥, 𝑡)
𝑤̈r (𝑥, 𝑡)

]

+
[

𝐸𝐼b 0
0 𝐸𝐼r

] [

𝑤b,𝑥𝑥𝑥𝑥(𝑥, 𝑡)
𝑤r,𝑥𝑥𝑥𝑥(𝑥, 𝑡)

]

=
[

−𝑘f 𝑘f
] [

𝑤b(𝑥, 𝑡)
]

+
[

−𝑐f 𝑐f
] [

𝑤̇b(𝑥, 𝑡)
]

+
[

0
]

(23)
5

𝑘f −𝑘f 𝑤r (𝑥, 𝑡) 𝑐f −𝑐f 𝑤̇r (𝑥, 𝑡) 𝑓r
A compact notation of the series approximations of the deflections 𝑤b
and 𝑤r according to Eqs. (17), (19) and (20) reads
[

𝑤b(𝑥, 𝑡)
𝑤r (𝑥, 𝑡)

]

=
[

𝑤b(𝑥, 𝑡)
𝑤(b)

r (𝑥, 𝑡) +𝑤(f )
r (𝑥, 𝑡)

]

= 𝜦𝐡B (24)

where the matrix

𝜦 =
[

𝜱b(𝑥)T 𝟎
𝜳 r (𝑥)T 𝜱∗

r (𝑥)
T

]

(25)

is made up of the vector of the complex-valued eigenfunctions of
the bridge-soil subsystem, 𝜱b(𝑥), the vector of shape functions of the
deflection of the stand-alone track, 𝜱∗

r (𝑥), and the vector of the shape
functions of the track due to the bridge displacement, 𝜳 r (𝑥),

𝜱b =
[

𝛷(1)
b , 𝛷(2)

b ,… , 𝛷(𝑁b)
b , 𝛷̄(1)

b , 𝛷̄(2)
b ,… , 𝛷̄(𝑁b)

b

]T
,

𝜳 r =
[

𝛹 (1)
r , 𝛹 (2)

r ,… , 𝛹 (𝑁b)
r , 𝛹̄ (1)

r , 𝛹̄ (2)
r ,… , 𝛹̄ (𝑁b)

r

]T
,

𝜱∗
r =

[

𝜑r (𝑥 − 𝑥1), 𝜑r (𝑥 − 𝑥2),… , 𝜑r (𝑥 − 𝑥𝑁a
)
]T

(26)

and the vector

𝐡B =
[

𝐲b(𝑡)
𝐲r (𝑡)

]

(27)

which combines the modal coordinates of the bridge-soil subsystem,

𝐲b =
[

𝑦(1)b , 𝑦(2)b ,… , 𝑦(𝑁b)
b , 𝑦̄(1)b , 𝑦̄(2)b ,… , 𝑦̄(𝑁b)

b

]T
(28)

and the time-dependent coordinates of the track subsystem,

𝐲r =
[

𝑦r1, 𝑦r2,… , 𝑦r𝑁a

]T
(29)

Eq. (24) is then substituted into Eq. (23), this expression is pre-
multiplied by 𝜦T and integrated over the track length −∞ ≤ 𝑥 ≤ ∞.
This leads, taking into account the orthogonality relations of the bridge-
soil subsystem (cf. Appendix A) and the Rayleigh–Ritz approximation of
the track deflection (cf. Appendix B), to the following coupled set of
equations of motion expressed by the vector of modal coordinates 𝐡 of
both subsystems,

𝐌 (𝑡)𝐡̈ (𝑡) + 𝐂 (𝑡)𝐡̇ (𝑡) +𝐊 (𝑡)𝐡 (𝑡) = 𝐟 (𝑡) (30)
B B B B B B B
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with the system matrices 𝐌B, 𝐂B and 𝐊B

𝐌B =
[

𝟎 𝐌br
𝐌rb 𝐌r

]

, 𝐂B =
[

𝐀b + 𝛥𝐂b + 𝛥𝐌b𝐒b 𝐂br
𝐂rb 𝐂r

]

,

𝐊B =
[

𝐁b + 𝛥𝐊b 𝐊br
𝐊rb 𝐊r

]
(31)

erein the sub-matrices 𝐀b and 𝐁b are diagonal matrices composed of
he coefficients for the orthogonality conditions,

b = diag
[

𝑎(1)b , 𝑎(2)b ,… , 𝑎(𝑁b)
b , 𝑎̄(1)b , 𝑎̄(2)b ,… , 𝑎̄(𝑁b)

b

]

,

b = diag
[

𝑏(1)b , 𝑏(2)b ,… , 𝑏(𝑁b)
b , 𝑏̄(1)b , 𝑏̄(2)b ,… , 𝑏̄(𝑁b)

b

] (32)

specified in Appendix A, and 𝐒b is a diagonal matrix consisting of the
omplex natural frequencies of the bridge model (cf. Appendix A),

b = diag
[

𝑠(1)b , 𝑠(2)b ,… , 𝑠(𝑁b)
b , 𝑠̄(1)b , 𝑠̄(2)b ,… , 𝑠̄(𝑁b)

b

]

(33)

The sub-matrices 𝐌r , 𝐂r and 𝐊r that result from the integration over
the infinite track beam on viscoelastic bedding assuming a symmetric,
quasi-static deflection shape (c.f. Eqs. (B.1) and (B.5)), are diagonal,

𝐌r = diag
[

3
2𝛽

𝜌𝐴r ,… , 3
2𝛽

𝜌𝐴r

]

, 𝐂r = diag
[

3
2𝛽

𝑐f ,… , 3
2𝛽

𝑐f

]

,

𝐊r = diag
[

2
𝛽
𝑘f ,… , 2

𝛽
𝑘f

] (34)

because the non-diagonal elements are small compared to the diagonal
entries and therefore assumed to be zero. The reason for this is that the
static deflection around each axle load is strongly isolated for common
parameter configurations of the rail bed. Furthermore, it should be
noted that the 𝑁a diagonal entries within a matrix are the same since
the shape for all shape functions of the stand-alone infinite track beam
is the same regardless of the position of the axle load. The time-
dependent coordinates 𝑦r𝑘, 𝑘 = 1,… , 𝑁a cumulated in the vector 𝐲r ,
q. (29), of the partial response 𝑤(f )

r of the track are thus decoupled
rom each other and have the form of a single degree of freedom (SDOF)
ystem. Each of these SDOF systems thus describes the partial response
(f )
r at a specific axle position. These SDOF systems are coupled to the
ridge-soil subsystem by the sub-matrices denoted by the index ‘‘br’’
nd ‘‘rb’’, respectively,

br (𝑡) = 𝐌T
rb(𝑡) = 𝜌𝐴r ∫

𝐿b+𝐿0

−𝐿0

𝜳 r𝜱∗T
r d𝑥,

br (𝑡) = 𝐂T
rb(𝑡) = 𝑐f ∫

𝐿b+𝐿0

−𝐿0

𝜳 r𝜱∗T
r d𝑥 − 𝑐f ∫

𝐿b

0
𝜱b𝜱∗T

r d𝑥
(35)

nd

br (𝑡) = 𝐸𝐼r ∫

𝐿b+𝐿0

−𝐿0

𝜳 r𝜱∗T
r,𝑥𝑥𝑥𝑥d𝑥 + 𝑘f ∫

𝐿b+𝐿0

−𝐿0

𝜳 r𝜱∗T
r d𝑥 − 𝑘f

× ∫

𝐿b

0
𝜱b𝜱∗T

r d𝑥,

rb(𝑡) = 𝟎

(36)

erein, the limits of integration result from the range of definition of
r and 𝜱b. The time dependence of these matrices results from the
ovement of each deformation shape of the track with the correspond-

ng axle of the train with the speed 𝑣. Fourfold integration by parts of
br together with the relation according to Eq. (21) and the boundary

onditions according to Eq. (22) shows that 𝐊br can be expressed by
he function values of 𝜳 r and 𝜱∗

r and their derivatives at the limits of
ntegration 𝑥 = −𝐿0 and 𝑥 = 𝐿b + 𝐿0,

br (𝑡) =𝐸𝐼r
(

−𝜳 r,𝑥(𝐿b + 𝐿0)𝜱∗T
r,𝑥𝑥(𝐿b + 𝐿0, 𝑡) + 𝜳 r,𝑥(−𝐿0)𝜱∗T

r,𝑥𝑥(−𝐿0, 𝑡)

− 𝜳 r,𝑥𝑥𝑥(𝐿b + 𝐿0)𝜱∗T
r (𝐿b + 𝐿0, 𝑡) + 𝜳 r,𝑥𝑥𝑥(−𝐿0)𝜱∗T

r (−𝐿0, 𝑡)
)

(37)

Since the shape functions in 𝜳 r and their derivatives approach zero
with increasing distance from the bridge, the influence of this matrix
6

on the system response is very small if 𝐿0 is reasonably long (such as
defined in Eq. (1)). Hence, 𝐊br (𝑡) is assumed as 𝟎.

The force vector 𝐟B in Eq. (30),

𝐟B =
[

𝐟b
𝐟r

]

(38)

is composed of the force vectors 𝐟b and 𝐟r , which capture the effect
f the vehicle interaction forces 𝐹𝑘 (𝑘 = 1,… , 𝑁a) on the bridge-soil

subsystem and the track subsystem, respectively, with

𝐟b = ΨrΠ𝐅, 𝐅 =
[

𝐹1, 𝐹2,… , 𝐹𝑁a

]T
(39)

Π = diag
[

𝛱(𝑡, 𝑡A1, 𝑡B1),𝛱(𝑡, 𝑡A2, 𝑡D2),… ,𝛱(𝑡, 𝑡A𝑁a
, 𝑡D𝑁a

)
]

(40)

Ψr =
[

𝜳 r
(

𝑥1
)

,𝜳 r
(

𝑥2
)

,… ,𝜳 r

(

𝑥𝑁a

)]

(41)

and

𝐟r = Φ∗
rΠ𝐅 = Π𝐅 (42)

Eq. (42) results from the simplifying assumption that the 𝑘th deflection
shape 𝜑r (𝑥 − 𝑥𝑘) does not lead to a deflection at the positions of the
adjacent axles 𝑥𝑘−1 and 𝑥𝑘+1, given their isolated shape. Therefore, the
matrix Φ∗

r in Eq. (42) reads as

Φ∗
r =

[

𝜱∗
r
(

𝑥1
)

,𝜱∗
r
(

𝑥2
)

,… ,𝜱∗
r

(

𝑥𝑁a

)]

≈ 𝐈r (43)

with 𝐈r denoting an identity matrix of size [𝑁a ×𝑁a].
If the effect of the train on the track-bridge-soil system is described

in a simplified way by a single load model, where the interaction
forces in 𝐅 correspond to the static axle loads, Eq. (30) can be solved
numerically by applying the Newmark 𝛽-time integration scheme [39].
The time-dependent matrices in Eq. (35) and (37) can be computed
beforehand for sufficiently small intervals of the axle position 𝑥𝑘 and
the values of the resulting matrix elements can be linearly interpo-
lated during the evaluation of Eq. (30) to increase the computational
efficiency.

4. Coupled equations of the train-track-bridge-soil system

In the next step, the system equations of the track-bridge-soil sub-
system, Eq. (30), and the equations of motion of the train, Eq. (12), are
combined into one set of equations,

𝐌∗(𝑡)𝐱̈∗(𝑡) + 𝐂∗(𝑡)𝐱̇∗(𝑡) +𝐊∗(𝑡)𝐱∗(𝑡) = 𝐟∗(𝑡) (44)

with
𝐌∗ = diag[𝐌B,𝐌c], 𝐂∗ = diag[𝐂B,𝐂c], 𝐊∗ = diag[𝐊B,𝐊c]

𝐱∗(𝑡) =
[

𝐡B
𝐮c

]

, 𝐟∗(𝑡) =
[

𝐟B
𝐟c

] (45)

n this system of equations, however, the DOFs at the interface of the
wo subsystems are not independent of each other. The coupling of
hese DOFs is achieved with the so-called corresponding assumption [40–
2], which assumes a constant rigid-body contact between the axles
f the train and the underlying rail and thus does not allow any lift-
ff of the axles (compare with Figs. 1 and 4). In addition, within the
ramework of the corresponding assumption, track irregularities can also
e taken into account by introducing a random irregularity profile
unction 𝐼irr superimposed on the vertical track displacement [42].
herefore, for the vehicle-bridge interaction problem considered, the
ertical axle displacement 𝑢a𝑘 is equal to the deflection 𝑤r of the track
lus that of the track irregularity profile function 𝐼irr at the position 𝑥𝑘
f the train axle. When 𝑤r is divided into 𝑤(f )

r and 𝑤(b)
r according to

q. (18), 𝑤(f )
r replaced by Eq. (19) and the series expansion Eq. (20)

sed for 𝑤(b)
r , the following relationship between the coupled DOFs of

he vehicle and the track is obtained,

a𝑘(𝑥𝑘) = 𝑤r (𝑥𝑘, 𝑡) + 𝐼irr (𝑥𝑘)

≈ 𝑦r𝑘(𝑡) +
𝑁b
∑

𝛹 (𝑚)
r (𝑥𝑘)𝑦

(𝑚)
b (𝑡) +

𝑁b
∑

𝛹̄ (𝑚)
r (𝑥𝑘)𝑦̄

(𝑚)
b (𝑡) + 𝐼irr (𝑥𝑘)

(46)
𝑚=1 𝑚=1
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Fig. 4. Corresponding assumption for the axle at position 𝑥𝑘.
Source: Modified from [12].

The function 𝐼irr can be generated from power spectral density func-
tions of measured track irregularities, as discussed in [43]. The onefold
and twofold derivative of this relation with respect to time gives
the axle velocity and axle acceleration, respectively, as specified in
Appendix C (Eqs. (C.1) and (C.2)). Furthermore, according to the
corresponding assumption, the interaction forces between the track and
the vehicle are equal, i.e. the 𝑘th axle load 𝐹a𝑘 corresponds to the
interaction force 𝐹𝑘 on the track.

Based on the relationship Eq. (46) between the DOFs of both subsys-
tems and its first and second derivatives with respect to time, Eqs. (C.1)
and (C.2), a DST can now be applied that condenses in Eq. (44) the
DOFs of the train axles to the coordinates of the coupled track-bridge-
soil subsystem. This condensation leads to the following relationship
between the vector of the DOFs of the two decoupled subsystems 𝐱∗(𝑡)
and the vector of the condensed DOFs of the coupled system after
condensation 𝐮̃c (i.e., without the DOFs of the axle displacement), and
their velocities and accelerations,

𝐱∗(𝑡) = 𝜞 (𝑡)𝐱(𝑡) + 𝜰 (𝑡),

𝐱̇∗(𝑡) = 𝜞̇ (𝑡)𝐱(𝑡) + 𝜞 (𝑡)𝐱̇(𝑡) + 𝜰̇ (𝑡), 𝐱(𝑡) =
[

𝐡B
𝐮̃c

]

,

𝐱̈∗(𝑡) = 𝜞̈ (𝑡)𝐱(𝑡) + 2𝜞̇ (𝑡)𝐱̇(𝑡) + 𝜞 (𝑡)𝐱̈(𝑡) + 𝜰̈ (𝑡)

(47)

with the time-dependent transformation matrix Γ(𝑡) defined in Ap-
pendix C, which results from the compatibility condition of Eq. (46),
and 𝜰 (𝑡) including the values of the track irregularity profile function
𝐼irr at the axle positions. Eq. (47) is now substituted into the system
of equations of the two subsystems, Eq. (44), and pre-multiplied by
𝜞 T(𝑡). This finally leads to the coupled set of equations of motion for
the interacting train-track-bridge-ground system,

𝐌(𝑡)𝐱̈(𝑡) + 𝐂(𝑡)𝐱̇(𝑡) +𝐊(𝑡)𝐱(𝑡) = 𝐟 (𝑡) (48)

with
𝐌(𝑡) = 𝜞 T(𝑡)𝐌∗(𝑡)𝜞 (𝑡),

𝐂(𝑡) = 𝜞 T(𝑡)
(

𝐂∗(𝑡)𝜞 (𝑡) + 2𝐌∗(𝑡)𝜞̇ (𝑡)
)

,

𝐊(𝑡) = 𝜞 T(𝑡)
(

𝐊∗(𝑡)𝜞 (𝑡) + 𝐂∗(𝑡)𝜞̇ (𝑡) +𝐌∗(𝑡)𝜞̈ (𝑡)
)

,

𝐟 (𝑡) = 𝜞 T(𝑡)
(

𝐟∗(𝑡) −𝐌∗(𝑡)𝜰̈ (𝑡) − 𝐂∗(𝑡)𝜰̇ (𝑡) −𝐊∗(𝑡)𝜰 (𝑡)
)

(49)

Since the dynamic interaction forces 𝐹a𝑘(𝑡) and 𝐹𝑘 cancel each other
out when 𝐟∗(𝑡) is pre-multiplied by 𝜞 T(𝑡), only the static axle loads
(Eqs. (15) and (14)) contribute to the force vector 𝐟 (𝑡). The numerical
solution of Eq. (49) can be found by applying the Newmark-𝛽 method.

4.1. Track irregularities

Especially for trains moving at high speeds track irregularities
become a major source of excitation. These geometrical imperfec-
tions, represented by the random irregularity profile function 𝐼irr (𝑥)
7

in Eq. (49), can be understood as a stationary stochastic process in i
space [3]. Such a random irregularity profile function can be realized
by a stochastic superposition of 𝐽 harmonic functions with discrete
spacial circular frequencies 𝛺𝑛 (𝑛 = 1,… , 𝐽 ) and the random phase
angle 𝜑𝑛, which is uniformly distributed in the range 0 ≤ 𝜑𝑛 ≤ 2𝜋 [43],

𝐼irr (𝑥) =
√

2
𝐽
∑

𝑛=1
𝐴𝑛 cos(𝛺𝑛𝑥 + 𝜑𝑛) (50)

The frequency increment 𝛥𝛺 = (𝛺u − 𝛺l)∕𝐽 is defined by the upper
frequency bound 𝛺u and the lower frequency bound 𝛺l respectively.
The amplitude 𝐴𝑛 is derived from [44]

𝐴𝑛 =

√

𝑆(𝛺𝑛)
𝜋

𝛥𝛺 (51)

erein, the two-sided power spectral density 𝑆(𝛺𝑛) is represented by
he one-sided power spectral density function 𝛷v(𝛺𝑛) [43]

(𝛺𝑛) =
𝛺𝑛
2

, 𝛺𝑛 = 𝑄
𝛺2

c

(𝛺2
r +𝛺2

𝑛)(𝛺2
c +𝛺2

𝑛)
(52)

ith 𝛺r = 0.0206 rad/m and 𝛺c = 0.8246 rad/m, respectively. The
amplitude 𝑄 defines the overall quality of the track, reaching from
𝑄 = 5.923 ⋅ 10−7 m for a good quality track, to 𝑄 = 15.861 ⋅ 10−7 m
or a poor quality track.

. Application

.1. Validation

As the proposed modeling strategy introduced some simplifying
ssumptions, the resulting response prediction is compared to that of
n FE model of an example bridge. For this validation, the proposed
emi-analytical approach is implemented in MATLAB [45], whereas the
E model is created using the software suite Abaqus [46]. The example
ridge is selected to represent a steel bridge of length 𝐿b = 17.5 m, with
he flexural rigidity 𝐸𝐼b = 1.356⋅1010 N m2 and the mass per unit length
𝐴b = 7083 kg/m. The rails used in the present study are two UIC60
ails with the combined mass per unit length 𝜌𝐴r = 120.733 kg/m and
he combined flexural rigidity 𝐸𝐼r = 12.831⋅106 N m2 [47]. The stiffness
oefficient 𝑘f = 104 ⋅ 106 N/m2 and the damping parameter 𝑐f = 50 kN
/m2 are selected to represent a ballast of low stiffness [47]. The length
f the track before and after the bridge bearings is 𝐿0 = 30 m, and
hus considerably larger than the minimum length of 5.27 m according
o Eq. (1). The subsoil considered is of moderate stiffness with the
onstrained modulus 𝐸s = 2.5⋅108 N/m2, the Poisson’s ratio 𝜈 = 0.28 and
he density 𝜌s = 2300 kg∕m3. The mass of the foundation is 𝑚̃1 = 2.5⋅105

g with an assumed foundation surface area 𝐴0 = 40 m2. Based on the
one model of Wolf the resulting parameters representing the soil and
oundation properties (cf. Fig. 1) are 𝑘b = 1.514⋅109 N∕m, 𝑐b = 3.033⋅107

s/m and 𝑚b = 𝑚̃1 = 2.5 ⋅105 kg. For the present investigation, random
rack imperfections generated according to Eq. (50) are considered. To
his end the amplitude for a poor quality track 𝑄 = 15.861 ⋅ 10−7 m is
hosen, and the range of the 𝐽 = 1000 spacial frequencies is restricted
y the boundaries 𝛺l = 𝜋∕50 m−1 and 𝛺u = 𝜋 m. The track irregularity
rofile generated in this manner is shown in Fig. 5.

The same model parameters are used in the FE model, with both
he bridge and the track girder discretized as Euler–Bernoulli beam
lements (B23) with the uniform element length of 6.125 cm. In this
odel, the track is modeled as a finite beam, with simply supported

nds, placed at a distance of 𝐿0 = 30 m before and after the supports
f the bridge. The deviation of the track geometry from the perfectly
traight and smooth track is modeled by simply offsetting the element
odes perpendicular to the beam axis by the amount of the irregularity
rofile (cf. Fig. 5) at each nodal position 𝑥.

For the vehicle, a simple two DOF model is considered, moving at
constant speed of 𝑣 = 70 m∕s (cf. Fig. 6). The parameters shown
n Fig. 6 are selected to represent the MSD system corresponding to



Engineering Structures 253 (2022) 113769P. König et al.
Fig. 5. Irregularity profile of the track.

Fig. 6. Two degree of freedom vehicle system.
Source: Modified from [28].

a single axle of the ICE3 train model. The system matrices 𝐌c, 𝐂c, 𝐊c,
the force vector 𝐅c, and the vector of DOFs 𝐮c of Eq. (12) read as

𝐌c =
[

𝑚s 0
0 𝑚a

]

, 𝐂c =
[

𝑐a −𝑐a
−𝑐a 𝑐a

]

, 𝐊c =
[

𝑘a −𝑘a
−𝑘a 𝑘a

]

𝐅c =
[

0
𝐹as

]

, 𝐮c =
[

𝑢s
𝑢a

]
(53)

Therefore, the mass 𝑚s = 15125 kg represents the combined mass
of half a bogie and one quarter of the car-body, and 𝑚a = 1800 kg
denotes the mass of a single axle [28,48]. The suspension stiffness
and damping coefficients are 𝑘a = 1.764 MN/m and 𝑐a = 48 kN
s/m, respectively [28,48]. In the proposed approach, this system is
coupled to the rail according to the previously discussed corresponding
assumption. In the FE model, the coupling is realized by defining a rigid
contact between the axle and the rail beam.

In the computation of the dynamic response of the system based on
the proposed semi-analytical approach, 𝑁b = 8 modes of the bridge are
considered. For the sake of comparison, computations with a stiffness
coefficient of three times the reference stiffness (3 × 𝑘f = 312 ⋅ 106

N/m2) are included to represent a ballast of high stiffness. The dynamic
response of the FE model is calculated in a full transient analysis and
represents the reference solution. Fig. 7(a) shows the displacement of
the left support of the bridge (𝑥 = 0 m) and Fig. 7(b) the acceleration
of the same point. At the beginning of the computation (𝑡 = 0 s), the
MSD system enters the considered section (−𝐿0 ≤ 𝑥 ≤ 𝐿b + 𝐿0) at
𝑥 = −𝐿0 (cf. Figs. 1 and 3) until it leaves this section at 𝑡 ≈ 1.107 s.
Therefore, 𝑡 = 0 s corresponds to the time when the static axle load 𝐹as
(cf. Fig. 6) is switched on for the semi-analytical approach, and the
axle is situated directly on top of the first support of the rail beam
of the FE model. Within this time frame, the MSD system arrives at
the first support of the bridge at 𝑡B ≈ 0.429 s and leaves the bridge at
𝑡C ≈ 0.679 s. As can be seen, the results of the FE solution, represented
8

by the black dashed line, are in excellent agreement with the results of
the proposed model, represented by the red line. This is also the case
for the solutions including a higher value of the ballast stiffness since
the dotted line representing the FE solution is in excellent agreement
with the corresponding results of the proposed model, represented
by the green line. It should also be noted that no influence of the
boundary condition of the rail beam at 𝑥 = −𝐿0 is observed on the
dynamic response of the bridge support and the load-distributing effect
of the track is well approximated by the proposed model. Since higher
ballast stiffness results in a more concentrated load distribution, the
acceleration peak observed at the time where the axle arrives at the
left bridge support is of greater value, as visible from the comparison
of the results with higher ballast stiffness (‘‘3 × 𝑘f ’’) to the results with
lower stiffness.

Fig. 8(a) shows the bridge displacement and Fig. 8(b) the bridge ac-
celeration at the quarter point (𝑥 = 𝐿b∕4 = 4.375 m) of the bridge. This
position is specifically selected because the biggest impact of the track
irregularities on the dynamic response of the bridge is observed here.
Both the deflection and the acceleration at this point are significantly
higher than at the supports. While the influence of ballast stiffness
on the deflection is small at this point, the computed accelerations
vary significantly. The accelerations resulting from a ballast of lower
stiffness are significantly higher than the ones computed with a stiffer
ballast. It should be noted that the results of the proposed model
are again in excellent agreement with the solution of the FE model,
regardless of the ballast stiffness coefficient used.

Since the movement of the axle mass together with the coupled
track can significantly influence the dynamic response of the bridge
when track irregularities are considered [28], the vertical displacement
of the axle 𝑢a is depicted in Fig. 9(a) and its acceleration in the
vertical direction 𝑢̈a in Fig. 9(b). As can be seen, the different boundary
conditions of the two track models result in a notable difference in the
computed displacement as well as the acceleration of the two models at
the beginning of the computation. This brief transient phase does, how-
ever, not affect the bridge response. After this brief phase, the response
histories of the two models are in good agreement, further validating
the proposed semi-analytical approach. It can also be seen, that a larger
ballast stiffness results in a smaller vertical displacement of the axle. As
previously observed for the accelerations of the bridge, a smaller value
of the ballast stiffness is associated with greater accelerations of the
wheel.

For a fixed time step of 𝛥𝑡 = 10−4, the computation time of the
proposed semi-analytical model was 47.51 s, while the computation
time of the FE model was 2043 s on the same hardware. Most of the
computation time (44.17 s) was spent on the initial computation of
the natural frequencies, eigenfunctions, and shape functions, while only
3.34 s was spent on the computation of the time history of the response.

5.2. Exemplary application

The now validated approach is used in the following to analyze
the dynamic response of an example bridge subjected to high-speed
trains. For this purpose, the same steel bridge as before is considered
with the same parameters. The first six complex natural frequencies
of this bridge model and their respective equivalent damping ratios
are listed in Table 1. As also observed in [6,28], two highly damped
modes (𝑚 = 2 and 𝑚 = 3) occur for the present subsystem of the
bridge on subsoil. The damping of these modes is high because the
absolute value of the real part of 𝑠b is very close to the imaginary
part of 𝑠b. From Eq. (A.5) it follows that 𝜁 (𝑚)b reaches an upper bound
of 100% when the absolute real and imaginary parts of the complex
natural frequency 𝑠b coincide. In Table 1 also the corresponding natural
frequencies 𝑓 (𝑚)

b = ℑ(𝑠(𝑚)b )∕(2𝜋) = 𝛺(𝑚)
b ∕(2𝜋) are listed. For comparison,

the first six natural frequencies of the bridge on rigid supports 𝑓 (𝑚)
b,rigid,

with [4]

𝑓 (𝑚)
b,rigid =

(

𝑚
)2 𝜋

√

𝐸𝐼b (54)

𝐿b 2 𝜌𝐴b
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Fig. 7. (a) Bridge deflection and (b) acceleration at the left support (𝑥 = 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 8. (a) Bridge deflection and (b) acceleration at the position 𝑥 = 1∕4𝐿b = 4.375 m.
Fig. 9. (a) Axle displacement and (b) acceleration.
re specified in the last column. As can be seen, the integration of the
oil–structure interaction in this simplified model leads to a reduction
f the first natural frequency compared to the rigidly supported case.
dditionally, modes two and three appear only in the flexibly supported
eam, while the fourth mode is similar to the second mode of the
igidly supported case. The fourth and higher modes of the flexibly
upported bridge, however, have a slightly larger natural frequency
han the corresponding modes of the rigidly supported bridge.

To further investigate the response prediction based on the proposed
odel, the response of the considered bridge to the passage of a

tandard ICE3 train model is discussed. To account for the structural
amping of the bridge, to each of the 𝑁 = 8 modes (𝑚 = 1,… , 𝑁 ),
9

b b
a modal damping ratio of 𝜁 (𝑚)b = 0.5% is added to the damping ratio
resulting from the dashpots located below the supports. This modal
damping ratio corresponds to the base value of the applicable modal
damping ratio of steel bridges defined in [49].

The 𝑁c = 8 equal vehicles of the ICE3 train are described by
the mechanical model with ten DOFs according to Section 2.3. The
corresponding masses (𝑚p, 𝑚s, 𝑚a), moments of inertia (𝐼p, 𝐼s), stiffness
coefficients (𝑘s, 𝑘a), damping coefficients (𝑐s, 𝑐a), and dimensions (ℎ(𝑗)a ,
ℎ(𝑗)s ) of this model can be found in [28,48].

In this study, the dynamic response of the bridge due to the passing
train is computed with 81 different train speeds. These speeds are
evenly distributed in the range from 10 to 90 m/s. For each one of
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Fig. 10. Bridge response with and without track irregularities; Effect of the track response on the bridge response. (a) Peak bridge deflection and (b) peak bridge acceleration.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Complex natural frequencies of the first six modes of the considered bridge-soil
subsystem, together with the corresponding natural frequency and equivalent damping
ratio. Last column: natural frequencies of the bridge on rigid supports.

Mode 𝑚 Compl. nat. frequency
𝑠(𝑚)b
(rad/s)

Damping ratio
𝜁 (𝑚)b
(%)

nat. frequency
𝑓 (𝑚)
b

(Hz)

nat. frequency
𝑓 (𝑚)
b,rigid

(Hz)

1 −1.03 + 43.76𝑖 2.36 6.96 7.10
2 −56.21 + 49.97𝑖 74.74 7.95 28.39
3 −56.92 + 52.62𝑖 73.42 8.38 63.87
4 −2.54 + 181.64𝑖 1.40 28.91 113.55
5 −1.25 + 405.46𝑖 0.31 64.53 177.42
6 −0.72 + 717.77𝑖 0.10 114.24 255.48

these train speeds, the maximum absolute relative bridge deflection,

max |
|

𝑤b,rel
|

|

= max |
|

𝑤b(𝑥, 𝑡) − (𝑤b(0, 𝑡) + 𝑥(𝑤b(𝐿b, 𝑡) −𝑤b(0, 𝑡))∕𝐿b)|| (55)

and the maximum absolute acceleration, max |
|

𝑤̈b
|

|

, are computed and
stored. Herein, the bridge response is evaluated using a spatial sampling
with 101 points uniformly distributed over the interval [0, 17.5], with
the first and last points located at the supports of the bridge. Plotting
the peak response against the corresponding train speed yields the
response spectra depicted in Fig. 10(a) and (b), with the black line
with markers referring to the outcomes of the proposed semi-analytical
model considering rail irregularities (‘‘irr.’’) according to the profile
illustrated in Fig. 5. The response without the response portion 𝑤(f )

r
(i.e. 𝑤(f )

r = 0) is shown in a blue dotted line. Additionally, the results of
the model without track irregularities are shown with a black dashed
line (full model) and a red dotted line (𝑤(f )

r = 0), respectively. As can be
seen in Fig. 10(a), the track irregularities have only a small influence on
the computed bridge deflection. The deflection with and without track
rregularities only start to diverge visibly from each other at a train
peed of 45 m∕s. Furthermore, it can be seen that 𝑤(f )

r has only a very
mall negligible contribution to the dynamic deflection, whether the
odel is considered with or without rail irregularities.

For acceleration, however, the response behavior is different, see
ig. 10(b). Firstly, it can be observed that from a train speed of about
5 m∕s, the solutions with and without track irregularities differ sig-
ificantly. In this speed range, the maximum acceleration of the model
ith track irregularities is considerably larger. Furthermore, it can be

een that the response component 𝑤̈(f )
r is very substantial when track

irregularities are present. This observation highlights the importance
of including the dynamic track substructure when geometric imperfec-
tions are considered and bridge accelerations are of interest [28]. In
contrast, for a bridge with a smooth track, this response component
plays no role in the maximum acceleration, i.e. the red dotted line and
the black dashed line agree with each other in the entire speed range
10

considered. o
Both in the spectral representation of the deflection and the accel-
eration, resonance peaks can be observed which occur at certain train
speeds. In Fig. 10(a) and (b) they are indicated by vertical dashed lines.
Here, the black vertical lines indicate second order resonant speeds
𝑣(𝑚)𝑖 [13,40,50],

𝑣(𝑚)𝑖 =
𝑑c𝑓 (𝑚)

𝑖
(56)

which are related to the regular pattern of the axial forces (𝑚 =
1,… , 𝑁b, 𝑖 = 1, 2,…). The distance 𝑑c is the vehicle length and,
therefore, the distance of the regular spacing of the axle loads. For
the present ICE3 train model, this constant is 𝑑c = 24.775 m. For the
first bridge mode (𝑚 = 1), two corresponding resonance speeds are
𝑣(1)3 = 57.51 m∕s and 𝑣(1)4 = 43.13 m∕s.

At first sight, it could be concluded that the third vertical line in
Fig. 10 corresponds to a resonant speed related to the third mode of
the bridge (i.e. 𝑣(3)3 = 69.18 m∕s). However, since this mode is one of
the two highly damped modes (𝜁 (𝑚)b = 73.42%), no significant response
amplification at resonance is expected. Furthermore, the observation
that the resonance peak in the acceleration response only occurs in
the presence of track irregularities makes amplification by a third-order
resonance speed [40],

𝑣̃(𝑚)𝑖 =
𝜆̃𝑓 (𝑚)

𝑖
(57)

a likely explanation. In Eq. (57), 𝜆̃ represents the dominant wave
length of the irregularities. Since the wavelengths used to generate the
irregularity profile according to Eq. (50) are distributed at constant
frequency intervals between the limits 𝜆̃min = 2𝜋∕𝛺u = 2 m and
𝜆̃max = 2𝜋∕𝛺l = 100 m, the dominant wavelength is not known a
priori. However, from the observation that the maximum acceleration
at the train speed 𝑣 ≈ 69 m∕s occurs at the quarter point of the bridge
(𝑥 = 1∕4𝐿b), resonance with the fourth mode (𝑚 = 4), which has its
maximum at the same point, is the likely explanation. Inserting 𝑚 = 4
and 𝑖 = 1 together with 𝑣(4)1 = 69 m∕s gives the dominant wavelength
̃ = 2.39 m. However, since the considered wavelengths are equally
istributed between the specified limits, the dynamic amplification may
ot be contributed to the single wavelength 𝜆̃. Moreover 𝜆̃ = 2.39

suggests a greater influence of shorter wave lengths, close to the
ower limit of 𝜆̃min = 2 m. Due to the 32 consecutive axle loads of
he 𝑁c = 8 vehicles acting on the bridge, the maximum absolute
cceleration observed at 𝑣 ≈ 69 m∕s in Fig. 11 is significantly higher
han the accelerations observed in Fig. 8, resulting from a single axle.

In the next study, the results of the semi-analytical approach pro-
osed here are compared with the model using modal expansion of
he track response 𝑤(f )

r , as described in [29]. In a convergence study
f the latter model, the number of modes 𝑁r for the approximation

(f )
f 𝑤r is varied in the presence of track irregularities. Fig. 11 shows
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Fig. 11. Response according the proposed approach vs. the approach based on modal expansion of the track substructure. (a) Peak bridge deflection and (b) peak bridge acceleration.
Fig. 12. Response of the flexibly supported and the rigidly supported bridge. (a) Peak bridge deflection and (b) peak bridge acceleration.
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the maximum deflection (left) and maximum acceleration (right) as
a result of the considered approaches. As expected after the previous
considerations, the number of modes to approximate 𝑤(f )

r do not play a
role in the deflection, as this response fraction is very small, Fig. 11(a).

In contrast, however, the bridge acceleration depends very much on
the number of track modes considered. When 40 track modes are used
in the model based on modal expansion of the bridge, the bridge accel-
eration is strongly underestimated, as can be seen in Fig. 11(b). With
80 modes, the maximum acceleration is better approximated, but at
the cost of overestimating accelerations at resonant speeds 𝑣(1)3 and 𝑣(4)3 ,

hile at higher train speeds accelerations are underestimated compared
o the proposed semi-analytical approach and when calculated with
ore than 80 modes. The acceleration spectra based on 100, 120 and
40 track modes differ only slightly, with the acceleration increasing
lightly when more modes are considered. The predicted accelerations
f the proposed semi-analytical approach tend to be slightly higher
han those of the model with the maximum number of track modes
𝑁r = 140), resulting in a conservative approximation of the response.
n summary, the results of the proposed semi-analytical strategy agree
ery well with those of the modal superposition of the track modes also
sed in [28]. As discussed for Fig. 11, an initial convergence study is
ecessary in case of modal superposition of 𝑤(f )

r . It should also be noted,
hat, as the number of track modes increased, a decrease of the time
tep was necessary to achieve numerical stability, adding to the com-
utational time necessary. Overall, the proposed strategy shows high
omputational robustness as it does not depend on initial convergence
tudies for choosing an appropriate number of track modes, making it
uitable for extensive parametric studies and stochastic simulations, as
n [25].

Eventually, the main motivation behind the presented approach
11

hould be addressed, namely the computational efficiency. The number (
of DOFs considered is given by the number of complex bridge modes
and their respective complex conjugates, 2𝑁b, the number of isolated
Rayleigh–Ritz approximations corresponding to the number of axes, 𝑁a,
and the number of internal DOFs of the train, 6𝑁c, yielding a total of
6 DOFs considered in Eq. (48). While the model used in [28] also
as good computational efficiency, it requires of 264 DOFs to obtain
eliable results (i.e. 𝑁r = 100). For a comparison of computational
fficiency, the response spectrum, derived from the 81 consecutive
ime–history computations (cf. Figs. 10 and 11) was computed with

constant time step of 𝛥𝑡 = 3.9 ⋅ 10−4 s, for the proposed model, as
ell as the model of [28] in which 𝑁r = 100 track modes were used.
or the proposed model, the computational time needed was 6456 s,
hile the model of [28] took 98 334 s on the same hardware. Albeit
oting that these computation times highly depend on the individual
mplementation of the code, the efficiency of the proposed model is
learly visible from this simple comparison. Also, it has to be noted
hat the limiting factor for the chosen time step of 𝛥𝑡 = 3.9 ⋅ 10−4 s
as the convergence of the model based on modal expansion [28]

ince greater time increments lead to convergence issues. However,
or the proposed model, an increase of this time step did not lead
o a decreased convergence, and for 𝛥𝑡 = 7.8 ⋅ 10−4 s lead to the
ame response spectra, thus further decreasing the computational time
eeded by a factor of two.

To further illustrate the significant influence of the soil–structure
nteraction on the system response, Fig. 12 compares the response of a
inned–pinned beam model (i.e. the soil is assumed to be rigid) with
hat of the considered flexibly supported structural model (shown in
igs. 10 and 11). Again, computations were performed with an irregular
rack according to Fig. 5 and alternatively with a perfectly straight
nd smooth track. For both the rigidly and flexibly supported bridge

̃ ̃(𝑚)
denoted by ‘‘𝜁b,add’’), a base value of the modal damping ratio of 𝜁b =
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0.5% was assigned to each mode. Since the span is less than 20 m, in the
pinned–pinned bridge model the modal damping ratio was increased
by 𝜁b,add = 0.125(20 − 𝐿b) = 0.3125% as suggested in [49] to indirectly
ccount for the soil–structure interaction. This additional damping
ields a significant reduction of the deflection and acceleration peaks
lose to the second order resonance speed 𝑣(1)3 = 57.51 m∕s as can be

seen in Fig. 12, where also the peak response of the pinned–pinned
beam without additional damping is illustrated. For the computations
that also take into account the irregularity profile, this reduction is
also present for the acceleration at the third order resonant speed of
𝑣̃(4)1 = 69 m∕s. Comparing the deflections and accelerations of the
rigidly supported bridge with those of the bridge on flexible supports
reveals that in the latter model the response peaks at resonance are
substantially smaller. The reason for this is that the modal damping
ratios resulting from the non-proportional damping of the elastically
supported beam have a significant order of magnitude (cf. Table 1).
Since the modal damping ratio of the first mode is significantly higher
than the modal damping ratio of the fourth mode, the acceleration
response at 𝑣(1)3 is reduced more, and the peak at 𝑣̃(4)1 is larger than
that at 𝑣(1)3 for the bridge on flexible supports including the track
irregularities.

6. Summary and conclusions

In this contribution, a novel semi-analytical approach to predict
he dynamic responses of railway bridges was presented, which al-
ows considering the interaction between the vehicle, the track, the
ridge, and the underlying soil in a simplified manner. The coupling
f the mass–spring–damper system of the train with the underlying
ystem of the track and the bridge-soil was achieved by a dynamic
ubstructuring procedure based on the corresponding assumption. As a

novelty, this approach combines the complex modal representation
of the non-classically damped bridge-soil model with a Rayleigh–Ritz
approximation of the deflection of the infinitely long track beam on
viscoelastic bedding. This methodology takes advantage of the strongly
isolated deflection shape of the rails around the axles, which is other-
wise the reason for the large number of modes that are needed when
the track response is modally expanded.

Based on the application example shown, the following conclusions
can be drawn for the dynamic system under consideration consisting of
the train, track, bridge, and subsoil:

• The proposed model accurately predicts the load-distributing ef-
fects of the track on the acceleration response as well as the
influence of the track response on the bridge deflection and accel-
eration. This excellent agreement is attributed to the good approx-
imation of the dynamic response of the axle mass in combination
with the coupled track.

• The predicted bridge acceleration is strongly influenced by the
presence of rail irregularities. This influence is significantly am-
plified by the dynamic response of the track in combination with
the mass of the train axles.

• Consideration of soil–structure interaction can have an important
influence on the dynamic response. This influence is particularly
large at resonance speeds, as can be concluded from the sub-
stantial reduction in deflection and acceleration peaks. Since the
soil–structure interaction results in different damping for each
mode of the bridge, this reduction in resonance peaks depends
on the corresponding mode number.

• The modeling approach allows for a simple yet accurate re-
sponse prediction that far exceeds the computational efficiency
of comparative finite element models.
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Appendix A. Modal parameters and orthogonality relations of the
bridge-soil model

First, the general form of the eigenfunctions of the non-classically
damped Euler–Bernoulli beam [31,51]

𝛷b(𝑥) = 𝐶1 sin
𝜆b𝑥
𝐿b

+ 𝐶2 cos
𝜆b𝑥
𝐿b

+ 𝐶3 sinh
𝜆b𝑥
𝐿b

+ 𝐶4 cosh
𝜆b𝑥
𝐿b

(A.1)

are substituted into the four boundary conditions (Eq. (10)), which
yields a homogeneous set of four equations. By zeroing the correspond-
ing coefficient determinant, the eigenvalues 𝜆(𝑚) (𝑚 = 1,… ,∞) and
their complex conjugates 𝜆̃(𝑚) are found. The 𝑚th eigenvalue 𝜆(𝑚) is
related to the 𝑚th complex natural frequency 𝑠(𝑚) by

(

𝑠(𝑚)b

)2
= −

(

𝜆(𝑚)b

)4

𝐿4
b

𝐸𝐼b
𝜌𝐴b

(A.2)

which can be written as [52,53],

𝑠(𝑚)b = 𝜎(𝑚)b + 𝑖𝛺(𝑚)
b (A.3)

Herein, the real part 𝜎(𝑚)b is the so-called decay rate, and the imaginary
part 𝛺(𝑚)

b is referred to as the damped natural frequency [54]. The
absolute value of the complex natural frequency

𝜔(𝑚)
b = |

|

|

𝑠(𝑚)b
|

|

|

=

√

(

𝜎(𝑚)b

)2
+
(

𝛺(𝑚)
b

)2
(A.4)

s the so-called pseudo-undamped natural frequency. The 𝑚th modal
equivalent damping ratio 𝜁 (𝑚) is defined as [5]

𝜁 (𝑚)b =
−ℜ

(

𝑠(𝑚)b

)

|

|

|

𝑠(𝑚)b
|

|

|

= −
𝜎(𝑚)b

𝜔(𝑚)
b

(A.5)

This equivalent modal damping ratio accounts for the non-classical
damping of the bridge substructure, resulting from the discrete dash-
pots at the boundaries.

The modal damping ratio of (A.5) does not account for structural
damping of the bridge, however, it can considered by simply adding
the 𝑚th structural modal damping ratio 𝜁 (𝑚)b , i.e. 𝜁 (𝑚)b + 𝜁 (𝑚) [12]. Then,
the 𝑚th complex natural frequency can be expressed as

𝑠(𝑚)b = −𝜔(𝑚)
b

(

𝜁 (𝑚)b + 𝜁 (𝑚)b

)

+ 𝑖𝜔(𝑚)
b

√

1 −
(

𝜁 (𝑚) + 𝜁 (𝑚)
)2 (A.6)

To derive the 𝑚th eigenfunction 𝛷(𝑚)
b , the eigenvalues 𝜆(𝑚)b are in-

serted into Eq. (A.1) and three of the four constants 𝐶 (𝑚)
1 , 𝐶 (𝑚)

2 , 𝐶 (𝑚)
3 , 𝐶 (𝑚)

4
are expressed by the fourth, which can be scaled arbitrarily. The
complex conjugate corresponding to the 𝑚th eigenfunction of the bridge
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T

is referred to as 𝛷̄(𝑚)
b . The orthogonality relations of the non-classically

damped Euler–Bernoulli beam can be found in [5,8,12]

𝑎(𝑚)b 𝛿𝑙𝑚 =𝑐b
(

𝛷(𝑚)
b (0)𝛷(𝑙)

b (0) +𝛷(𝑚)
b (𝐿b)𝛷

(𝑙)
b (𝐿b)

)

+
(

𝑠(𝑙)b + 𝑠(𝑚)b

)

(

𝜌b𝐴b ∫

𝐿b

0
𝛷(𝑚)

b (𝑥)𝛷(𝑙)
b (𝑥)d𝑥

+ 𝑚b

(

𝛷(𝑚)
b (0)𝛷(𝑙)

b (0) +𝛷(𝑚)
b (𝐿b)𝛷

(𝑙)
b (𝐿b)

))

(A.7)

𝑏(𝑚)b 𝛿𝑙𝑚 =𝑘b
(

𝛷(𝑚)
b (0)𝛷(𝑙)

b (0)

+𝛷(𝑚)
b (𝐿b)𝛷

(𝑙)
b (𝐿b)

)

+ 𝐸𝐼b ∫

𝐿b

0
𝛷(𝑚)

b,𝑥𝑥(𝑥)𝛷
(𝑙)
b,𝑥𝑥(𝑥)d𝑥

−
(

𝑠(𝑚)b 𝑠(𝑙)b
)

(

𝜌b𝐴b ∫

𝐿b

0
𝛷(𝑚)

b (𝑥)𝛷(𝑙)
b (𝑥)d𝑥

+ 𝑚b

(

𝛷(𝑚)
b (0)𝛷(𝑙)

b (0) +𝛷(𝑚)
b (𝐿b)𝛷

(𝑙)
b (𝐿b)

))

(A.8)

Since the normalizing constants 𝑎(𝑚)b and 𝑏(𝑚)b are non-independent, they
can both be expressed by the generalized modal mass [5,12]

𝑀 (𝑚)
b =

𝑐b
2𝑠(𝑚)b

(

(

𝛷(𝑚)
b (0)

)2
+
(

𝛷(𝑚)
b (𝐿b)

)2
)

+ 𝜌b𝐴b ∫

𝐿b

0

(

𝛷(𝑚)
b (𝑥)

)2
d𝑥 + 𝑚b

(

(

𝛷(𝑚)
b (0)

)2
+
(

𝛷(𝑚)
b (𝐿b)

)2
)

(A.9)

in the form of 𝑎(𝑚)b = 2𝑠(𝑚)b 𝑀 (𝑚)
b and 𝑏(𝑚)b = −2

(

𝑠(𝑚)b

)2
𝑀 (𝑚)

b . The
corresponding complex conjugates are represented by 𝑎̄(𝑚)b and 𝑏̄(𝑚)b ,
respectively.

Appendix B. Approximation of the track substructure deflection

The Rayleigh–Ritz approximation of the response of the track beam
on viscoelastic bedding due to the interaction forces with the train
according to Eq. (19) is based on the shape function 𝜑r (𝑥−𝑥𝑘(𝑡)), which
moves with the corresponding interaction force. On the one hand, this
shape function should represent the track deflection due to an inter-
action force sufficiently accurate, but on the other hand it should be
as simple as possible. Although the dynamic track deflection becomes
asymmetric with increasing constant speed of the concentrated load, as
observed in the steady-state solution of [4], it is assumed that the shape
function 𝜑r in terms of the normalized symmetric static deflection due
to a concentrated load
𝜑r (𝑥̂𝑘) = 𝑒−𝛽𝑥̂𝑘 (sin 𝛽𝑥̂𝑘 + cos 𝛽𝑥̂𝑘) , 𝑥̂𝑘 ≥ 0

𝛽 = 4

√

𝑘f
4𝐸𝐼r

(B.1)

sufficiently approximates the actual dynamic track behavior, which is
additionally influenced by track irregularities. In this equation, 𝑥̂𝑘(𝑡) =
𝑥 − 𝑥𝑘(𝑡) denotes the local spacial coordinate starting at the 𝑘th axle
position 𝑥 = 𝑥𝑘(𝑡). In this study, this assumption has been confirmed in
several application examples. The static deflection of the infinitely long
bedded beam subjected to the concentrated force 𝐹 (stat)

𝑘 at the position
̂𝑘 reads [55]

𝑤(f )(stat)
r𝑘 (𝑥̂𝑘) =

𝐹 (stat)
𝑘 𝛽
2𝑘f

𝜑r (𝑥̂𝑘) , 𝑥̂𝑘 ≥ 0 (B.2)

Once a suitable shape function has been identified, the Rayleigh–
Ritz approximation for the 𝑘th interaction force, 𝑤(f )

r𝑘 (𝑥̂𝑘) = 𝜑r (𝑥̂𝑘)𝑦r𝑘(𝑡),
is inserted into Eq. (2), in which quantities related to the deformation
of the bridge-ground subsystem 𝑤b and the other axle loads have been
omitted. This leads to

𝐸𝐼r𝜑r,𝑥𝑥𝑥𝑥(𝑥̂𝑘)𝑦r𝑘(𝑡) + 𝜌𝐴r𝜑r (𝑥̂𝑘)𝑦̈r𝑘(𝑡) + 𝑐f𝜑r (𝑥̂𝑘)𝑦̇r𝑘(𝑡) + 𝑘f𝜑r (𝑥̂𝑘)𝑦r𝑘(𝑡)

= 𝐹𝑘(𝑡)𝛿
(

𝑥̂𝑘
)

𝛱(𝑡, 𝑡A𝑘, 𝑡D𝑘)
13

(B.3) t
Pre-multiplying this expression by 𝜑r (𝑥̂𝑘) and integration from −∞ to
∞ yields the equation of motion of an equivalent SDOF system,

𝜌𝐴r ∫

∞

−∞
𝜑2
r d𝑥̂𝑘𝑦̈r𝑘 + 𝑐f ∫

∞

−∞
𝜑2
r d𝑥̂𝑘𝑦̇r𝑘 + 𝐸𝐼r ∫

∞

−∞
𝜑r𝜑r,𝑥𝑥𝑥𝑥d𝑥̂𝑘𝑦r𝑘

+ 𝑘f ∫

∞

−∞
𝜑2
r d𝑥̂𝑘𝑦r𝑘

= 𝜑r𝐹𝑘(𝑡)𝛱(𝑡, 𝑡A𝑘, 𝑡D𝑘)

(B.4)

and further after inserting the shape function according to Eq. (B.1)
3
2𝛽

𝜌𝐴r 𝑦̈r𝑘 +
3
2𝛽

𝑐f 𝑦̇r𝑘 +
2
𝛽
𝑘f𝑦r𝑘 = 𝐹𝑘(𝑡)𝛱(𝑡, 𝑡A𝑘, 𝑡D𝑘) (B.5)

since

∫

∞

0
𝜑2
r d𝑥̂𝑘 = 3

4𝛽
, ∫

∞

0
𝜑r𝜑r,𝑥𝑥𝑥𝑥d𝑥̂𝑘 = 𝛽3 (B.6)

Appendix C. Coupling of substructures

Since 𝛹̇ (𝑚)
r (𝑥 = 𝑥𝑘(𝑡)) = d𝛹 (𝑚)

𝑟
d𝑡 = 𝜕𝛹 (𝑚)

𝑟
𝜕𝑥

𝜕𝑥𝑘
𝜕𝑡 = 𝑣𝛹 (𝑚)

r,𝑥 (𝑥𝑘) and 𝐼̇irr (𝑥 =
𝑥𝑘(𝑡)) = d𝐼irr

d𝑡 = 𝜕𝐼𝑖𝑟𝑟
𝜕𝑥

𝜕𝑥𝑘
𝜕𝑡 = 𝑣𝐼irr,𝑥(𝑥𝑘), as well as 𝜑̇r (𝑥̂𝑘(𝑡) = 0) = 0, the

velocity and acceleration of the wheel at the axle position 𝑥 = 𝑥𝑘 can
be expressed as

𝑢̇a𝑘(𝑥𝑘) =𝑤̇r (𝑥𝑘, 𝑡) + 𝐼̇irr (𝑥𝑘) ≈ 𝑦̇r𝑘

+
𝑁b
∑

𝑚=1

(

𝑣𝛹 (𝑚)
r,𝑥 (𝑥𝑘)𝑦

(𝑚)
b (𝑡) + 𝛹 (𝑚)

r (𝑥𝑘)𝑦̇
(𝑚)
b (𝑡)

)

+
𝑁b
∑

𝑚=1

(

𝑣𝛹̄ (𝑚)
r,𝑥 (𝑥𝑘)𝑦̄

(𝑚)
b (𝑡) + 𝛹̄ (𝑚)

r (𝑥𝑘) ̇̄𝑦
(𝑚)
b (𝑡)

)

+ 𝑣𝐼irr,𝑥(𝑥𝑘)

(C.1)

̈a𝑘(𝑥𝑘) = 𝑤̈r (𝑥𝑘, 𝑡) + 𝐼irr (𝑥𝑘)

≈ 𝑦̈r𝑘 +
𝑁b
∑

𝑚=1

(

𝑣2𝛹 (𝑚)
r,𝑥𝑥(𝑥𝑘)𝑦

(𝑚)
b (𝑡) + 2𝑣𝛹 (𝑚)

r,𝑥 (𝑥𝑘)𝑦̇
(𝑚)
b (𝑡)

+ 𝛹 (𝑚)
r (𝑥𝑘)𝑦̈

(𝑚)
b (𝑡)

)

+
𝑁b
∑

𝑚=1

(

𝑣2𝛹̄ (𝑚)
r,𝑥𝑥(𝑥𝑘)𝑦̄

(𝑚)
b (𝑡) + 2𝑣𝛹̄ (𝑚)

r,𝑥 (𝑥𝑘) ̇̄𝑦
(𝑚)
b (𝑡) + 𝛹̄ (𝑚)

r (𝑥𝑘) ̈̄𝑦
(𝑚)
b (𝑡)

)

+ 𝑣2𝐼irr,𝑥𝑥(𝑥𝑘)

(C.2)

The corresponding assumption yields the transformation matrix in
q. (47) as

(𝑡) =
⎡

⎢

⎢

⎣

𝐈b 𝟎 𝟎
𝟎 𝐈r 𝟎
𝐃b 𝐃r 𝐄c

⎤

⎥

⎥

⎦

(C.3)

ith the sub-matrices 𝐈b and 𝐈r denoting identity matrices of size [2𝑁b×
𝑁b] and [𝑁a × 𝑁a], respectively. The sub-matrices 𝐃b and 𝐃r result
rom the substitution of the DOFs of the axles by the displacement of
he track at each axle position in Eq. (46) and can be expressed as

b(𝑡) = 𝐄aΠ(𝑡)ΨT
r (𝑡)

𝐃r (𝑡) = 𝐄aΠ(𝑡)𝐈r
(C.4)

ith the previously defined matrix of window functions Π(𝑡) and the
atrix of shape functions evaluated at the axle positions Ψr (𝑡). The

ub-matrices 𝐄c and 𝐄a of Eqs. (C.3) and (C.4) read

c = diag
[

𝐉(1)c , 𝐉(2)c ,… , 𝐉(𝑁c)
c

]

a = diag
[

𝐉(1)a , 𝐉(2)a ,… , 𝐉(𝑁c)
a

] (C.5)

ith

(𝑗)
c =

[

𝐈[6×6]c
𝟎[4×6]

]

, 𝐉(𝑗)a =
[

𝟎[6×4]

𝐈[4×4]a

]

, 𝑗 = 1,… , 𝑁c (C.6)

he size of the identity matrix 𝐈c is equal to the number of DOFs of

he vehicle body and bogies of one vehicle of the train and the size of
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the identity matrix 𝐈a is equal to the number of axles involved in the
coupling of one vehicle. Since in the present model of a conventional
train each of the 𝑁c vehicles is represented by a ten DOF system as
depicted in Fig. 1, the matrices in Eq. (C.6) are equal for each vehicle.
The vector Υ(𝑡) in Eqs. (47), (48), (49), containing the track irregularity
profile function 𝐼irr evaluated at each axle position, reads

Υ(𝑡) =
[

𝟎[(2𝑁b+𝑁a)×1]

𝐄aΠ𝐈irr

]

(C.7)

with the vector 𝐈irr ,

𝐈irr (𝑡) =
[

𝐼irr (𝑥1(𝑡)), 𝐼irr (𝑥2(𝑡)),… , 𝐼irr (𝑥𝑁a
(𝑡))

]T
(C.8)
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