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Abstract In this paper, a beam theory for predicting limit point buckling and bifurcation buckling of shallow
arches composed of two layers flexibly bonded is presented. The flexibility of layer bond results in interlayer
slip, which significantly affects the critical transverse loads. The presented theory is based on a layerwise
assumption of the Euler—Bernoulli theory and a linear behavior of the interlayer. After establishing the equi-
librium equations and boundary conditions, a numerical method for efficient solution of these equations is
provided. In a first example, the presented theory is validated by comparative computations with a much more
elaborate finite element analysis assuming a plane stress state. In several other examples, the effect of interlayer
stiffness, load distribution and boundary conditions on the stable and unstable equilibrium paths of shallow
arches with interlayer slip is investigated.

1 Introduction

When the critical transverse load is exceeded, an immovably supported shallow arch with fully constraint out-
of-plane displacement is subjected to in-plane buckling. This instability can take the form of limit point buckling
(snap-through) or bifurcation buckling. While in a symmetric arch subjected to a symmetric transverse load
the buckling shape of the snap-through mode is symmetric, in the bifurcation mode the shape is antisymmetric.
The problem of in-plane buckling of shallow arches has been recognized for a long time and, accordingly, the
results of numerous comprehensive studies have been published in the past (e.g., Kerr and El-Bayoumy [18],
Lo and Conway [22], Virgin et al. [37], Bradford et al. [5], Tsiatas and Babouskos [36]).

The deformation of shallow arches can be substantial even before reaching the stability limit, and thus their
response becomes nonlinear. The analysis of the stability and instability behavior of shallow arches should
therefore be based on a geometrically nonlinear model [28]. If the shallow arch is elastically supported, the
instability behavior may become much more complex (e.g., Pietal. [27], Pi and Bradford [26], Han et al. [13]).
For the estimation of the critical transverse load, it is generally sufficient to perform a static analysis. However,
the deflection that occurs with further load increase is a dynamic process; thus, several papers consider the
inertia terms to estimate the nonlinear dynamic response (e.g., Oz and Pakdemirli [25], Pi and Bradford [29],
Keibolahi et al. [17], Zhong et al. [38]).
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In most studies, homogeneous arches are considered, while limit point buckling and bifurcation buckling
of layered and inhomogeneous curved structures have less frequently been analyzed so far (e.g., Heuer and
Ziegler [16], Schultz et al. [34], Babaei and Eslami [4], Kiss [20], Chan et al. [9]). In particular, Kiss [19]
presents a thorough analytical study of shallow arches made of functionally graded materials on the effects of
various parameters on the buckling load and stable as well unstable equilibrium paths. However, to the best of
the authors’ knowledge, these studies refer solely to members whose layers are perfectly bonded.

In numerous applications, however, a perfect bond between the layers cannot be achieved because the
fastener is flexible. In such a case, the longitudinal displacement of the fibers is not continuous over the height
of the member, but exhibits a jump at the layer interface due to the flexible bonding, which is referred to as
interlayer slip. The mechanical behavior of layered members with interlayer slip (e.g., Girhammar and Gopu
[11], Heuer and Adam [15], Girhammar and Pan [12], Lorenzo et al. [23], Gahleitner and Schoeftner [10]) is
much more complex than for homogeneous structures. Solutions for the geometric nonlinear behavior (e.g.,
Ranzi et al. [31], Adam et al. [2]) and buckling of columns with interlayer slip (e.g., KryZanowski etal. [21],
Schnabl and Planinc [32], Challamel and Girhammar [8], Schnabl et al. [33]) exist in the literature. To date,
however, limit point buckling and bifurcation buckling of transversely layered shallow arches with interlayer
slip subjected to transverse loads have not been investigated.

To fill this research gap, a nonlinear beam theory for shallow arches whose two layers are flexibly bonded
is presented below to efficiently predict the stable and unstable deformation branches of these structures.
After describing the strategy for numerically solving the differential equilibrium conditions, the effect of
the interlayer slip on the snap-through and in-plane bifurcation on the response and the buckling loads is
investigated in several application problems. To validate the presented theory, for one example problem the
response is additionally determined with finite shell element analyses assuming plane stress and compared to
the results of the presented theory.

2 Fundamental equations

The considered shallow arch shown in Fig. 1 is composed of two elastic homogeneous layers with constant
cross-section along the span, which are elastically bonded in circumferential direction. In radial direction the
layer connection is rigid. The parameters of the upper layer are identified by the subscript “1”, and those of the
lower layer by the subscript “2”. The cross-sectional area is symmetrical in the vertical direction. The member
axis corresponds to the line connecting the elastic centers of gravity of the arch with rigidly bonded layers.
The member is immovably supported at both ends.

The shallow arch is referenced to the curvilinear coordinate x following the member axis, z is the in-plane
coordinate perpendicular to x, and y is the out-of-plane coordinate perpendicular to x and z, see Fig. 1. The
origin of the reference coordinate system is located in the member axis at the left support. The member axis is
the line connecting the elastic centers of the composite cross section of the beam with rigidly bonded layers,
whose distance d (d>) from the local centroid of the upper (lower) layer is determined as (see Fig. 1)

EA, EA;
dy = d, d= d. (D
EA, EA,
In these relations, d denotes the distance between both layerwise centroids, EA; = EjA; is the product

of Young’s modulus E; and cross-sectional area A of the upper layer, correspondingly for the lower layer
EA; = EyAs, and EA, = EA| + E A». In addition, the local coordinates (¢1, n1) and (&2, n2) parallel to
the z- and y-coordinates, respectively, are defined for the two layers, whose origins are in the respective local
centroid of the considered layer. The variable R(x) represents the radius of principal curvature, which is in
the present case of a shallow arch very large compared to the member length, and k(x) = R~' denotes the
principal curvature. The member is subjected to the transverse load per unit length p(x), see Fig. 1.

Let 1% (x) and w(x) denote the components of the displacement at the member axis in x- and z-direction,
and Au(x) the interlayer slip, i.e., the relative displacement in circumferential direction between the layers at
the interface. In a shallow arch with non-compressible cross section, it is reasonable to assume that the radial
displacement w(x) is the same for each fiber and small compared to the principal radius of curvature R(x).
Moreover, the two layers are slender and stiff, and thus, their shear deformation is negligible. Therefore, the
validity of the kinematic assumptions of the Euler—Bernoulli theory can be assumed for each layer separately.
Consequently, the displacement field of the shallow arch is fully described by the three kinematic variables
w, 1 and Au. The Euler—Bernoulli theory implies that the cross-sectional rotation yx is the same for both
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Fig. 1 Shallow arch composed of two flexibly bonded layers

Fig. 2 Displacement field of the shallow arch

layers. It is composed of a part due to the tangential displacement and a part due to the radial displacement
difference,

X)) =uk—w, ~—w, 2)

However, in several studies (e.g., Pi et al. [28], Bradford et al. [6]) it has been shown that for immovably
supported nonlinear shallow curved arches, the effect of axial deformations 1>k on cross-sectional rotation
and curvature is negligible [26]. Assuming that the member axis is in the lower layer, the longitudinal displace-

ments uio) (x) and uéo) (x) of the local layer axes can be expressed as a function of the governing kinematic
variables w, u(® and Au as follows, see Fig. 2,

u” (0) = u® —dix — Aumu™ +diw, - Au,
1 (x) = u® +dyyx ~ u™ — dyw . ¥

Then, the longitudinal displacements u(x, ¢1) (#2(x, £2)) in the radial distance ¢ (£2) from the central axis
of the upper (lower) layer follow from

witn, o) =u” +ox ~ul® —quw,,  i=1,2. 4)
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Since the instability of shallow arches is associated with moderately large displacements and membrane
stresses, the longitudinal strains in the layer-wise central axes need to be formulated nonlinearly. For an arch
structure, the full expression for the membrane strains with all nonlinear terms reads [7]

1
ei(x) = u) + wk — u} wk — w ul "k + 5 ((u,?g?)z + w4+ @Ph? + (wk)z) Ji=1,2. (5

However, in the case of an immovably supported shallow arch, only the nonlinearity %w?x is of significant
order, while the other nonlinear terms are negligible, and therefore, the membrane strains in the layer axes can
be approximated by the following expression (e.g., Heuer [14], Adam [1]):

1
O 4wk + ~w? )

ei(x) ~ Uj S W i=1,2, (6)

and further after inserting Eq. (3),
(0) L2
e(x) =uy +wk+§wyx+d]w,xx—Au‘x,

1
er(x) = u()?o) + wk + Ew?x — dow yx. @)

The expression for the bending strain at distance ¢; from the ith local layer axis can also be simplified (e.g.,
Pi and Bradford [26]),
Gix .

€pi(x, )= ——"——— X —(; ,i=1,2, 8

pi (x ;l) (R—}-g“,)dx/R iw xyx, 1 (®)

because on the one hand the contribution of (u®k) , to the curvature is negligible and on the other hand
R + ¢ = R, since {; < R. The total strain at the distance ¢; from the ith local layer axis is then

€i(x,gi) =e +ep, =12 )

Next, the stress resultants are expressed as a function of the governing kinematic variables and their
derivatives. Multiplying the strains Eq. (9) by Young’s modulus E; (E2) gives the normal stresses, which are
integrated over the cross-sectional area A (A;) to obtain the normal force in the upper (lower) layer,

(00) 12
Ny =FEAje; = EA; Uy +wk+§w’x+d1w,m—Au,x s

,X

1
Ny = EAyep = EAy <uf§°) + wk + sz - dzw,xx) . (10)
The sum of the layerwise axial forces yields the overall axial force as
1
N = Ni+ Ny = EA(u? +wk+ 5w ) = EA 1 Auy. (1)

When calculating the layer-wise moments, the normal stresses are multiplied by ¢; before layerwise integration
with the result (e.g., Ziegler [39])
M, = —-EJiw xx, i=1,2, (12)

where EJ; = E;J; is the bending stiffness and J; the area moment of inertia about the 7n;-axis of the ith
layer. The overall bending moment M is related to the layerwise stress resultants M; and N; and further with
Eqgs. (12) and (10) to the kinematic variables as

M = M|+ Mr — Nidy + Nodo = —EJoow xx + EA1d1 Au (13)
with E J, denoting the bending stiffness of the member with rigidly bonded layers,
ElJoo = EJo+ EA1d} + EAyd3, EJo=EJ) + EJ, (14)

where E Jy is the bending stiffness of the member with unbonded layers. The interlaminar shear traction, i.e.,
the longitudinal force transferred between the two layers in the interface, is proportional to the interlayer slip
Au, K denotes the slip modulus, see, e.g., Girhammar and Pan [12],

t, = KyAu. (15)
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3 Boundary value problem
3.1 Equilibrium equations

The differential equations of nonlinear equilibrium of the shallow arch can be found, for instance, with the
minimum total potential energy principle §IT = 0 (e.g., Ziegler [39]). The potential energy of the system reads

as
= 1
HZEZE,-fEiZdV+§KS/AM2dX—/PUde~ (16)
iz V; l [

After inserting the strains Egs. (9), (7) and (8) and some algebra, the potential energy as a function of the
governing kinematic variables is obtained as follows

1 1 2 1
M= /1 (EAe <uf;°> + wk + 5w?x> + EA, (Au?x —2Au (ufgw + wk + Ew?x))
+ EJoow’ —2EAjdyw o Aux + KsAu® — pw )dx. (17)

Applying the principles of calculus of variations and partial integration to the potential and using the internal
forces, we obtain

ST = /(—N,xau“’o) + (N1 + KsAu)sAu + (=M xx — (Nw ) , + Nk — p) aw) dx
l ,
I
+ [N3u<°°) ~ N18Au+ (M x4+ Nw.y)dw — M5w,x]0 —0. (18)

By definition, the coefficients Su'®_ §Au, and Sw are arbitrary, and therefore Eq. (18) is met only if the
following differential equations of equilibrium:

N, =0, (19)
Ni, + K;Au=0, (20)
—Mxx = Nw,x + Nk—p =0, 21

and the boundary conditions

Ny=0 or u™ =0, (N1),=0 or Auy,=0,
Mpy=0 or (wy),=0, My+Nwy,),=0 or wy=0 (22)

are satisfied. The subscript » denotes a boundary at x = 0 and x = [, respectively. From Eq. (19) it follows that
the overall axial force is constant along the arch. Therefore, in Eq. (21) Nw x, is written instead of (Nw ) .

Substituting the internal forces into Eqgs. (19)—(21) leads to the differential equilibrium conditions in the
governing kinematic variables,

EA, (u(;i) + wk x +w  k + w,xw,“> — EA{Au . =0, (23)
EAl(uf)?i) + wky +w ik +ww o +diw gx — Au,xx) + K;Au =0, (24)
Ejoow,xxxx - EAldlAu,xxx - N (w,xx - k) =p. (25)

Equation (20) (respectively Eq. (24)) implies that the free-body diagram of an infinitesimal element of the
upper layer is in equilibrium. Likewise, a free-body diagram of an infinitesimal element of the lower layer
must be in equilibrium, i.e., N2 x — t; = 0, or expressed in kinematic variables,

EA2<uf)‘?)°c) + wkx + w ik +ww o — a’zw,xxx> —K;Au=0 (26)
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When Eq. (24) is divided by EA and Eq. (26) is divided by E A3, and then the second equation is subtracted
from the first equation, we obtain

EAK, )1/2 Q27)

Aty — K2 Au — (di +d)wyxx =0, k= <m

In this relation neither the longitudinal displacement u(® nor the nonlinear terms appear. Therefore, in the
following, this equilibrium equation is used instead of Eq. (24) to solve the present boundary value problem
more efficiently.

3.2 Boundary conditions

As can be seen from Eq. (22), for the solution of the equilibrium Egs. (27), (23), (25), a total of four boundary
conditions per boundary must be defined. Here, shallow arches with three different boundary conditions are
examined, i.e., soft-hinged support, hard-hinged support, and clamped support. Common to all of these supports
is that the member axis is immovable at these points in all directions, see also Eq. (22), [2],

wp =0, (28)
W™ = 0. (29)

3.2.1 Soft-hinged support

In the case of a soft-hinged support (sh), the beam axis is hinged, i.e., (w ), # 0, resulting in zero total
bending moment, M, = 0, see Eq. (22). Expressed in kinematic variables according to Eq. (13), it follows
that [3]

(-EJoow,xx + EAldlAu,x)b —0. (30)

Since the interlayer slip is not constrained at the support, i.e., Au # 0, the axial force in the upper layer is
therefore zero at this end, (N1), = 0 (see Eq. (22)) [3], or with the first of Eq. (10)

1
(»;f;o) + wk + S+ diw g — Au,x>b —0. G1)

3.2.2 Hard-hinged support

The boundary condition Eq. (30) also applies at a hard hinged support (24). In this case, however, a rigid plate
at the member end prevents the interlayer slip (see, e.g., Adam et al. [2]),

(Au)p = 0. (32)

3.2.3 Clamped support

At a clamped end (c/), the rotation of the cross-section is constrained (see, e.g., Adam et al. [2]),
(wx)p =0 (33)

and furthermore the interlayer slip is constrained, see Eq. (32).
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4 Analysis

The solution of the present boundary value problem is based on the Ritz approach for the deflection [30]

W) & () = ijqiqb,-(x), aw=03) (1-7)". (34)

i=iy

where the J — i, + 1 shape functions ¢; (x) are polynomials. The initial value i, of the summation depends
on the geometric boundary conditions in w to be satisfied at x = 0, and the exponent i, on the geometric
boundary conditions to be satisfied at x = [. For the boundary conditions considered here, i, and i} are [30]

soft-hinged (sh) and
hard-hinged support (hh): atx=0:i,=1;atx=1[:ip =1 (35)
clamped end (cl): atx =0:i,=2;atx =1:ip =2 (36)

The Ritz approach is substituted into the two equilibrium conditions Egs. (23) and (27). These two ordinary
differential equations are solved together with the corresponding boundary conditions (Egs. (29); (31) for sh
respectively Eq. (31) for ik and cl) for Au and u(® analytically, which are then also a function of the unknown
coefficients ¢;, denoted as Au* and u(0*,

The coupled J — i, + 1 nonlinear equations in the coefficients g;, i = i, ..., J, are found by applying
the Galerkin method [39] to the third equilibrium condition Eq. (25). Therefore, Eq. (25) is consecutively
multiplied by the J — i, + 1 shape functions ¢; and integrated over /, yielding the following set of equations:

l
/ (Ejoowj;m — EAvd A — N* (w, — k) — p)(l)idx — Mi(pi)p =0, i=i4g...J. (37)
0

N* is the approximation of the overall axial force obtained by substituting w*, Au* and u(®* into Eq. (11)
and evaluated at any x (for instance at x = [/2). Since the chosen Ritz approach violates the static boundary
condition M, = 0 in the case of a hinged support, the work of this boundary moment was added in the above
expression. Integration of this equation partially twice with respect to x, the order of the derivatives to x is
reduced by two. The simultaneously appearing negative work of the boundary moment cancels out with the
positive work of the boundary moment, and thus, Eq. (37) becomes

1
/0 ((EJoow,*xx — EA1d1 AUY,) i s + N* (0 ix + ki) — pd)i)dx =0, i=ig..J. (38)

The solution of the nonlinear coupled set of J — i, + 1 equations for ¢;, i = i, ..., J, resulting from evaluation
of this integral is found by numerical standard solvers. The approximation of the deformation of the shallow
arch follows by substituting the found coefficients ¢; into w* (x), Au*(x) and u°®*(x). It should be noted that
with increasing number of shape functions not only the deformation but also the static boundary conditions
are better approximated.

5 Application
5.1 Shallow arch 1 subjected to distributed load

A first example is a shallow arch (hereafter referred to as shallow arch 1), fixed on both sides and soft-hinged
supported (boundary conditions sk — sh), and curved in the shape of a sine half-wave against the positive

z-direction,
W(x) = —g sin ”l—x (39)

ie., k(x) = —, = —Wor?/I%sin T~ The rise of this structure is 3 cm, i.e., wo = 0.03 m. The arch is
composed of two elastically bonded layers and has a length [ = 1.0 m. The cross-sectional dimensions of the
upper layer with Young’s modulus of E; = 7 - 10'© N/m? are 71 = 4 mm and b; = 0.1 m. The lower layer
with Young’s modulus E; = 1 - 10'° N/m? has the same width as the upper layer, b = by, and thickness
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Fig. 3 Shallow arch 1. Left column: non-dimensional load—deformation curves at given location x /. Right column: distribution
of the deformation variables over x /[ at discrete load levels. a, b Deflection; ¢, d interlayer slip

hy = 26 mm. Thus, the section height is 30 mm and is the same as the rise of the arch. The slip modulus of
the interlayer is Ky = 10° N/m?, which corresponds to a composite action parameter [12]

(h1/2 + ha/2)? “/”l
EJy )

=K
ol = =+
y EA]EAZ

of al = 14.97 and thus to a moderate interaction of the two layers [12]. A uniformly distributed transverse
load is applied to the shallow arch, i.e., p(x) = pg, which leads to an unstable response above a certain critical
load.

For the structural response analysis described in the previous section, the deflection w is approximated
by 11 shape functions ¢;, i = 1, ..., 11, according to the Ritz approach Eq. (34), which has been shown to
be sufficient in a convergence study. Consequently, 11 nonlinear coupled equations in g;, i = 1, ..., 11 result
from the Galerkin method Eq. (38). Not only the critical loads are of interest, but the entire response path as
a function of load pg in both the stable and unstable branches. Therefore, the load pg is increased stepwise,
and at each load step the real solutions of this system of equations are computed. These computations were
performed with the software package Mathematica Mat [24] using the function “FindRoot” to find the real
roots of this system of equations.

To validate the presented theory, the response of this shallow arch is additionally analyzed with the finite
element (FE) method in the software suite Abaqus [35] assuming a plane stress state. In the corresponding
numerical model, the two layers are discretized with the 8-noded quadrilateral plane stress elements of type
CPS8R. A Poisson’s ratio of 0.3 is assumed. The intermediate layer is modeled with 4-noded linear cohesive
elements of type COH2DA4. In the FE model, the interlayer has a certain thickness, which in this case is chosen
as 0.002 mm. The stiffness normal to the interlayer, which is infinite in the beam theory, is chosen to be very
large, i.e., 10,000 K. In total, the structure is discretized into 18,500 finite elements, corresponding to 109,132
degrees of freedom, which is a multiple of the 11 degrees of freedom of the beam model. The soft-hinged
supports are modeled as kinematic coupling of the outer surface of the lower layer at an additional node. To
determine the complete branch of the response, the Riks arc-length algorithm implemented in Abaqus is used
to solve the resulting system of equations.

Figure 3 shows with thick lines the response of this shallow arch in terms of the kinematic variables
found with the described beam theory. While the left column shows the non-dimensional external force p =
pol?/ E Js over the considered non-dimensional response variable at the indicated location of the beam axis,

(40)
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Fig. 4 Shallow arch 1. Left column: non-dimensional load—internal force curves at given location x / /. Right column: distribution
of the internal forces over x /[ at discrete load levels. a, b Axial forces; ¢, d bending moments

the right column displays the distribution of this response variable over the beam axis x// at four discrete load
levels, denoted A, B, C and D in the left column. The first row contains the normalized deflection w/[ and the
second row the normalized interlayer slip Au/!.

As can be seen from Fig. 3a, in the primary stable deformation branch the slope of the deflection at midspan
w(0.51) /1 decreases with increasing load until the critical load p., = 2.46 is reached at limit point A, where the
deflection snaps through to the remote stable equilibrium path at point B. At load reversal, at the critical load
Per = 1.60 (limit point C), the arch snaps back to the primary stable deformation branch. As observed, the limit
points are local extrema on the stable deformation branches. The stable deformation branches are illustrated
by solid black lines, the unstable deformation branch between the limit points A and C is depicted by a dashed
black line. The solution of the FE plane stress analysis represented by a thin red line with markers is virtually
identical to the beam solution, confirming the assumptions of the proposed beam theory. The deflection shape
shown in Fig. 3b is similar for the four load levels A, B, C, D given in Fig. 3a. The deflection shape depicted
with green color (load level D) is located in the unstable deformation branch of the shallow arch.

The load p plotted against the interlayer slip Au(l)/[ at the right support has the form of a loop, see
Fig. 3c. The largest value of the interlayer slip is found in the unstable response branch. When the structure
snaps through from A to B, the interlayer slip at the supports becomes smaller in magnitude, but in the interior
of the structure it is larger than in the other three discrete load levels B, C, D, as Fig. 3d shows. The interlayer
slip from the beam theory and the FE analysis agree well.

To illustrate the importance of considering the interlayer flexibility when estimating the critical loads,
Fig. 3a also shows the response of the shallow arch with rigidly bonded layers as thin black lines. As observed,
on the primary stable deformation branch, the critical load p., = 3.47, which is 41% larger than for the arch
with elastically bonded layers. The critical load p on the remote stable deformation branch decreases from
1.60 to 1.12.

The internal forces shown in Fig. 4 also demonstrate the influence of the interlayer slip on the nonlinear
stable and unstable response of the shallow arch. The total normal force N divided by E A, is much larger
for the structure with rigid bond than that of the arch with flexibly bonded layers, see Fig. 4a. In Fig. 4b, the
layer-wise normal forces Nj/E A, and N,/ E A, are plotted as a function of x /[ for load levels A, B, Cand D in
addition to the total normal force N/E A,. It can be seen that at the supports the boundary condition (N), = 0
(Eq. 31) is satisfied, while the total axial force is fully transferred to the second layer, i.e., (N2), = N.Figure 4c
shows p versus the normalized total moment M!/E J, at midspan. Next to it, Fig. 4d shows the normalized



3822 C. Adam et al.

s m—m —_— - - -
£3.99 —&— uniformly distributed load 3 0.05 [ imperfectly distributed B 1
d —— imperfectly distributed load B 1 [ load 1

7 004 F ]

PIEL,

/
1

wil
=
=3
)
T
O
1

P
S
o0
w
/|
/
=3
=)
]
T
I

e ~F 1w |

F(a) shallow arch 2 (o = 10.41) 1 b A
3 A SIS SRR S SR PR SR S S S NS S S | 0.00 T N n 1 N n T n n 1 n n n 1 n n n
0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.2 0.4 0.6 0.8 1
w(0.51)/1 . x/1
s — V) & ————— — . .
F3 099 ] r imperfectly distributed load
4 B> . E t
3 P36 A 1 2100 F .
8 2 i .,"‘ l.: 5 : |
= 0 ) o} X
L ; 17000
I, 1 [ 4’2
1 . -4 | 0.
- ] 2 10 I % C
i E I oD
3 '(c) S TS S RS RS T 410 (Fl)‘ PR R P E U B
=510 -410* 2310 210 -110* 0 110 0 0.2 0.4 0.6 0.8 1

Au(l)/1 x/1

Fig. 5 Shallow arch 2 subjected to a distributed load. Left column: non-dimensional load—deformation curves at given location
x /1. Right column: distribution of the deformation variables over x// at discrete load levels. a, b Deflection; ¢, d interlayer slip

total moment M[/E J, as well as the moment of the bottom layer M3l/E J plotted over x /[ at load levels
A, B, C and D. As can be seen, the total moment at the supports is zero, demonstrating that the number of
shape functions in the Ritz approach is sufficient to satisfy the boundary condition Eq. (30). The moment in
the bottom layer (M>); is nonzero at the boundaries. The moment in the upper layer M is small compared to
M and M, and thus not presented.

5.2 Shallow arch 2 subjected to distributed load

After the comparative FE analysis of the first example has confirmed the presented beam theory, the investi-
gations are continued on a second shallow arch where the thickness of the two layers is smaller. The thickness
of the upper layer is now 41 = 2 mm and the thickness of the lower layer 7, = 5 mm. The total height of the
cross-section is therefore 7 mm. The rise of the shallow arch is Wy = 25 mm. The slip modulus is reduced
by one power of ten and is Ky = 108 N/m?, and thus the composite action parameter according to Eq. (40)
becomes o/ = 10.41. All other parameters as well as the boundary conditions (sh — sh) of this structure
referred to as shallow arch 2 are the same as in the previous example.

Figure 5 shows the response of this structure in analogy to Fig. 3. The response of the symmetric shallow
arch subjected to the symmetric transverse load pg based on the presented beam theory is shown in the figures
of the left column with a thin red line with rectangular markers. Such an analysis can predict limit point
buckling, but not bifurcation buckling. Therefore, a second analysis is performed in which the transverse load
has a slight perturbation, i.e., the external load is slightly asymmetric in the form

p(x) = po (0.99H (x) + 0.02H (x — 1/2)) 41)

with H denoting the unit step-function. The total resultant of the transverse load thus remains unchanged, but
its application point shifts slightly to the right of midspan. The result of this analysis is shown in the figures of
the left column with thick black lines. Comparison of the outcomes of the two computations shows that this
very slender shallow arch does indeed become unstable due to bifurcation buckling. As observed, a bifurcation
point (point A) is located on the primary stable equilibrium path. At this point, the equilibrium path changes
to an orthogonal path on which the total axial force remains constant until bifurcation point C is reached on
the remote stable equilibrium path. The actual critical load at bifurcation point A is p., = 3.61, compared to
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the critical load in the limit point related to a perfectly symmetrical load of p., = 3.99 (snap-through). It is
noticeable that the response on the stable deformation branches up to the bifurcation point is identical from
both computations. The response in the unstable branches is however much more complex for bifurcation
buckling than for limit point buckling. In the configuration leading to bifurcation, the unstable branch of the
limit point analysis are preserved, but two additional load paths are obtained. This is especially evident in the
case of interlayer slip (Fig. 5¢). It should be emphasized here that in reality there are always imperfections in
the load as well as in the structure, which means that the critical load of a perfect configuration with subsequent
limit point bucking is never reached. The response shown in red is therefore purely hypothetical. In reality,
however, a bifurcation problem always exists for the considered configuration of shallow arch 2.

Figure 5b shows the distribution of w// over x// at the four discrete load levels A, B, C, D (indicated
in Fig. 5a) in the case of bifurcation buckling. It can be seen that the deflection becomes asymmetric at the
bifurcation point A. In contrast, at the opposite point B on the second stable response branch, far away from an
unstable deformation branch, the deflection is virtually symmetrically distributed. At bifurcation point C, the
deflection becomes asymmetric again. In the unstable branch at point D, the deflection is also asymmetric. For
the interlayer slip (Fig. 5d), a strong deviation from the antimetric response is observed near the bifurcation
points.

Figure 6a proves that during bifurcation buckling in the unstable response branches between bifurcation
points A and C, the overall normal force N is virtually constant. It can also be seen that, in contrast to shallow
arch 1, there is a change from compressive to tensile normal force during the transition from A to B. The
asymmetric distribution of the layerwise normal forces Nj and N, over x// at the onset of bifurcation buckling
is apparent from Fig. 6b. In contrast to shallow arch 1, the plot of the external force p against the moment
MI/E J exhibits a loop, as can be seen in Fig. 6¢. In addition, Fig. 6d shows that a sign change in the
normalized moment M!/E J, along the beam axis occurs at the onset of bifurcation buckling.

5.3 Modified shallow arch 2 subjected to distributed load
In a third example (referred to as modified shallow arch 2), the slip modulus is five times larger than in shallow

arch 2 (i.e., Ky = 5 - 108 N/m? and further o/ = 23.28), otherwise all parameters and the load distribution
remain unchanged. Figure 7 shows that also in this structure instability is determined by bifurcation buckling
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Fig. 7 Modified shallow arch 2 (increased interlayer stiffness). subjected to a distributed load. Non-dimensional load—response
curves at given location x//. a Deflection; b interlayer slip; ¢ overall axial force; d overall bending moment

and not by limit point buckling. The critical loads are much larger than for shallow arch 2 (primary stable
equilibrium branch: p.. = 5.66 instead of p.. = 3.61; remote stable equilibrium branch p.. = —2.23 instead
of p., = —0.83). This result again proves that capturing the flexibility of the interlayer is essential for predicting
the nonlinear stable and unstable response. Moreover, the response behavior is much more complex than for
shallow arch 2, i.e., the number of unstable equilibrium paths increases. The external force p versus normal
force N/E A, diagram has two loops in this case, as can be seen in Fig. 7c. Instead of two, this structure
has four bifurcation points. However, only the two with the smaller critical loads are of practical importance
because they indicate the transition from stable to unstable deformation branches. As can be seen, in the
associated unstable response branches the normal force is again virtually constant (at N/EA, = —1.02-10~*
and N/EA, = —2.99 - 1074, respectively).

5.4 Shallow arch 2 subjected to single force

In the fourth example, shallow arch 2 is considered again, but this time it is loaded by a single force. In a first
computation, this single load is applied exactly in the center,

px) = Pyd(x —1/2), (42)
where § is the Dirac delta function. In a second computation, this force is shifted by 1% to the left,
p(x) = Ppd(x —0.991/2) 43)

to capture the influence of a small load imperfection. In Fig. 8, the normalized single force p = Pyl?/E Jo is
plotted over the response of this structure: in Fig. 8a the normalized deflection w/[ at x /I = 0.5, in Fig. 8b
the normalized interlayer slip Au/[ at the right support, in Fig. 8c the normalized total normal force N/E A,
and in Fig. 8d the normalized total bending moment M1/ E J, at x /I = 0.5. As observed, also in this example
instability is governed by bifurcation buckling. Comparison with Fig. 5 shows that a single force is more critical
than a distributed load, since the critical loads are smaller with p.. = 2.29 and p.,. = —0.45, respectively
(compared to p.. = 3.61 and p., = —0.83, respectively, for a distributed load). The response exhibits more
unstable deformation branches than for a distributed load. Four bifurcation points are observed as in modified
shallow arch 2, as can be seen particularly from Fig. 8c.
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5.5 Effect of the boundary conditions

In the next example, the influence of the boundary conditions on the critical loads and the nonlinear response is
studied. For this investigation, the support conditions in shallow arch 2 are changed at the leftend (x// = 0). In
the first case, the left support is hard-hinged (sh — hh), in the second case the left support is clamped (sh — cl).
The right end (x/! = 1) remains a soft-hinged support in both cases. The load is uniformly distributed
p(x) = po over x. Figure 9a shows the normalized external load p = pol 3/ E Jo versus normalized deflection
w/l at x/I = 0.5 for the two arches with modified support (green line: case 1 hh — sh; blue line: case 2
cl — sh) and, in addition, the response of the soft-hinged structure on both sides (sh — sh) subjected to an
imperfectly distributed load already shown in Fig. 5a. As can be seen from this figure, at the end of the primary
stable deformation path the critical load is the same for the two arches with modified boundary conditions
at the left support, with p.. = 3.44, and slightly smaller than for bifurcation buckling of the symmetrically
supported structure (where p.. = 3.61). While the unstable deformation branch of the structure with boundary
conditions ik — sh subsequently follows the course of the load—deflection path of case sh — sh (bifurcation
buckling), the shallow arch clamped on the left end shows a completely different deformation pattern. This
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Critical load in the first load path

is also reflected in the critical load on the remote stable deformation branch, which is p,, = —0.17 for the
structure with boundary conditions 2k — sh and p.. = 2.07 for the boundary conditions ¢/ — sh.

In Fig. 9b, p is plotted versus the normalized interlayer slip Au /[ at the right end. In the first response path
(loading), the interlayer slip is virtually the same for all three structures with different boundary conditions.
The deviations become significant only in the unstable deformation branch. It can be seen that the deformation
pattern has only one loop when the left boundary conditions are modified. This loop is much smaller in area
for boundary conditions #h — sh than for the other two cases. The largest interlayer slip at the member end
x/1 = 1 in a stable branch occurs for the boundary conditions ¢/ — sh immediately before snap-back to the
primary stable deformation branch.

5.6 Variation of the rise

Finally, the influence of the rise Wy of the shallow arch in the form of a sinusoidal half-wave on the critical load
Per in the first load path is investigated. To this end, in Fig. 10 the normalized critical load P, = pocrl®/E Joo
on the primary stable deformation branch is plotted against the normalized rise wp/! in the range from O to
0.05 for variations of the shallow arch 2 under uniform load pg with interlayer stiffness Ky = 10% N/m?
(el = 10.41), Ky = 5 - 108 N/m? (al = 23.28), and with rigidly bonded layers (al = 00), respectively. The
computations were performed with both symmetric loading and imperfectly distributed loading according to
Eq. (41). This figure shows that, as expected, the critical load increases with increasing normalized rise wq/ !
as well as with increasing interlayer stiffness. The minimum value of wg/! above which a stability problem
occurs can also be read. For small values of wq/! after this limit, the structure becomes unstable due to limit
point buckling. For larger wg/! values, instability is governed by bifurcation buckling, which can be seen
from the fact that the corresponding critical load is smaller than that for hypothetical limit point buckling. The
limit values of wg/! at the transition from limit point buckling to bifurcation buckling again depends on the
interlayer stiffness.

6 Summary and conclusions

Since in-plane limit point buckling (snap-through) and in-plane bifurcation buckling of shallow arches com-
posed of flexibly bonded layers have not been studied in the literature to date, this paper introduced a beam
theory for the stability and instability analysis of shallow arches with interlayer slip. In a first example, a
comparative computation on a much more elaborate finite shell element model based on a plane stress state
showed that the presented theory is both efficient and suitable to predict both the stable and unstable nonlinear
response of slender shallow arches with interlayer slip. In the example problems, deflection, interlayer slip,
total and layer-wise normal forces, and total bending moment and layer-wise moments are shown graphically
as governing response variables.

In order to detect a possible bifurcation buckling of a symmetric shallow arch in a numerical computation,
it is essential to impose a small imperfection (see, e.g. Kiss [19]). In the present examples, this was realized
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by applying a load with extremely small eccentricity. For the more slender arches considered, it was shown
that otherwise limit point buckling instead of the actual unstable behavior (bifurcation buckling) is predicted
and consequently the critical load is overestimated. Compared to limit point buckling, bifurcation buckling is
accompanied by additional unstable branches in the load—deformation diagrams.

With increasing slenderness of the shallow arch as well as increasing interlayer stiffness, the number of
unstable branches in the load—deformation diagrams increases. Likewise, the influence of the load distribution
on the response was shown. In several examples, multiple unstable deformation branches were predicted,
depending on various parameters such as the stiffness of the interlayer and the loading conditions. Selected
examples have demonstrated that neglecting the flexibility of the interlayer leads to a considerable overesti-
mation of the critical load.

The presented theory can be used to perform parametric studies due to its simplicity and numerical effi-
ciency. Thus, a tool is available to comprehensively investigate and better understand the stability problem of
transversely loaded shallow arches with interlayer slip. In future studies, inertia terms should be added to the
theory in order to investigate the dynamic nature of the snap-through phenomenon.
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