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A B S T R A C T

In this paper, a beam theory is presented that allows to compute the moderately large dynamic response
of slightly curved linear elastic layered beams with interlayer slip. The considered structural members are
immovably supported, which leads to non-negligible membrane stresses at moderately large bending vibrations,
and consequently to a geometrically nonlinear response. Based on a layerwise application of the Euler–Bernoulli
theory, the boundary value problem is formulated for an arbitrary number of layers. A specification is then
made for two- and three-layer beams. Several examples show the effect of an imperfect beam axis on the
nonlinear dynamic response. A comparison of selected results with those of a much more expensive finite
element analysis based on a plane stress state demonstrates the accuracy of the beam theory proposed.
1. Introduction

Structural members composed of several layers are used in nu-
merous technical fields. The bonding of these layers is achieved by
adhesives, nails, bolts, etc. Depending on the type of fastener, this
connection may be flexible, which makes the mechanical behavior
of these members under load more complex than of homogeneous
components or layered components with rigid bond. In particular, the
flexible bond causes a relative displacement of these layers, which is
commonly referred to as interlayer slip. Examples of structural mem-
bers with interlayer slip are components made of several glued or nailed
wood layers, timber–concrete beams, composite steel–concrete bridges,
components made of glued glass layers, small-scale composite parts in
mechanical and aerospace engineering without complete bonding, etc.

In recent decades, numerous theories have been developed to pre-
dict the mechanical response of members with interlayer slip analyti-
cally or numerically with sufficient accuracy. From the early days, an
example is the study [1] dedicated to the static response of flexibly
bonded layered beams. Fundamental studies on the static response of
linear elastic beams with flexible bond are summarized in papers [2,3].
In [4], the analytical solution of two-layer beams with interlayer slip
based on two-dimensional elasticity is achieved. Steel–concrete beams
with interlayer slip were recently investigated in [5]. A study on the
response of curved beams with interlayer slip can be found in [6].
In a number of publications, the effect of second-order theory on the
static response of these beams is presented, such as in [7,8]. The
geometrically exact post-buckling response of layered columns with
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interlayer slip is analyzed in [9]. [10] provides a model that cap-
tures the time-dependent behavior of steel–concrete beams with partial
interaction due to shrinkage and creep. In some cases, the fasteners
behave nonlinearly, which is computationally captured, for example,
in the papers [11,12]. Analytical solutions for three-layer beams with
as stepwise linear interface law are found in [13].

Girhammar and Pan [14] were among the first to address the bend-
ing vibrations of elastic beams with interlayer slip. These studies were
continued in further papers such as [15–17]. Challanel et al. [18] in-
vestigated the out-of-plane vibrations of layered beams with interlayer
slip and general boundary conditions. In [19] the free vibrations of two-
layer Timoshenko beams with interlayer slip are analyzed. In [20] it
was shown how discontinuities such as elastic supports or rotational
springs between the beam elements can be taken into account when
predicting the dynamic response of layered beams with flexible bond. It
should be noted here that delamination of layered structures is not cap-
tured with these theories. This topic is addressed, for example, in [21].

The geometrically nonlinear response of flexibly bonded layered
beams at large deformations is addressed in [22–25]. When the sup-
ports of a structural member are fully restrained, geometric nonlinear-
ities occur even at moderately large deformations, which significantly
affect the response, shown for instance in [26]. For those structural
members, even very small deviations from the straight beam axis have
a large effect on the nonlinear response. This has been studied in
detail for homogeneous beams or for layered beams with rigid bond,
e.g. [27–29]. However, for beams with interlayer slip, a comprehensive
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treatment of an imperfect beam axis on the response is lacking. As a
starting point, a beam theory for slightly curved symmetrically layered
beams with interlayer slip subjected to static loads was recently derived
in [30]. Under dynamic excitation, however, these investigations are
still waiting.

In the present paper, therefore, a beam theory for predicting the
moderately large vibration response of linear elastic beams with inter-
layer slip is presented. These beams can be composed of any number
of layers. A basis for this beam theory are two recent publications
which treat the static [31] and dynamic [32] behavior of symmetrically
layered three-layer beams with interlayer slip and perfectly straight
beam axis on fully immovable supports. It is assumed that the shear
deformations of the individual layers are negligible, and consequently,
the Euler–Bernoulli theory can be applied layerwise. The nonlinear
strain of the beam axis is taken into account according to a theory by
Mettler [33]. After deriving the equations of motion and the applicable
boundary conditions, these equations are specified for two special con-
figurations, namely the asymmetrically layered two-layer beam and the
symmetrically layered three-layer beam. The validation of the proposed
theory is performed by comparative numerical computations on several
beams based on a plane stress state, which are however much more
computationally demanding. In several application examples, the grave
effect of small geometric imperfections on the dynamic response is
demonstrated.

2. Basic equations

Consider a single-span beam composed of an arbitrary number of
𝑛 elastically bonded layers. Each layer is homogeneous and has a
cross-section that is symmetrical about the vertical axis and constant
over the span length 𝑙. The centers of gravity of the layers are on
top of each other. The top layer and its parameters are denoted by
the subscript ‘‘1’’, the numbering of the layers below is successively
increasing from top to bottom, as shown in Fig. 1 for a four-layer
beam as an example. The material of the 𝑖th layer (𝑖 = 1,… , 𝑛) is
characterized by the Young’s modulus 𝐸𝑖 and the mass density 𝜌𝑖. The
𝑛−1 interfaces between the layers and their parameters are also denoted
by the subscript 𝑖, with 𝑖 = 1 for the interface between the first and
second layer, and 𝑖 = 𝑛 − 1 for the interface between the second last
and the bottom layer. The slip modulus at the 𝑖th interface denoted by
𝐾𝑠𝑖 represents the longitudinal flexibility of the layer bonding.

The beam axis is defined by the line connecting the elastic centers of
gravity of the complete cross-section of the beam with rigidly bonded
layers. In the stress-free state, this beam axis has a small initial de-
flection 𝑤̂ that varies over the beam length, which either represents
an imperfection of a straight beam or may be intentional. The de-
formations of the beam are referred to a Cartesian 𝑥, 𝑦, 𝑧-coordinate
system with the origin in the beam axis at the left end of the beam
and coordinate orientation according to Fig. 1. The lateral coordinate
𝜁𝑖 is specified layerwise, with the pre-curved neutral axis of the 𝑖th layer
serving as origin (𝜁𝑖 = 0), see also Fig. 1. The vertical time-varying line
load 𝑝(𝑥, 𝑡) applied in the beam axis excites the structural member to
vibrations in the 𝑥𝑧-plane.

Since the layers are elastically connected, the layers translate rela-
tive to each other under load in longitudinal direction, which is referred
to as interlayer slip. Subsequently, the interlayer slip between the 𝑖th
and the (𝑖+1)-th layer is denoted as 𝛥𝑢𝑖(𝑥, 𝑡). Furthermore, it is assumed
that the layers are rigid in shear. Therefore, the Euler–Bernoulli theory
can be applied separately for each layer. At time 𝑡, the displacement
field shown in Fig. 2 as an example of a four-layer beam can accordingly
be expressed as follows,

𝑤𝑖(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) , 𝑢𝑖(𝑥, 𝜁𝑖, 𝑡) = 𝑢(0)𝑖 (𝑥, 𝑡) − 𝜁𝑖𝑤,𝑥(𝑥, 𝑡) 𝑖 = 1,… , 𝑛 (1)

The variable 𝑤(𝑥, 𝑡) denotes the deflection, which at a position 𝑥 is
the same for all layers and fibers. The deflection 𝑤(𝑥, 𝑡) is superposed
to the initial imperfection 𝑤̂(𝑥). 𝑢 (𝑥, 𝜁 , 𝑡) represents the longitudinal
2
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displacement of the fiber at the vertical distance 𝜁𝑖 from the center of
gravity of the cross-section of the 𝑖th layer. The axial displacement at
𝜁𝑖 = 0 is denoted as 𝑢(0)𝑖 (𝑥, 𝑡), compare with Fig. 2. (.),𝑥 indicates the
partial derivative of (.) with respect to coordinate 𝑥.

The layerwise axial displacements below the top layer 𝑢(0)𝑖 (𝑥, 𝑡), 𝑖 =
,… , 𝑛, can be expressed as a function of the axial displacement of the

top layer, 𝑢(0)1 (𝑥, 𝑡), the cross-sectional rotation 𝑤,𝑥(𝑥, 𝑡) and the sum of
the interlayer slips above the 𝑖th layer, compare with Fig. 2,

𝑢(0)𝑖 (𝑥, 𝑡) = 𝑢(0)1 (𝑥, 𝑡) − (𝑑 + 𝑧𝑖)𝑤,𝑥(𝑥, 𝑡) +
𝑖−1
∑

𝑗=1
𝛥𝑢𝑗 (𝑥, 𝑡) , 𝑖 = 2,… , 𝑛 (2)

where 𝑧𝑖 is the vertical coordinate from the beam axis to the center of
gravity of the 𝑖th layer, and 𝑑 denotes the distance from the center of
gravity of the top layer to the elastic center of gravity of the beam.
Assuming that the beam axis is located in the 𝑚th layer, the axial
displacement of the top layer 𝑢(0)1 (𝑥, 𝑡) can be expressed by the axial
displacement of the beam axis 𝑢(∞)(𝑥, 𝑡) as follows,

𝑢(∞)(𝑥, 𝑡) = 𝑢(0)1 (𝑥, 𝑡) −𝑤,𝑥(𝑥, 𝑡)𝑑 +
𝑚−1
∑

𝑗=1
𝛥𝑢𝑗 (𝑥, 𝑡) (3)

and further

𝑢(0)1 (𝑥, 𝑡) = 𝑢(∞)(𝑥, 𝑡) +𝑤,𝑥(𝑥, 𝑡)𝑑 −
𝑚−1
∑

𝑗=1
𝛥𝑢𝑗 (𝑥, 𝑡) (4)

A moderately large deflection 𝑤(𝑥, 𝑡) leads to a nonlinear axial
strain–displacement relation (see e.g. [34]). For a layered beam with
the initial imperfection 𝑤̂(𝑥), according to [33] the strain in the longi-
udinal axis of 𝑖th layer reads as

𝑖(𝑥, 𝑡) = 𝑢(0)𝑖,𝑥 (𝑥, 𝑡) +
1
2
𝑤2
,𝑥(𝑥, 𝑡) +𝑤,𝑥(𝑥, 𝑡)𝑤̂,𝑥(𝑥) , 𝑖 = 1,… , 𝑛 (5)

The longitudinal strain of any fiber at distance 𝜁𝑖 from the center of
gravity of the 𝑖th layer is therefore

𝜖𝑖(𝑥, 𝜁𝑖, 𝑡) = 𝑒𝑖(𝑥, 𝑡) − 𝜁𝑖𝑤,𝑥𝑥(𝑥, 𝑡) = 𝑢(0)𝑖,𝑥 (𝑥, 𝑡) +
1
2
𝑤2
,𝑥(𝑥, 𝑡) +𝑤,𝑥(𝑥, 𝑡)𝑤̂,𝑥(𝑥)

− 𝜁𝑖𝑤,𝑥𝑥(𝑥, 𝑡) , 𝑖 = 1,… , 𝑛 (6)

It is moreover assumed that the stresses are in the linear elastic
range and thus Hooke’s law applies. Multiplying the strain 𝜖𝑖(𝑥, 𝜁𝑖, 𝑡)
by the Young’s modulus 𝐸𝑖 of the 𝑖th layer leads to the longitudinal
stresses in this layer. Then, the axial forces 𝑁𝑖 in the individual layers
are obtained by integrating these stresses layer by layer in combination
with Eqs. (5), (2) and (4) as follows,

𝑁𝑖 = 𝐸𝑖𝐴𝑖𝑒𝑖 = 𝐸𝑖𝐴𝑖
(

𝑢(0)𝑖,𝑥 +
1
2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

= 𝐸𝑖𝐴𝑖

(

𝑢(∞)
,𝑥 − 𝑧𝑖𝑤,𝑥𝑥 +

1
2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥 +

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

)

,

𝑖 = 1,… , 𝑛 (7)

ith the axial stiffness 𝐸𝑖𝐴𝑖 and the cross-sectional area of the 𝑖th
ayer. Accordingly, integration of the longitudinal stresses multiplied
y 𝜁𝑖 over the 𝑖-the cross-sectional area yields the layerwise bending
oment [34]

𝑖 = −𝐸𝑖𝐽𝑖𝑤,𝑥𝑥 , 𝑖 = 1,… , 𝑛 (8)

here 𝐸𝑖𝐽𝑖 is the bending stiffness and 𝐽𝑖 the area moment of inertia
bout the 𝜂𝑖-axis of the 𝑖th layer (compare with Fig. 1).

The interlaminar shear traction between the 𝑖th and the (𝑖 + 1)-th
ayer 𝑡𝑠𝑖 is assumed to be proportional to the corresponding interlayer
lip 𝛥𝑢𝑖,

𝑠𝑖 = 𝐾𝑠𝑖𝛥𝑢𝑖 , 𝑖 = 1,… , 𝑛 − 1 (9)

Once the kinematic relations and stress resultants have been estab-

ished, the next step is to apply at time 𝑡 conservation of momentum to
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Fig. 1. Immovably supported imperfect beam composed of four elastically bonded layers.
Fig. 2. Cross-section of a four-layer beam at 𝑥 in its initial (time 𝑡 = 0) and its deformed state (time 𝑡).
an infinitesimally small beam element in its deformed state as shown
in Fig. 3, to capture the effects of second order. In doing so, it is
assumed that the horizontal as well as the rotational inertia are very
small compared to the vertical inertia, and are thus neglected.

Consequently, the resulting beam theory yields reasonable results
only in the lower frequency range. The layerwise application of con-
servation of momentum in the 𝑥-direction therefore degenerates to the
following equilibrium conditions,

𝑁𝑖,𝑥 + 𝑡𝑠𝑖 − 𝑡𝑠𝑖−1 = 0 , 𝑖 = 1,… , 𝑛 , 𝑡𝑠0 = 0 , 𝑡𝑠𝑛 = 0 (10)

As common in second order analysis, instead of the horizontal forces
𝑆𝑖, 𝑖 = 1,… , 𝑛, the corresponding layerwise axial forces 𝑁𝑖, 𝑖 = 1,… , 𝑛,
have been used. Eqs. (10) represent the relation between the layerwise
axial forces and the shear tractions. Summing up these 𝑛 equations,
provides the equilibrium condition for the normal force 𝑁 in the entire
cross-section, compare with Fig. 3,

𝑁,𝑥 = 0 (11)

with

𝑁 =
𝑛
∑

𝑖=1
𝑁𝑖 (12)

The relationship Eq. (11) is equally found from the equilibrium of the
entire beam element in 𝑥-direction. It reveals that 𝑁 is constant along
the span 𝑙 but a function of the time 𝑡, i.e. 𝑁(𝑡). Since the external load
3

in the 𝑥-direction is zero, the normal force 𝑁 results from the strain in
the beam axis due to moderately large bending vibrations.

Conservation of momentum in vertical (𝑧-)direction results in the
following differential equation,

𝑇,𝑥 + 𝑝 = 𝜇𝑤̈ (13)

with 𝑇 denoting the transverse cross-sectional force and 𝜇 =
∑𝑛
𝑖=1 𝜌𝑖𝐴𝑖

the mass per unit length. (.̇) indicates the partial derivative of (.) with
respect to time 𝑡, and thus ẅ is the transverse acceleration. Next, con-
servation of momentum about the 𝑦-axis is applied to the infinitesimal
beam element in its deformed state, which gives

𝑀,𝑥 +𝑁
(

𝑤,𝑥 + 𝑤̂,𝑥
)

− 𝑇 = 0 (14)

because the rotational inertia has been omitted, as discussed above.
The overall bending moment 𝑀 is determined from the layerwise stress
resultants according to

𝑀 =
𝑛
∑

𝑖=1

(

𝑀𝑖 +𝑁𝑖𝑧𝑖
)

(15)

Finally, the two equations Eqs. (13) and (14) are transformed into a
single equation by differentiating Eq. (14) with respect to 𝑥 and then
inserting it into equation Eq. (13),

𝜇𝑤̈ −𝑀 −𝑁
(

𝑤 + 𝑤̂
)

= 𝑝 (16)
,𝑥𝑥 ,𝑥𝑥 ,𝑥𝑥
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Fig. 3. Free-body diagram of a deformed infinitesimal four-layer beam element at time 𝑡. First order (in red) and second order (in blue) internal forces.
. Boundary value problem

.1. Equations of motion

The response of the beam under consideration is fully determined
hen the deflection 𝑤, the interlayer slips 𝛥𝑢𝑖, 𝑖 = 1,… , 𝑛 − 1, as well
s the longitudinal displacement 𝑢(∞) and their spatial and temporal
erivatives are known. The boundary value problem for the beam
roblem at hand must therefore be formulated with these kinematic
ariables. The basis for the first set of solution equations are the
quilibrium conditions Eq. (10), in which the shear tractions 𝑡𝑠𝑖 are
eplaced by Eq. (9) and the layerwise normal forces 𝑁𝑖 by Eq. (7). This
eads to the following 𝑛 relationships,

𝑖𝐴𝑖
(

𝑢(∞)
,𝑥𝑥 − 𝑧𝑖𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 +

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥

−
𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥

)

+ 𝐾𝑠𝑖𝛥𝑢𝑖 −𝐾𝑠𝑖−1𝛥𝑢𝑖−1 = 0 , 𝑖 = 1,… , 𝑛 , 𝛥𝑢0 = 0 , 𝛥𝑢𝑛 = 0 (17)

Before the equation of motion can be established, the overall bend-
ng moment 𝑀 must be expressed as a function of the kinematic
ariables. This is achieved by substituting the layerwise cross-sectional
orces according to Eqs. (7) and (8) into Eq. (15),

(𝑥, 𝑡) = −𝐸𝐽∞𝑤,𝑥𝑥 +
𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖𝑧𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

))

(18)

ith

𝐽∞ = 𝐸𝐽0 +
𝑛
∑

𝑖=1
𝐸𝑖𝐴𝑖𝑧

2
𝑖 (19)

enoting the bending stiffness of the beam with rigidly bonded layers,
nd

𝐽0 =
𝑛
∑

𝑖=1
𝐸𝑖𝐽𝑖 (20)

he bending stiffness of the member without bond, i.e. 𝐾𝑠𝑖 = 0,
= 1,… , 𝑛 − 1. The bending moment presented in this manner is
4

ifferentiated twice with respect to 𝑥 and then inserted into Eq. (16).
This yields the equation of motion

𝜇𝑤̈ + 𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 −
𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖𝑧𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥𝑥

))

−𝑁
(

𝑤,𝑥𝑥 + 𝑤̂,𝑥𝑥
)

= 𝑝 (21)

The total normal force 𝑁 that appears in this equation is obtained by
substituting the 𝑛 layerwise normal forces 𝑁𝑖, 𝑖 = 1,… , 𝑛, according to
Eq. (7) in Eq. (12),

𝑁(𝑡) = 𝐸𝐴𝑒
(

𝑢(∞)
,𝑥 + 1

2
𝑤2
,𝑥+𝑤,𝑥𝑤̂,𝑥

)

+
𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥−

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

))

(22)

𝐸𝐴𝑒 =
𝑛
∑

𝑖=1
𝐸𝑖𝐴𝑖 (23)

Substituting 𝑁 in Eq. (11) by this expression yields another govern-
ing equation,

𝐸𝐴𝑒
(

𝑢(∞)
,𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

+
𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥𝑥

))

= 0 (24)

which can be used as an alternative to one of the 𝑛 Eqs. (17).

3.2. Boundary conditions

The solution of the coupled Eqs. (17) and (21) is obtained with the
boundary conditions that are provided below for three different types
of supports. In particular, hinged supports without shear restraints (re-
ferred to as soft-hinged supports), hinged supports with shear restraints
(referred to as hard-hinged supports) and rigidly clamped ends are
taken into account. Free ends are not considered, as in this case no
significant nonlinear membrane stresses develop in the member axis
with moderately large bending vibrations. Consequently, in a member
with a free end the geometrically linear and the geometrically nonlinear
response are almost identical.

For the three support conditions considered, both the deflection and
the horizontal displacement of the support point are constrained, i.e.

𝑤𝑏 = 0 (25)

𝑢(∞)
𝑏 = 0 (26)

The subscript 𝑏 indicates a boundary point (i.e. 𝑥 = 0 or 𝑥 = 𝑙).
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Soft-hinged support. For a hinged support the overall moment is zero,
.e. 𝑀𝑏 = 0. According to Eq. (18), therefore, the following relationship
etween the kinematic variables results at the boundary,

−𝐸𝐽∞𝑤,𝑥𝑥 +
𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖𝑧𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

)))

𝑏
= 0 (27)

Furthermore, at the boundary, the layerwise normal forces are zero
ith the exception of the 𝑚th layer in which the support is located,

𝑁𝑖)𝑏 = 0 , 𝑖 = 1,… , 𝑚 − 1, 𝑚 + 1,… , 𝑛 , (28)

nd further

𝑢(∞)
,𝑥 − 𝑧𝑖𝑤,𝑥𝑥 +

1
2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥 +

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

)

𝑏
= 0 ,

𝑖 = 1,… , 𝑚 − 1, 𝑚 + 1,… , 𝑛 (29)

n the 𝑚th layer, the overall normal force 𝑁 , which corresponds to the
orizontal support component, is imposed, and thus the normal force
n this layer 𝑁𝑚 is equal to the overall normal force 𝑁 ,

𝑁𝑚)𝑏 = 𝑁𝑏 , 𝑖 = 𝑚 (30)

r

𝐴𝑒
(

𝑢(∞)
,𝑥 + 1

2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑏
+

𝑛
∑

𝑖=1

(

𝐸𝑖𝐴𝑖
(

𝑖−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥 −

𝑚−1
∑

𝑗=1
𝛥𝑢𝑗,𝑥

))

𝑏

= 𝐸𝑚𝐴𝑚
(

𝑢(∞)
,𝑥 − 𝑧𝑚𝑤,𝑥𝑥 +

1
2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑏
, 𝑖 = 𝑚 (31)

ard-hinged support. With a hard-hinged end, the bending moment
anishes as with a soft-hinged support, thus the boundary condition
q. (27) applies. Moreover, in a hard-hinged support, the interlayer
lips are fully constrained by a rigid end plate,

𝛥𝑢𝑖)𝑏 = 0 , 𝑖 = 1,… , 𝑛 − 1 (32)

t such a boundary, the shear tractions are therefore also zero, (𝑡𝑠𝑖)𝑏 =
, 𝑖 = 1,… , 𝑛 − 1.

igidly clamped end. At a rigidly clamped end, the slope of the lateral
eflection is zero,

𝑤,𝑥)𝑏 = 0 (33)

dditionally, no interlayer slip can occur, which means that the bound-
ry condition Eq. (32) is also valid here.

.3. Three-layer beam with symmetric layer arrangement

In the following, the boundary value problem is specified for sym-
etrically layered beam consisting of three layers (i.e. 𝑛 = 3), where

oth geometry and material parameters of the two face layers are
dentical, i.e. 𝐸1𝐴1 = 𝐸3𝐴3, 𝐸1𝐽1 = 𝐸1𝐽3, 𝜌1 = 𝜌3, 𝑧1 = −𝑧3. The
lip modulus of the two interfaces is also supposed to be the same.
.e. 𝐾𝑠1 = 𝐾𝑠2. The beam axis thus coincides with the axis of the middle
ayer, i.e. 𝑢(∞) = 𝑢(0)2 and 𝑚 = 2. The deformation is governed by the
ollowing four kinematic variables: 𝑤, 𝑢(∞), 𝛥𝑢1, 𝛥𝑢2.

For this beam, the following three equations result from Eqs. (17),

1𝐴1

(

𝑢(∞)
,𝑥𝑥 − 𝑧1𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 −𝛥𝑢1,𝑥𝑥

)

+𝐾𝑠1𝛥𝑢1 = 0

(34)

2𝐴2

(

𝑢(∞)
,𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

+𝐾𝑠1(𝛥𝑢2 − 𝛥𝑢1) = 0 (35)

1𝐴1

(

𝑢(∞)
,𝑥𝑥 + 𝑧1𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 +𝛥𝑢2,𝑥𝑥

)

−𝐾𝑠1𝛥𝑢2 = 0

(36)
5

which couple all kinematic variables. Moreover, Eq. (24) becomes

𝐸𝐴𝑒
(

𝑢(∞)
,𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

+ 𝐸1𝐴1(𝛥𝑢2,𝑥𝑥 − 𝛥𝑢1,𝑥𝑥) = 0

(37)

In Eqs. (34)–(37) the four governing kinematic variables are coupled,
which is disadvantageous for the solution. When, on the one hand,
Eq. (36) is subtracted from Eq. (34) and, on the other hand, the two
Eqs. (34) and (36) are added and Eq. (37) is used to eliminate the
variables 𝑢(∞), 𝑤 and 𝑤̂, alternatively, two equations are obtained

ithout 𝑢(∞) and 𝑤̂,

𝑢2,𝑥𝑥 + 𝛥𝑢1,𝑥𝑥 −
𝐾𝑠1
𝐸1𝐴1

(𝛥𝑢2 + 𝛥𝑢1) + 2𝑧1𝑤,𝑥𝑥𝑥 = 0 (38)

𝑢2,𝑥𝑥 − 𝛥𝑢1,𝑥𝑥 − 𝜅2(𝛥𝑢2 − 𝛥𝑢1) = 0 , 𝜅 =
(

𝐸𝐴𝑒𝐾𝑠1
𝐸1𝐴1𝐸2𝐴2

)1∕2
(39)

The set of governing equations is completed by rewriting Eq. (21)
for the three-layered beam,

𝜇𝑤̈ + 𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 + 𝐸1𝐴1𝑧1(𝛥𝑢1,𝑥𝑥𝑥 + 𝛥𝑢2,𝑥𝑥𝑥) −𝑁
(

𝑤,𝑥𝑥 + 𝑤̂,𝑥𝑥
)

= 𝑝 (40)

where

𝑁(𝑡) =
𝐸𝐴𝑒
𝑙 ∫

𝑙

0

(

𝑢(∞)
,𝑥 + 1

2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑑𝑥 −
𝐸1𝐴1
𝑙 ∫

𝑙

0
(𝛥𝑢1,𝑥 − 𝛥𝑢2,𝑥)𝑑𝑥

(41)

Since the normal force is constant over the length 𝑙 (see Eq. (11)),
the representation of the normal force in the form of an integral
chosen above is more convenient for the solution of the boundary value
problem, see e.g. [33] for dynamic buckling analysis of homogeneous
beams.

Naturally, the two boundary conditions Eqs. (25) and (26) valid for
all considered support conditions do not change when the number of
layers is varied. However, due to the symmetrical layer arrangement,
the boundary conditions according to Eqs. (27) and (29) simplify
considerably for a soft-hinged support. Evaluating Eq. (29) for the first
and third layer, subtracting one of the equations from the other, and
substituting the resulting expression into Eq. (27), the following is
obtained,

(𝑤,𝑥𝑥)𝑏 = 0 (42)

nd further

𝛥𝑢1,𝑥 + 𝛥𝑢2,𝑥)𝑏 = 0 (43)

The fifth boundary condition for a soft-hinged end according to
q. (31) then becomes

𝛥𝑢2,𝑥 − 𝛥𝑢1,𝑥)𝑏 + 2
(

𝑢(∞)
,𝑥 + 1

2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

𝑏
= 0 (44)

With a hard-hinged support, according to Eq. (32)

(𝛥𝑢1)𝑏 = (𝛥𝑢2)𝑏 = 0 (45)

The vanishing of the overall moment further requires that (see Eq. (27))

(

−𝐸𝐽∞𝑤,𝑥𝑥 − 𝐸1𝐴1𝑧1(𝛥𝑢1,𝑥 + 𝛥𝑢2,𝑥)
)

𝑏
= 0 (46)

At a clamped end, the two boundary conditions Eq. (45) and the
oundary condition Eq. (33) apply to the three-layer beam.

.4. Two-layer beam

As a second important special case, an asymmetrically layered beam
onsisting of two layers is considered (i.e. 𝑛 = 2). It is assumed that the
eam axis is in the lower layer (i.e. 𝑚 = 2). The governing kinematic

(∞)
variables are the deflection 𝑤, the longitudinal displacement 𝑢 and
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the interlayer slip 𝛥𝑢1. For this configuration, from Eqs. (17) follow two
elations,

1𝐴1

(

𝑢(∞)
,𝑥𝑥 − 𝑧1𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥 −𝛥𝑢1,𝑥𝑥

)

+𝐾𝑠1𝛥𝑢1 = 0

(47)

𝐸2𝐴2

(

𝑢(∞)
,𝑥𝑥 − 𝑧2𝑤,𝑥𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

−𝐾𝑠1𝛥𝑢1 = 0 (48)

When the first of these equations is divided by 𝐸1𝐴1 and the second
by 𝐸2𝐴2, and then the second is subtracted from the first equation, the
following simpler relationship is obtained,

𝛥𝑢1,𝑥𝑥 − 𝜅2𝛥𝑢1 + (𝑧1 − 𝑧2)𝑤,𝑥𝑥𝑥 = 0 (49)

where neither the nonlinear terms nor the longitudinal displacement
𝑢(∞) are included. In addition to this equation, Eq. (24) specified for this
two-layer configuration is used to solve the boundary value problem,

𝐸𝐴𝑒
(

𝑢(∞)
,𝑥𝑥 +𝑤,𝑥𝑤,𝑥𝑥 +𝑤,𝑥𝑤̂,𝑥𝑥 +𝑤,𝑥𝑥𝑤̂,𝑥

)

− 𝐸1𝐴1𝛥𝑢1,𝑥𝑥 = 0 (50)

Rewriting Eq. (21) for the problem at hand finally provides the equa-
tion of motion,

𝜇𝑤̈ + 𝐸𝐽∞𝑤,𝑥𝑥𝑥𝑥 + 𝐸1𝐴1𝑧1𝛥𝑢1,𝑥𝑥𝑥 −𝑁
(

𝑤,𝑥𝑥 + 𝑤̂,𝑥𝑥
)

= 𝑝 (51)

with

𝑁(𝑡) = 𝐸𝐴𝑒
(

𝑢(∞)
,𝑥 + 1

2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥

)

− 𝐸1𝐴1𝛥𝑢1,𝑥 (52)

To solve this boundary value problem, four boundary conditions
ust be specified for each boundary. For all types of supports consid-

red, these are the two boundary conditions 𝑤𝑏 = 0 and 𝑢(∞)
𝑏 = 0 (see

qs. (25) and (26)).
For a soft-hinged support, the two remaining boundary conditions

riginate from Eqs. (27) and (29),

−𝐸𝐽∞𝑤,𝑥𝑥 − 𝐸1𝐴1𝑧1𝛥𝑢1,𝑥
)

𝑏
= 0 (53)

𝑢(∞)
,𝑥 − 𝑧1𝑤,𝑥𝑥 +

1
2
𝑤2
,𝑥 +𝑤,𝑥𝑤̂,𝑥 − 𝛥𝑢1,𝑥

)

𝑏
= 0 (54)

t should be noted that the boundary condition given in Eq. (31)
egenerates to the boundary condition Eq. (54).

For a hard-hinged support, the boundary condition Eq. (53) also
pplies. The fourth boundary condition results from Eq. (32),

𝛥𝑢1)𝑏 = 0 (55)

A clamped end requires the satisfaction of the two boundary condi-
ions Eqs. (33) and (55).

. Procedure of analysis

The Galerkin method [34] is used to solve the present boundary
alue problem. The deflection 𝑤(𝑥, 𝑡) is approximated by the Ritz
pproach

(𝑥, 𝑡) ≈ 𝑤∗(𝑥, 𝑡) =
𝐽
∑

𝑖=1
𝑌𝑖(𝑡)𝛷𝑖(𝑥) (56)

he 𝐽 shape functions 𝛷𝑖(𝑥) must satisfy the kinematic boundary
onditions in 𝑤 (i.e. Eqs. (25) and (33)), whereas the dynamic bound-
ry conditions (i.e. Eqs. (53) (two-layer beam) and (46) (three-layer
eam)) should be satisfied. In the case of a two-layer beam, the Ritz
pproach is inserted into Eqs. (49) and (50), which are then solved
or 𝑢(∞) and 𝛥𝑢1 as a function of the unknown 𝑌𝑖(𝑡) with the boundary
onditions Eqs. (53) and (54) (soft-hinged end), and Eqs. (53) and (55)
hard-hinged end and clamped end), respectively.

For the three-layer beam, the corresponding governing equations
qs. (38), (39) and (37) with the boundary conditions Eqs. (26),
43), (44) (soft-hinged end), and (26) and (45) (hard-hinged end and

(∞)
6

lamped end), respectively, are solved for 𝑢 , 𝛥𝑢1 and 𝛥𝑢2.
These variables are inserted into the expression for the normal
orce 𝑁(𝑡), which thus also becomes a function of 𝑌𝑖(𝑡), 𝑖 = 1,… , 𝐽 .
hen 𝑁(𝑡), as well as the corresponding derivatives with respect to
of 𝑤 and 𝛥𝑢1 (and 𝛥𝑢2) are inserted into the equation of motion

q. (51) (two-layer beam) or Eq. (40) (three-layer beam), respectively.
his equation is successively multiplied by the shape functions 𝛷𝑖,
= 1,… , 𝐽 , according to the Galerkin method [34] and integrated

ver the span 𝑙. In the case that the shape functions do not satisfy
he dynamic boundary conditions, the resulting work of the boundary
orces is to be added [34],

∫

𝑙

0

(

𝜇𝑤̈∗ + 𝐸𝐽∞𝑤∗
,𝑥𝑥𝑥𝑥 + 𝐸1𝐴1𝑧1𝛥𝑢

∗
1,𝑥𝑥𝑥 −𝑁

∗
(

𝑤∗
,𝑥𝑥 + 𝑤̂,𝑥𝑥

)

− 𝑝
)

𝛷𝑖𝑑𝑥

−𝑀∗
𝑏 (𝛷𝑖,𝑥)𝑏 + 𝑇

∗
𝑏 (𝛷𝑖)𝑏 = 0,

= 1,… , 𝐽 (57)

iven here as an example for the two-layer beam. The superscript ∗
enotes the quantities based on the Ritz approximation Eq. (56). By
artial integrating these equations twice with respect to 𝑥, the order
f the derivatives with respect to 𝑥 is reduced by two, but at the cost
f the negative work of the boundary forces when the shape functions
iolate the dynamic boundary conditions. However, these cancel out
ith the work of the boundary forces, thus yielding,

∫

𝑙

0

( (

𝐸𝐽∞𝑤
∗
,𝑥𝑥 + 𝐸1𝐴1𝑧1𝛥𝑢

∗
1,𝑥

)

𝛷𝑖,𝑥𝑥 +𝑁∗
(

𝑤∗
,𝑥 + 𝑤̂,𝑥

)

𝛷𝑖,𝑥

+
(

𝜇𝑤̈∗ − 𝑝
)

𝛷𝑖
)

𝑑𝑥 = 0 , 𝑖 = 1,… , 𝐽 (58)

he evaluation of the integrals yields 𝐽 ordinary nonlinear coupled
ifferential equations in 𝑌𝑖(𝑡), 𝑖 = 1,… , 𝐽 , which are solved for 𝑌𝑖(𝑡)
y numerical standard solvers.

. Application

.1. Soft-hinged supported symmetrically layered three-layer beam

As a first application example, a symmetrically layered three-layer
eam with interlayer slip is considered, whose response is governed
y the equations of motion specified in Section 3.3. The soft-hinged
upport requires the satisfaction of the boundary conditions Eqs. (25),
26), (42), (43) and (44). The eigenfunctions of the associated linear
eam with straight member axis, which are sinusoidal functions [14],
re used as shape functions for the Ritz approach Eq. (56),

𝑖(𝑥) = sin(𝜆𝑖𝑥) , 𝜆𝑖 =
𝑖𝜋
𝑙
, 𝑖 = 1,… , 𝐽 (59)

With these shape functions, the Ritz approach not only satisfies the
kinematic boundary conditions in 𝑤 Eq. (25) but also the dynamic
boundary conditions according to Eq. (42). The small initial deflection
of the beam is also represented as a sum of sine functions,

𝑤̂(𝑥) =
𝐽
∑

𝑖=1
𝑤̂(𝑖)

0 sin(𝜆𝑖𝑥) (60)

where however the corresponding amplitudes 𝑤̂(𝑖)
0 of the series elements

are known quantities.
As explained in Section 4, the Ritz approach Eq. (56) is inserted into

Eqs. (38), (39) and (37), which are then solved in combination with the
remaining boundary conditions Eqs. (42), (26) and (43) for 𝛥𝑢1, 𝛥𝑢2 and
𝑢(∞), and are now also a function of the generalized coordinates 𝑌𝑖(𝑡),
𝑖 = 1,… , 𝐽 ,

𝛥𝑢∗1(𝑥, 𝑡) =
𝐽
∑

𝑖=1
𝑌𝑖(𝑡)𝜆2𝑖

⎛

⎜

⎜

⎝

𝑑𝜆𝑖 cos
(

𝜆𝑖𝑥
)

𝜆2𝑖 +
𝐾𝑠1
𝐸1𝐴1

− 1
4
𝛽(𝑥)

(

𝑌𝑖(𝑡) + 2𝑤̂(𝑖)
0
)

⎞

⎟

⎟

⎠

(61)

𝛥𝑢∗2(𝑥, 𝑡) =
𝐽
∑

𝑌𝑖(𝑡)𝜆2𝑖
⎛

⎜

⎜

𝑑𝜆𝑖 cos
(

𝜆𝑖𝑥
)

𝜆2 + 𝐾𝑠1
+ 1

4
𝛽(𝑥)

(

𝑌𝑖(𝑡) + 2𝑤̂(𝑖)
0
)

⎞

⎟

⎟

(62)

𝑖=1

⎝ 𝑖 𝐸1𝐴1 ⎠
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𝑢(∞)∗(𝑥, 𝑡) = −1
4

𝐽
∑

𝑖=1

𝐽
∑

𝑗=1
𝜆𝑖𝜆𝑗

(

1
𝜆𝑗−𝑖 + 𝛿𝑗𝑖

sin
(

𝜆𝑗−𝑖𝑥
)

+ 1
𝜆𝑖+𝑗

sin
(

𝜆𝑖+𝑗𝑥
)

)

⋅
(

𝑌𝑖(𝑡)𝑌𝑗 (𝑡) + 𝑌𝑖(𝑡)𝑤̂
(𝑗)
0 + 𝑌𝑗 (𝑡)𝑤̂

(𝑖)
0

)

+
𝜃(𝑥)
4

𝐽
∑

𝑖=1
𝜆2𝑖 𝑌𝑖(𝑡)

(

𝑌𝑖(𝑡) + 2𝑤̂(𝑖)
0

)

(63)

with

𝛽(𝑥) =
𝐸𝐴𝑒𝑙 sinh

(

1
2𝜅 (𝑙 − 2𝑥)

)

4𝐸1𝐴1 sinh
(

𝜅𝑙
2

)

+ 𝐸2𝐴2𝜅𝑙 cosh
(

𝜅𝑙
2

) ,

𝜃(𝑥) =
2𝐸1𝐴1

(

(𝑙 − 2𝑥) sinh
(

𝜅𝑙
2

)

− 𝑙 sinh
(

1
2𝜅 (𝑙 − 2𝑥)

))

4𝐸1𝐴1 sinh
(

𝜅𝑙
2

)

+ 𝐸2𝐴2𝜅𝑙 cosh
(

𝜅𝑙
2

) (64)

and 𝛿𝑖𝑘 denotes the Kronecker delta. Substituting the expressions 𝑤∗,
𝛥𝑢∗1 and 𝛥𝑢∗2 into Eq. (41) leads to the normal force as a function of
𝑌𝑖(𝑡),

𝑁∗(𝑡) =
𝜓
4

𝐽
∑

𝑖=1
𝑌𝑖(𝑡)𝜆2𝑖

(

𝑌𝑖(𝑡) + 2𝑤̂(𝑖)
0
)

,

𝜓 =
𝐸𝐴𝑒𝐸2𝐴2𝜅𝑙 cosh

(

𝜅𝑙
2

)

4𝐸1𝐴1 sinh
(

𝜅𝑙
2

)

+ 𝐸2𝐴2𝜅𝑙 cosh
(

𝜅𝑙
2

) (65)

By applying the Galerkin method Eq. (58), eventually the 𝐽 cou-
pled ordinary differential equations for the time-dependent generalized
coordinates are obtained,

𝑌𝑖 +
𝜓𝜆2𝑖
4𝜇

(

𝑌𝑖 + 𝑤̂
(𝑖)
0

)

𝐽
∑

𝑗=1
𝜆2𝑗𝑌𝑗

(

𝑌𝑗 + 2𝑤̂(𝑗)
0

)

+ 𝜔̄2
𝑖 𝑌𝑖 =

2
𝜇𝑙
𝑃𝑖 , 𝑖 = 1,… , 𝐽

(66)

where 𝜔̄𝑖 denotes the 𝑖th natural angular frequency of the correspond-
ng linear beam with interlayer slip and straight member axis [14,15],

𝜔̄𝑖 =
⎛

⎜

⎜

⎝

1
𝜇
𝜆4𝑖

(

𝜆2𝑖 + 𝛼
2)

(

𝛼2

𝐸𝐽∞
+

𝜆2𝑖
𝐸𝐽0

)−1
⎞

⎟

⎟

⎠

1∕2

, 𝑖 = 1, 2, 3,… (67)

𝛼 =
(

𝐸𝐽∞𝐾𝑠1
𝐸1𝐴1𝐸𝐽0

)1∕2
(68)

nd

𝑖(𝑡) = ∫

𝑙

0
𝛷𝑖(𝑥)𝑝(𝑥, 𝑡)𝑑𝑥 , 𝑖 = 1,… , 𝐽 (69)

The second term of Eqs. (66) combines the quadratic and cubic
onlinearities of the present problem. The quadratic nonlinearities are
olely due to the initial deflection, which disappear when the initial
eflection is zero.

If these nonlinear terms are omitted, the remaining equations de-
cribe the vibration response of the slightly curved beam with interlayer
lip in the linear case, i.e., for small amplitude vibrations. As can be
een, for a general initial deflection, the equations are also coupled
n the linear case. However, if the initial deflection is proportional to

series member of the Ritz approach Eq. (59) (sinusoidal function):
̂ (𝑥) ∼ 𝛷𝑖(𝑥), then the linear coupling elements disappear, and Eqs. (66)
egenerate to a set of modal equations. Therefore, for moderately large
ibrations of the considered slightly curved three-layer beams, where
he initial deflection is proportional to a sinusoidal function,

̂ (𝑥) = 𝑤̂(𝑘)
0 𝛷𝑘(𝑥) , 𝑘 ∈ N+ (70)

qs. (66) become

̈𝑖 +
𝜓𝜆2𝑖
4𝜇

(

(

𝑌𝑖 + 𝑤̂
(𝑘)
0 𝛿𝑖𝑘

)

𝐽
∑

𝑗=1
𝜆2𝑗𝑌

2
𝑗 + 2𝜆2𝑘𝑌𝑖𝑌𝑘𝑤̂

(𝑘)
0

)

+ 𝜔2
𝑖 𝑌𝑖 =

2
𝜇𝑙
𝑃𝑖 ,

𝑖 = 1,… , 𝐽 (71)
7

hich are coupled only through the nonlinear terms, and

𝑖 =
⎛

⎜

⎜

⎝

1
𝜇
𝜆4𝑖

(

𝜆2𝑖 + 𝛼
2)

(

𝛼2

𝐸𝐽∞
+

𝜆2𝑖
𝐸𝐽0

)−1

+ 1
2𝜇
𝜓𝜆4𝑘

(

𝑤̂(𝑘)
0

)2
𝛿𝑖𝑘

⎞

⎟

⎟

⎠

1∕2

(72)

is the 𝑖th natural angular frequency of the soft hinged supported
sinusoidally slightly curved three-layer beam with interlayer slip. Since
there are no linear coupling terms in these equations, in an engineer-
ing approximation, damping can be accounted for by simply adding
damping ‘‘modally’’ [32],

𝑌𝑖 +
𝜓𝜆2𝑖
4𝜇

(

(

𝑌𝑖 + 𝑤̂
(𝑘)
0 𝛿𝑖𝑘

)

𝐽
∑

𝑗=1
𝜆2𝑗𝑌

2
𝑗 + 2𝜆2𝑘𝑌𝑖𝑌𝑘𝑤̂

(𝑘)
0

)

+ 2𝜁1𝜔𝑖𝑌̇𝑖 + 𝜔2
𝑖 𝑌𝑖

= 2
𝜇𝑙
𝑃𝑖 , 𝑖 = 1,… , 𝐽 (73)

Example problems. As a first application example, the dynamic response
of a three-layer beam with rectangular cross-section with layer thick-
nesses ℎ1 = ℎ3 = 0.01 m, ℎ2 = 0.0102 m, width 𝑏 = 0.1 m and
pan 𝑙 = 1.0 m is analyzed. The initial deflection against the positive
-coordinate in the form of a sine half-wave, 𝑤̂(𝑥) = 𝑤̂(1)

0 sin(𝜆1𝑥)
(Eq. (60)), has an amplitude of 1 cm (𝑤̂(1)

0 = −0.01 m), i.e. 1% of the
span 𝑙. The Young’s modulus of the top and bottom layers is 𝐸1 = 𝐸3 =
.0⋅1010 N/m2, seven times that of the central layer 𝐸2 = 1.0⋅1010 N/m2.
he slip modulus is 𝐾𝑠1 = 𝐾𝑠2 = 1.0 ⋅ 109 N/m2. Thus, the product of
he layer interaction parameter 𝛼 given by Eq. (68) and the span 𝑙 is
𝑙 = 13.3, which corresponds to a moderate interaction of the layers [3].
he density of the top layers is 𝜌1 = 𝜌3 = 2700 kg/m3 and of the middle

ayer 𝜌2 = 1000 kg/m3. The member is excited to vibration by a time-
armonic load that is half-sine wave distributed over the span 𝑙, applied
o the beam at rest at time 𝑡 = 0,

(𝑥, 𝑡) = 𝑝0 sin
(𝜋𝑥
𝑙

)

sin(𝜈𝑡) (74)

The excitation angular frequency 𝜈 is 1.1 times the fundamental angular
frequency 𝜔1 of the corresponding linear beam with the same initial
deflection, i.e. 𝜈 = 1.1𝜔1, and a loading amplitude of 𝑝0 = 4.0 ⋅ 103 N/m
is chosen.

Since the distribution of load over the beam length is proportional
to the first member of the Ritz approach, only the first generalized load
𝑃1 is non-zero according to Eq. (69),

𝑃1 =
𝑝0𝑙
2

sin(𝜈𝑡) (75)

hile all other generalized loads are zero, i.e. 𝑃𝑖 = 0 ∀ 𝑖 > 1. Therefore,
nly the first generalized coordinate 𝑌1 is included for the response
nalysis, and Eq. (71) becomes

̈1 +
𝜓𝜆41
4𝜇

(

𝑌 3
1 + 3𝑌 2

1 𝑤̂
(1)
0

)

+ 2𝜁1𝜔1𝑌̇1 + 𝜔2
1𝑌1 =

2
𝜇𝑙
𝑃1 (76)

The other generalized coordinates 𝑌𝑖 ∀ 𝑖 > 1 are not excited. Accord-
ingly, the discretized system has one degree of freedom. Evaluating (72)
yields the fundamental frequency of the corresponding linear slightly
curved beam as 𝜔1 = 431.96 rad/s.

Prior to a more detailed numerical study, the result of the pro-
posed beam theory is compared with the outcome of a more sophis-
ticated finite element (FE) analysis based on the assumption of a plane
stress state. The FE analysis performed with the software suite Abaqus
v. 2016 [35] does not need the Euler–Bernoulli hypothesis and is
therefore of higher accuracy than the beam theory. In the FE model,
two very thin cohesive zones with a thickness of 0.1 mm (i.e. ℎ1∕100)
represent the two interlayers. To ensure that the total height of the
member is the same as the beam, the height of the middle layer is
reduced by the thickness of the two cohesive zones (i.e. ℎ2 = 0.01 m).
The cohesive zones are discretized with linear cohesive elements having
four nodes per element. The tangential stiffness of these elements cor-
responds to the slip modulus 𝐾𝑠1, the normal stiffness is set 10, 000𝐾𝑠1

as this quantity is infinite in the beam model. Quadrilateral plane
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p
b

Fig. 4. Time history of the normalized kinematic variables at specified location (left column) and their distribution along the beam axis at a given time instant (right column):
(a,b) deflection, (c,d) longitudinal displacement of the central axis, (e,f) upper interlayer slip, (g,h) lower interlayer slip. Three-layer beam.
𝑢
d
p
u

continuum elements with eight nodes are used for the three layers.
The soft-hinged supports are simulated in the FE model by means of
a kinematic coupling of the outer surfaces of the central layer at an
additional node. The FE model has 48,118 degrees of freedom, which
is a multiple of the 𝐽 = 1 degree of freedom of the beam theory
resented. For the examination of the beam theory, the undamped
eam is considered, i.e. 𝜁1 = 0. The computation time of the FE analysis

was about 175.5 min, compared to less than 2 s to find the solution of
8

a

the presented beam theory (i.e. Eq. (76)) in Mathematica v. 12.3.1 [36]
on the same computer with an 8-core Intel Xeon W processor.

The left column of Fig. 4 shows the kinematic variables 𝑤(𝑥 = 0.5𝑙),
(∞)(𝑥 = 0.08𝑙), 𝛥𝑢1(𝑥 = 0), and 𝛥𝑢2(𝑥 = 0) as a function of the non-
imensional time 𝑡∕𝑇 (𝑟𝑒𝑓 )

1 , where 𝑇 (𝑟𝑒𝑓 )
1 = 2𝜋∕𝜔1 is the fundamental

eriod of the corresponding linear slightly curved beam. The right col-
mn shows the distribution of these response variables along the span
t time 𝑡∕𝑇 (𝑟𝑒𝑓 ) = 4.421. These kinematic variables have been plotted in
1
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non-dimensional form by dividing by the corresponding reference solu-
tion. In this example, the static response quantities of the geometrically
linear slightly curved beam due to loading 𝑝0 sin

(

𝜋𝑥
𝑙

)

were chosen as
the reference solution (denoted by the superscript ‘‘(𝑟𝑒𝑓 )’’ and subscript
‘‘𝑆’’). The non-dimensional geometrically nonlinear deflection of the
slightly curved beam at midspan depicted in Fig. 4(a) with a black solid
line, as a result of the beam theory presented, shows the typical beat
phenomenon when excited harmonically close to a natural frequency.
Its maximum value in the considered time window is reached at 𝑡∕𝑇1 =
4.79. Moreover, this figure illustrates that the nonlinear deflection
from the beam theory and from the FE analysis (dashed red line with
markers) are virtually identical. This excellent agreement is confirmed
by the plot Fig. 4(b), which shows at 𝑡∕𝑇1 = 4.421 the distribution
f the normalized deflection over the beam length. Comparison with
he deflection of the geometrically nonlinear beam with straight beam
xis (𝑤̂0 = 0) (blue solid line) illustrates the influence of the small
nitial deflection of 𝑤̂0 = 1% of the beam length on the response. In
ddition, the geometrically linear response of the slightly curved beam
i.e. the geometric nonlinearities are neglected in the analysis) is also
hown with a solid red line, proving how essential it is to consider the
eometrically nonlinear terms in the analysis.

Also the non-dimensional longitudinal displacement of the cen-
ral axis 𝑢(∞)(𝑟𝑒𝑓 )∕𝑢(∞)

𝑠 (Fig. 4(c,d)) as well as the non-dimensional
pper interlayer slip 𝛥𝑢1∕𝛥𝑢

(𝑟𝑒𝑓 )
1 and lower interlayer slip 𝛥𝑢2∕𝛥𝑢

(𝑟𝑒𝑓 )
2

Fig. 4(e,f,g,h)) confirm for this example the accuracy of the presented
onlinear beam theory compared to the higher order FE solution,
nd illustrate once again the importance of taking into account the
nitial deflection in the context of a geometrically nonlinear theory.
he difference of the lower interlayer slip from the geometrically
onlinear (black solid line) and the geometrically linear (solid red line)
eam theory is particularly large. While in the geometrically nonlinear
ase the maximum value of 𝛥𝑢2/𝛥𝑢

(𝑟𝑒𝑓 )
2 at the left support (𝑥 = 0)

n the observation period is about 110, in the geometrically linear
lightly curved member it is about 10. This clearly demonstrates that
he linear beam theory cannot estimate this response variable neither
ualitatively nor quantitatively.

Fig. 5 shows selected internal forces for this example problem.
n particular, Fig. 5(a) shows the overall normal force 𝑁 of the

slightly curved geometrically nonlinear beam, the geometrically non-
linear beam with straight axis, and the slightly curved linear beam,
divided by the overall normal force 𝑁 (𝑟𝑒𝑓 )

𝑆 of geometrically linear
beam with initial deflection under static load. While only tension is
induced in the straight beam throughout the considered time win-
dow, the normal force also assumes a negative sign in the slightly
curved geometrically nonlinear beam. However, the amplitudes of the
compressive normal force are less than 10% of the maximum tensile
normal force. To the right, Fig. 5(b) shows the distribution of the
overall normal force 𝑁∕𝑁 (𝑟𝑒𝑓 )

𝑆 as well as the layerwise normal forces
𝑁1(0.5𝑙)∕𝑁

(𝑟𝑒𝑓 )
𝑆 , 𝑁2(0.5𝑙)∕𝑁

(𝑟𝑒𝑓 )
𝑆 and 𝑁3(0.5𝑙)∕𝑁

(𝑟𝑒𝑓 )
𝑆 of the geometri-

cally nonlinear beam with initial deflection over the span 𝑙 at time
𝑡∕𝑇1 = 4.421. It can be seen that at the two supports, the overall normal
force is transferred into the middle layer, which is redistributed to the
two outer layers in the interior of the beam. In Fig. 5(c), the time
history of the overall normalized moment 𝑀(0.5𝑙)∕𝑀 (𝑟𝑒𝑓 )

𝑆 (0.5𝑙) in the
beam center is also shown for the three cases described above. Fig. 5(d)
depicts the distribution of the overall moment 𝑀(0.5𝑙)∕𝑀 (𝑟𝑒𝑓 )

𝑆 (0.5𝑙)
as well as the layerwise bending moments 𝑀1(0.5𝑙)∕𝑀

(𝑟𝑒𝑓 )
𝑆 (0.5𝑙),

𝑀2(0.5𝑙)∕𝑀
(𝑟𝑒𝑓 )
𝑆 (0.5𝑙) and 𝑀3(0.5𝑙)∕𝑀

(𝑟𝑒𝑓 )
𝑆 (0.5𝑙) of the slightly curved

geometrically nonlinear beam over the span 𝑙 at the considered time
instant.

After the validation of the beam theory in the first example prob-
lem, the influence of the initial deflection on the response of the
considered beam with interlayer slip is examined from a more global
9

perspective. To this end, in the range of the fundamental frequency, the
frequency response functions of this beam with different initial deflec-
tion amplitudes is computed for 𝑤̂0 equal to 0,−0.01,−0.02 and −0.03,
respectively. That is, the initial deflection varies between 0 and 3%
of the span. In contrast to the previous example, modal damping with
𝜁1 = 5% is taken into account. All other parameters as well as the load
remain unchanged. To determine the frequency response functions, the
beam is excited with a certain excitation frequency 𝜈 until the steady
state is reached. Afterwards a new simulation is performed with a step-
wise change in excitation frequency, using the modal displacement and
modal velocity of the last time step of the previous simulation as initial
conditions. Eventually, the response amplitude of the steady state is
plotted as a function of the excitation frequency 𝜈. In the case that two
different stable response amplitudes exist for one excitation frequency,
a first analysis with successively incrementally increased excitation
frequency (to determine the upper stable response branch) and a second
analysis with successively incrementally decreased excitation frequency
(to determine the smaller stable response branch) is performed.

Fig. 6(a) shows the frequency response functions of the deflection 𝑤
at 𝑥 = 𝑙∕2 for the beam with the four different initial deflections. The
excitation frequency 𝜈 is normalized with the fundamental frequency of
the linear beam with the initial deflection amplitude of 𝑤̂0∕𝑙 = −0.01
(referred to as 𝜔(𝑟𝑒𝑓 )

1 ), the maximum deflection is normalized with the
linear static deflection 𝑤(𝑟𝑒𝑓 )

𝑆 of this member due to the load 𝑝0 sin
(

𝜋𝑥
𝑙

)

.
The first striking feature is the clear influence of the small initial
deflection on the fundamental frequency of the corresponding linear
beam, which increases with increasing initial curvature. As a result,
the maximum response shifts to the right. Furthermore, it can be seen
that the straight beam as well as the beam with the initial deflection of
𝑤̂0∕𝑙 = −0.01 show a stiffening response, i.e. the amplitude frequency
response ‘‘bends’’ to the right. In these two cases, three solutions exist
in the region of the response maximum at each frequency, of which
the two stable branches are shown. Another characteristic feature of
the nonlinear response is the influence of the subharmonic at 𝜈 = 𝜔1∕2
y a local maximum in the frequency response function. This influence
s most pronounced for the beam with 𝑤̂0∕𝑙 = −0.01. With increasing
nitial curvature, the response changes from a stiffening system to

softening system. The latter is characterized by a ‘‘slope’’ of the
requency response function to the left. As the effective stiffness of the
eam increases with increasing 𝑤̂0∕𝑙, the geometrically nonlinear static
eflection (i.e. 𝜈∕𝜔(𝑟𝑒𝑓 )

1 = 0) decreases simultaneously. In contrast,
however, in the present problem the maximum dynamic deflection
occurs in the beam with the initial deflection 𝑤̂0∕𝑙 = −0.01 and not
n the straight beam.

The other plots in Fig. 6 show the normalized frequency response
unctions for the longitudinal displacement of the beam axis
(∞)∕𝑢(∞)(𝑟𝑒𝑓 )

𝑆 at 𝑥 = 0.08𝑙, as well as for the upper and lower inter-
layer slip 𝛥𝑢1∕𝛥𝑢

(𝑟𝑒𝑓 )
1𝑆 and 𝛥𝑢2∕𝛥𝑢

(𝑟𝑒𝑓 )
2𝑆 , respectively, at the left support.

The same kinematic variables of the statically loaded corresponding
geometrically linear beam with the initial curvature amplitude 𝑤̂0∕𝑙 =
−0.01 serve as reference variables for the normalization. It is remark-
able that for the lower interlayer slip the dynamic amplification is much
larger (up to 60 for the case with 𝑤̂0∕𝑙 = −0.01) than for the other
kinematic variables.

Next, the effect of load amplitude 𝑝0 on the vibration response of
the beam with an initial deflection of 𝑤̂0∕𝑙 = −0.01 is investigated. In
addition to the reference load of 𝑝0 = 𝑝𝑟𝑒𝑓 = 4000 N∕m, the amplitude
frequency responses are derived for loads 𝑝0 = 2𝑝𝑟𝑒𝑓 , 𝑝0 = 0.5𝑝𝑟𝑒𝑓 ,
and 𝑝0 = 0.25𝑝𝑟𝑒𝑓 . The steady state response amplitudes (e.g. the
deflection max|𝑤(0.5𝑙)| due to 𝑝0 = 0.5𝑝𝑟𝑒𝑓 ) are normalized with the
corresponding linear static response of the member (i.e., the nonlinear-
ities are neglected) due to the same load amplitude (here the deflection
𝑤(𝑟𝑒𝑓 ,𝑖)
𝑆 (0.5𝑙) due to 𝑝0 = 0.5𝑝𝑟𝑒𝑓 ). Fig. 7 shows these frequency response

functions for the four kinematic variables considered. For smallest load
of 𝑝0 = 0.25𝑝𝑟𝑒𝑓 , the nonlinear deflection shown in Fig. 7(a) deviates
only slightly from the linear deflection plotted with a dotted line.



Composite Structures 299 (2022) 116013C. Adam et al.
Fig. 5. Time history of the normalized internal forces (left) and their distribution along the beam axis at a given time instant (right). (a,b) axial forces, (c,d) bending moments.
Three-layer beam.
Fig. 6. Frequency response function of the normalized (a) deflection at midspan, (b) longitudinal displacement at 𝑥 = 0.08𝑙, (c) upper interlayer slip at 𝑥 = 0, (d) lower interlayer
slip at 𝑥 = 0. Variation of the initial deflection. Three-layer beam.
That is, the maximum value of the frequency response function with
a nonlinear analysis is about 10% larger than with a linear analysis. As
expected, with increasing load amplitude, the nonlinearities have an
increasing influence on the maximum deflection. While the maximum
10
value of the frequency deflection function for the largest load 𝑝0 =
2𝑝𝑟𝑒𝑓 is smaller than for the other loads, this maximum value for the
three other normalized kinematic variables 𝑢(∞)(0.08𝑙)∕𝑢(∞)(𝑟𝑒𝑓 ,𝑖)

𝑆 (0.08𝑙),
𝛥𝑢1(0)∕𝛥𝑢

(𝑟𝑒𝑓 ,𝑖)(0) and 𝛥𝑢2(0)∕𝛥𝑢
(𝑟𝑒𝑓 ,𝑖)(0) is observed at the largest load
1𝑆 2𝑆
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f
i

Fig. 7. Frequency response function of the normalized (a) deflection at midspan, (b) longitudinal displacement at 𝑥 = 0.08𝑙, (c) upper interlayer slip at 𝑥 = 0, (d) lower interlayer
slip at 𝑥 = 0. Variation of the load amplitude. Three-layer beam.
Fig. 8. Frequency response function of the normalized (a) deflection at midspan, (b) longitudinal displacement at 𝑥 = 0.08𝑙, (c) upper interlayer slip at 𝑥 = 0, (d) lower interlayer
slip at 𝑥 = 0. Variation of the interlayer stiffness. Three-layer beam.
𝑝0 = 2𝑝𝑟𝑒𝑓 , as shown in Fig. 7(b,c,d). The influence of the load
amplitude on 𝛥𝑢2(0)∕𝛥𝑢

(𝑟𝑒𝑓 ,𝑖)
2𝑆 (0) is particularly large, c.f. Fig. 7(d). Here,

or 𝑝0 = 𝑝𝑟𝑒𝑓 the maximum dynamic magnification is about 74, while
n the linear case it is only about 10.
11
Finally, the influence of stiffness of the interlayer bonding on the
beam with the initial deflection of 𝑤̂0∕𝑙 = −0.01 subjected the reference
load of 𝑝0 = 𝑝𝑟𝑒𝑓 is investigated. In Fig. 8 the frequency response
functions of the beam with slip modulus of 𝐾𝑠1 = 𝐾𝑠2 = 1.0 ⋅ 109 N/m2
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o

Fig. 9. Time history of the normalized kinematic variables at specified location (left column) and their distribution along the beam axis at a given time instant (right column):
(a,b) deflection, (c,d) longitudinal displacement of the central axis, (e,f) interlayer slip. Two-layer beam.
(𝛼𝑙 = 13.3) is compared with those of the beam with infinite slip
modulus (𝛼𝑙 = ∞) and with those of the beam without connection of
the two layers (𝛼𝑙 = 0). For normalization, the linear static response
f the beam with 𝛼𝑙 = 13.3 is used for three beams in this example.

The graphs of this figure impressively show the effect of the interlayer
bonding on the fundamental frequency, which shifts to the left as
interlayer stiffness increases, and on the nonlinear dynamic response,
which increases as the slip modulus decreases. The interlayer slip is
clearly zero at infinite interlayer stiffness, see Fig. 8(c,d).

5.2. Two-layer beam clamped at the left end and soft-hinged supported at
the right end

In contrast to the three-layer symmetrically laminated beam, for
the two-layer beam on a soft-hinged support the dynamic boundary
conditions of the geometrically linear beam and the geometrically
nonlinear beam are different. While in the case of the geometrically
nonlinear beam the deflection 𝑤 and the interlayer slip 𝛥𝑢1 are coupled
at the support through Eqs. (53) and (54), these two quantities are
decoupled in the linear case (i.e., (𝑤,𝑥𝑥)𝑏 = (𝛥𝑢1,𝑥)𝑏 = 0). Consequently,
if the eigenfunctions of the linear beam were used as shape functions in
12
the Ritz approach Eq. (56) for the analysis of the nonlinear response of
the slightly curved nonlinear beam, the boundary conditions Eqs. (53)
and (54) cannot be satisfied. Therefore, for the asymmetrically lay-
ered beam, polynomials 𝛷𝑗 (𝑥) are used as shape functions in the Ritz
approach Eq. (56) [37],

𝑤(𝑥, 𝑡) ≈ 𝑤∗(𝑥, 𝑡) =
𝐽
∑

𝑖=𝑖𝑎

𝑌𝑖(𝑡)𝛷𝑖(𝑥) , 𝛷𝑖(𝑥) =
(𝑥
𝑙

)𝑖 (
1 − 𝑥

𝑙

)𝑖𝑏
(77)

The lower value of the sum 𝑖𝑎 depends on the geometric boundary
conditions in the deflection 𝑤 that must be satisfied at 𝑥 = 0, and the
exponent 𝑖𝑏 depends on the geometric boundary conditions 𝑤 that must
be satisfied at 𝑥 = 𝑙, as follows [37],

soft-hinged support, hard-hinged support at 𝑥 = 0 ∶ 𝑖𝑎 = 1

at 𝑥 = 𝑙 ∶ 𝑖𝑏 = 1 (78)
clamped end at 𝑥 = 0 ∶ 𝑖𝑎 = 2

at 𝑥 = 𝑙 ∶ 𝑖𝑏 = 2 (79)

With a beam clamped at 𝑥 = 0, the two geometric boundary conditions
𝑤(0) = 𝑤,𝑥(0) = 0 must be satisfied, and thus 𝑖𝑎 = 2. With a hinged

support at 𝑥 = 0 with 𝑤(0) = 0, 𝑖𝑎 = 1. For the sake of completeness, it
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Fig. 10. Time history of the normalized internal forces (left) and their distribution along the beam axis at a given time instant (right). (a,b) axial forces, (c,d) bending moments.
wo-layer beam.
hould be mentioned that for a free end the parameters would have to
e chosen as follows: 𝑥 = 0 ∶ 𝑖𝑎 = 0; 𝑥 = 𝑙 ∶ 𝑖𝑏 = 0. However, a free
nd is not considered here for reasons already discussed.

Now the procedure described in Section 4 can be applied. Solving
he Eqs. (49) and (50) in combination with the actual boundary condi-
ions specified in Section 3.4 with the Ritz approach Eq. (77) employed
ields analytical expressions for 𝛥𝑢1 and 𝑢(∞) (now denoted as 𝛥𝑢∗1(𝑥, 𝑡)
nd 𝑢(∞)∗(𝑥, 𝑡)) as a function of the generalized coordinates 𝑌𝑖(𝑡), 𝑖 =
𝑎,… , 𝐽 , with linear, quadratic and mixed quadratic dependence. Sub-
equent 𝐽 − 𝑖𝑎+1 times evaluation of Galerkin’s rule Eq. (58) leads to a
et of 𝐽−𝑖𝑎+1 ordinary nonlinear coupled differential equations for the
eneralized coordinates 𝑌𝑖(𝑡) with linear, quadratic, mixed-quadratic,
ubic, and mixed-cubic dependencies. This set of nonlinear generalized
ibration equations is solved numerically, and inserting the obtained
𝑖(𝑡) in 𝑤∗(𝑥, 𝑡), 𝛥𝑢∗1(𝑥, 𝑡) and 𝑢(∞)∗(𝑥, 𝑡) leads to the approximation of
he vibration response of the beam problem at hand. It should be noted
ere that as the number of 𝐽 − 𝑖𝑎 + 1 series members in Eq. (77)
ncreases not only the accuracy of the kinematic response but also the
ynamic boundary conditions are better approximated. The analytical
nd numerical computations described here were performed for the
ubsequently presented example problem with the software package
athematica [36].

xample problem. The considered two-layer beam with rectangular
ross-section and length 𝑙 = 1.0 m is clamped on the left end and
oft-hinged immovably supported on the right end. The upper layer
ith dimensions ℎ1 = 0.004 m and 𝑏1 = 0.1 m has Young’s modulus
1 = 7.0 ⋅ 1010 N/m2 and density 𝜌1 = 2700 kg/m3, for the lower layer
ith dimensions ℎ2 = 0.026 m and 𝑏2 = 0.1 m, these quantities are
2 = 1.0 ⋅ 1010 N/m2 and 𝜌2 = 1000 kg/m3. The interlayer stiffness is
𝑠1 = 1.0 ⋅ 109 N/m2. Thus, the layer interaction parameter 𝛼 for the

two-layer beam [3],

𝛼 =
(

𝐾𝑠1

(

𝐸𝐴𝑒 +
(ℎ1∕2 + ℎ2∕2)2

))1∕2

(80)
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𝐸1𝐴1𝐸2𝐴2 𝐸𝐽0
times span 𝑙 is 𝛼𝑙 = 15.0. The beam is slightly curved against the positive
𝑧-direction according to a half-sine wave with amplitude 𝑤̂0∕𝑙 = −0.03,
i.e. 3% of the span. Its fundamental frequency is 𝜔1 = 841.4 rad/s. At
time 𝑡 = 0 a time-harmonic load equally distributed over the beam
is applied: 𝑝(𝑥, 𝑡) = 𝑝0 sin(𝜈𝑡). The load amplitude is 𝑝0 = 6000 N/m,
the excitation frequency 𝜈 1.15 times the fundamental frequency: 𝜈 =
1.15𝜔1. For predicting the vibration response with the presented beam
theory, 𝐽 = 9 shape functions are used; this number was found to be
appropriate by a convergence study.

To validate the nonlinear beam theory, the response of this member
is also determined with an FE analysis in Abaqus v. 2016 [35] based
on a plane stress state. As for the example of the three-layer beam
presented earlier, in the FE model the interlayer is discretized by
cohesive elements with thickness 0.0001 m. Thus, the height of the
lower layer ℎ2 is reduced by this amount (i.e., ℎ2 = 0.026 m) to keep
the total height of the beam the same. For further details compare
with the description of the three-layer beam example. The FE model
has approximately 34,910 degrees of freedom, in contrast to the beam
model with 8 degrees of freedom (since 𝐽 = 9 and 𝑖𝑎 = 2). Also in
this example, the computation time for the beam solution was orders
of magnitude faster than for the FE analysis.

In the following figures the response is again shown
non-dimensionally. For normalization, the corresponding static re-
sponse variable of the geometrically linear slightly curved beam sub-
jected to the load 𝑝 = 𝑝0 is used. In the left column of Fig. 9,
non-dimensional deflection at beam center, longitudinal displacement
of the central axis at location 𝑥∕𝑙 = 0.8, and interlayer slip at the
right end of the beam are shown as a function of dimensionless time
𝑡∕𝑇 (𝑟𝑒𝑓 )

1 , where 𝑇 (𝑟𝑒𝑓 )
1 = 2𝜋∕𝜔1 denotes the fundamental period of

the slightly curved beam. At time 𝑡∕𝑇 (𝑟𝑒𝑓 )
1 = 2.410, the right column

displays the distribution of these kinematic response quantities along
the beam axis 𝑥∕𝑙. The comparison of the solution of the presented
beam theory illustrated with a black line with the FE solution (dashed
line with markers) proves again the accuracy of the beam theory. In
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the considered time window, the deviation between these solutions
is negligible. The response shown with a red solid line is the result
of a linear analysis of the curved beam, i.e., the nonlinearities were
neglected. The difference between the nonlinear and linear solution is
considerable and demonstrates the importance of the nonlinear terms
for the estimation of the vibration response. Last but not least, the
nonlinear response of the beam with straight beam axis (i.e., 𝑤̂0 = 0)
is also shown with a blue solid line, whose shape, magnitude and
distribution over 𝑥∕𝑙 differs substantially from that of the slightly
curved beam.

Fig. 10 shows the overall 𝑁∕𝑁 (𝑟𝑒𝑓 )
𝑆 and layerwise partial nor-

mal forces 𝑁1(0.5𝑙)∕𝑁
(𝑟𝑒𝑓 )
𝑆 , 𝑁2(0.5𝑙)∕𝑁

(𝑟𝑒𝑓 )
𝑆 (upper row) as well as

overall 𝑀(𝑙∕2)∕𝑀 (𝑟𝑒𝑓 )
𝑆 (𝑙∕2) and layerwise partial bending moments

𝑀1(0.5𝑙)∕𝑀
(𝑟𝑒𝑓 )
𝑆 (𝑙∕2), 𝑀2(0.5𝑙)∕𝑀

(𝑟𝑒𝑓 )
𝑆 (𝑙∕2) (lower row) of the nonlinear

slightly curved beam. In addition, the overall normal force and the
overall bending moment are depicted with a blue solid line for the beam
with straight member axis, which are quite different from the results
of the slightly curved beam. These results illustrate once more the
importance of considering the initial deflection for the computational
estimation of the internal forces. According to Fig. 10(b), at the hinged
support (right end), the total normal force is equal to the normal force
in the lower layer (i.e., 𝑁 = 𝑁2(𝑙)). At the same support, the total
moment is zero, 𝑀(𝑙) = 0, however, as can be also observed from the
boundary conditions Eqs. (54) and (53), the bending moment in the
lower layer 𝑀2 is not zero. This means that with the 9 shape functions
the dynamic boundary conditions are virtually identically satisfied.

6. Conclusions

In this contribution, a novel beam theory for the prediction of the
nonlinear moderately large vibration response of slightly curved lay-
ered beams with interlayer slip was presented. This theory is based on
a layerwise application of the Euler–Bernoulli theory and a linear slip
law. A semianalytic solution was found for the symmetrically layered
three-layer beam with both ends immovably soft-hinged supported. For
more general beam configurations, a numerical solution procedure was
presented, which was applied to the example of a two-layer beam.
Comparison of the vibration response found with this beam theory with
results obtained from finite element analyses assuming a plane stress
state showed excellent agreement. Moreover, the effect of geometric
nonlinearity, initial deflection and interlayer slip on the moderately
large vibration response was revealed. Since the beam theory is com-
putationally much more efficient than the finite element analysis, it is
very suitable to search for benchmark solutions.
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