Convergence analysis of Strang splitting for Vlasov-type equations

Lukas Einkemmer

Department of Mathematics
University of Innsbruck

May 15, 2012
Motivation

Equations

1. Vlasov equation

\[\partial_t f(t, x, v) + v \cdot \nabla f(t, x, v) + F \cdot \nabla_v f(t, x, v) = 0, \]

with force term \(F \) and particle-density \(f \).

2. Coupling to the EM field (Maxwell or Poisson equations)

3. Approximations (e.g. gyrokinetic equations, linear Vlasov equation)

Applications

1. Plasma simulations
 (e.g. Tokamaks or plasma-laser interactions)

2. Especially if fluid models are not sufficient
Motivation

Equations

1. Vlasov equation

\[\partial_t f(t, x, v) + v \cdot \nabla f(t, x, v) + \mathbf{F} \cdot \nabla_v f(t, x, v) = 0, \]

with force term \(\mathbf{F} \) and particle-density \(f \).

2. Coupling to the EM field (Maxwell or Poisson equations)

3. Approximations (e.g. gyrokinetic equations, linear Vlasov equation)

Applications

1. Plasma simulations
 (e.g. Tokamaks or plasma-laser interactions)

2. Especially if fluid models are not sufficient
Motivation

Equations
1. Vlasov equation

\[\partial_t f(t, x, v) + v \cdot \nabla f(t, x, v) + F \cdot \nabla_v f(t, x, v) = 0, \]

with force term \(F \) and particle-density \(f \).

2. Coupling to the EM field (Maxwell or Poisson equations)

3. Approximations (e.g. gyrokinetic equations, linear Vlasov equation)

Applications
1. Plasma simulations
 (e.g. Tokamaks or plasma-laser interactions)

2. Especially if fluid models are not sufficient
Motivation

Equations

1. Vlasov equation

\[\partial_t f(t, x, v) + v \cdot \nabla f(t, x, v) + F \cdot \nabla_v f(t, x, v) = 0, \]

with force term \(F \) and particle-density \(f \).

2. Coupling to the EM field (Maxwell or Poisson equations)

3. Approximations (e.g. gyrokinetic equations, linear Vlasov equation)

Applications

1. Plasma simulations
 (e.g. Tokamaks or plasma-laser interactions)

2. Especially if fluid models are not sufficient
Motivation

Equations

1. Vlasov equation

\[\partial_t f(t, x, v) + v \cdot \nabla f(t, x, v) + F \cdot \nabla_v f(t, x, v) = 0, \]

with force term \(F \) and particle-density \(f \).

2. Coupling to the EM field (Maxwell or Poisson equations)

3. Approximations (e.g. gyrokinetic equations, linear Vlasov equation)

Applications

1. Plasma simulations
 (e.g. Tokamaks or plasma-laser interactions)

2. Especially if fluid models are not sufficient
Vlasov-type equations

Definition (Vlasov-type equation)

\[
\begin{align*}
\partial_t f(t) &= (A + B)f(t) \\
f(0) &= f_0,
\end{align*}
\]

where A is a linear operator and $Bf = B(f)f$ with $B(f)$ linear.

Scope

1. Abstract evolution equation
2. Includes Vlasov–Poisson, Vlasov–Maxwell, and gyrokinetic equations as a special case
3. No discretization in space
Introduction

Convergence VP Numerical experiments

Vlasov-type equations

Definition (Vlasov-type equation)

\[
\begin{align*}
\partial_t f(t) &= (A + B)f(t) \\
f(0) &= f_0,
\end{align*}
\]

where A is a linear operator and $Bf = B(f)f$ with $B(f)$ linear.

Scope

1. Abstract evolution equation
2. Includes Vlasov–Poisson, Vlasov–Maxwell, and gyrokinetic equations as a special case
3. No discretization in space
Vlasov-type equations

Definition (Vlasov-type equation)

\[
\begin{align*}
\partial_t f(t) &= (A + B)f(t) \\
 f(0) &= f_0,
\end{align*}
\]

where A is a linear operator and $Bf = B(f)f$ with $B(f)$ linear.

Scope

1. Abstract evolution equation
2. Includes Vlasov–Poisson, Vlasov–Maxwell, and gyrokinetic equations as a special case
3. No discretization in space
Vlasov-type equations

Definition (Vlasov-type equation)

\[
\begin{align*}
\partial_t f(t) &= (A + B)f(t) \\
f(0) &= f_0,
\end{align*}
\]

where \(A \) is a linear operator and \(Bf = B(f)f \) with \(B(f) \) linear.

Scope

1. Abstract evolution equation
2. Includes Vlasov–Poisson, Vlasov–Maxwell, and gyrokinetic equations as a special case
3. No discretization in space
Strang splitting

Definition (Strang splitting)

\[S = e^{\frac{h}{2}A}e^{hB_{h/2}}e^{\frac{h}{2}A}, \]

where \(B_{h/2} \) is a linear approximation of order 1 to \(Bf \).

Strang splitting for grid-based Vlasov solvers

2. Vlasov–Maxwell equations (Mangeney et al. 2002)
3. Computationally interesting since for

\[B_{h/2}f = B(f_{h/2})f \]

solution can be represented as a translation.
Definition (Strang splitting)

\[S = e^{\frac{h}{2}A} e^{hB_{h/2}} e^{\frac{h}{2}A}, \]

where \(B_{h/2} \) is a linear approximation of order 1 to \(Bf \).

Strang splitting for grid-based Vlasov solvers

2. Vlasov–Maxwell equations (Mangeney et al. 2002)
3. Computationally interesting since for

\[B_{h/2}f = B(f_{h/2})f \]

solution can be represented as a translation.
Definition (Strang splitting)

\[S = e^{\frac{h}{2}A}e^{hB_{h/2}}e^{\frac{h}{2}A}, \]

where \(B_{h/2} \) is a linear approximation of order 1 to \(Bf \).

Strang splitting for grid-based Vlasov solvers

2. Vlasov–Maxwell equations (Mangeney et al. 2002)
3. Computationally interesting since for

\[B_{h/2}f = B(f_{h/2})f \]

solution can be represented as a translation.
Strang splitting

Definition (Strang splitting)

\[S = e^{\frac{h}{2}A} e^{hB_{h/2}} e^{\frac{h}{2}A}, \]

where \(B_{h/2} \) is a linear approximation of order 1 to \(Bf \).

Strang splitting for grid-based Vlasov solvers

2. Vlasov–Maxwell equations (Mangeney et al. 2002)
3. Computationally interesting since for

\[B_{h/2}f = B(f_{h/2})f \]

solution can be represented as a translation.
Convergence

Convergence follows from consistency and stability

Stability

Stability follows from probability conservation

Consistency

1. Expansion of the exact solution (Gröbner–Alekseev formula)
2. Expansion of the splitting operator
3. Estimation of the (possibly) unbounded remainder terms
Convergence

Convergence follows from consistency and stability

Stability

Stability follows from probability conservation

Consistency

1. Expansion of the exact solution (Gröbner–Alekseev formula)
2. Expansion of the splitting operator
3. Estimation of the (possibly) unbounded remainder terms
Convergence

Convergence follows from consistency and stability

Stability

Stability follows from probability conservation

Consistency

1. Expansion of the exact solution (Gröbner–Alekseev formula)
2. Expansion of the splitting operator
3. Estimation of the (possibly) unbounded remainder terms
Convergence follows from consistency and stability

Stability follows from probability conservation

1. Expansion of the exact solution (Gröbner–Alekseev formula)
2. Expansion of the splitting operator
3. Estimation of the (possibly) unbounded remainder terms
Convergence

1. Convergence follows from consistency and stability

Stability

1. Stability follows from probability conservation

Consistency

1. Expansion of the exact solution (Gröbner–Alekseev formula)
2. Expansion of the splitting operator
3. Estimation of the (possibly) unbounded remainder terms
Consistency

Expansion of the exact solution

\[
f(h) = E_B(h, f_0) + \int_0^h \partial_2 E_B(h - \tau, f(\tau)) AE_B(\tau, f_0) \, d\tau
\]
\[
+ \int_0^h \int_0^\tau \partial_2 E_B(h - \tau, f(\tau)) A \partial_2 E_B(\tau - \sigma, f(\sigma)) AE_B(\sigma, f_0) \, d\sigma \, d\tau
\]
\[
+ \int_0^h \int_0^\tau_1 \int_0^\tau_2 \left(\prod_{k=0}^{2} \partial_2 E_B(\tau_k - \tau_{k+1}, f(\tau_{k+1})) A \right) f(\tau_3) \, d\tau_1 \, d\tau_2 \, d\tau_3,
\]

where \(\tau_0 := h \).

Expansion of the splitting operator

\[
Sf_0 = e^{hBh/2} f_0 + \frac{h}{2} \left\{ A, e^{hBh/2} \right\} f_0 + \frac{h^2}{8} \left\{ A, \left\{ A, e^{hBh/2} \right\} \right\} f_0 + R_3 f_0.
\]
Consistency

Expansion of the exact solution

\[
f(h) = E_B(h, f_0) + \int_0^h \partial_2 E_B(h - \tau, f(\tau)) AE_B(\tau, f_0) \, d\tau
\]

\[
+ \int_0^h \int_0^\tau \partial_2 E_B(h - \tau, f(\tau)) A \partial_2 E_B(\tau - \sigma, f(\sigma)) AE_B(\sigma, f_0) \, d\sigma \, d\tau
\]

\[
+ \int_0^h \int_0^{\tau_1} \int_0^{\tau_2} \left(\prod_{k=0}^{2} \partial_2 E_B(\tau_k - \tau_{k+1}, f(\tau_{k+1})) A \right) f(\tau_3) \, d\tau_1 \, d\tau_2 \, d\tau_3,
\]

where \(\tau_0 := h \).

Expansion of the splitting operator

\[
Sf_0 = e^{hBh/2} f_0 + \frac{h}{2} \left\{ A, e^{hBh/2} \right\} f_0 + \frac{h^2}{8} \left\{ A, \left\{ A, e^{hBh/2} \right\} \right\} f_0 + R_3 f_0.
\]
Consistency

Bounds

1. **Compare the terms by employing a quadrature rules**

2. We have to estimate e.g.

 \[
 \left[e^{hB_{h/2}} - \partial_2 E_B(h, f_0) \right] A f_0 = \partial_2 \left[e^{hB_{h/2}} - E_B(h, f_0) \right] A f_0
 \]

3. Use Gröbner–Alekseev formula to get

 \[
 E_B(h, f_0) - e^{hB_{h/2}} f_0 = \int_0^h e^{(h-\tau)B_{h/2}} (B - B_{h/2}) E_B(\tau, f_0) \, d\tau
 \]

4. Gives a condition on \(B - B_{h/2} \).

5. Note that \(f_0 \) is an arbitrary initial value for the Strang splitting operator.
Introduction Convergence VP Numerical experiments

Consistency

Bounds

1. Compare the terms by employing a quadrature rules
2. We have to estimate e.g.

\[
\left[e^{hB_{h/2}} - \partial_2 E_B(h, f_0) \right] A f_0 = \partial_2 \left[e^{hB_{h/2}} - E_B(h, f_0) \right] A f_0
\]

3. Use Gröbner–Alekseev formula to get

\[
E_B(h, f_0) - e^{hB_{h/2}} f_0 = \int_0^h e^{(h-\tau)B_{h/2}} (B - B_{h/2}) E_B(\tau, f_0) \, d\tau
\]

4. Gives a condition on \(B - B_{h/2} \).
5. Note that \(f_0 \) is an arbitrary initial value for the Strang splitting operator
Consistency

Bounds

1. Compare the terms by employing a quadrature rules

2. We have to estimate e.g.

\[
\left[e^{h B h/2} - \partial_2 E_B(h, f_0) \right] Af_0 = \partial_2 \left[e^{h B h/2} - E_B(h, f_0) \right] Af_0
\]

3. Use Gröbner–Alekseev formula to get

\[
E_B(h, f_0) - e^{h B h/2} f_0 = \int_0^h e^{(h-\tau)B h/2} (B - B_{h/2}) E_B(\tau, f_0) \, d\tau
\]

4. Gives a condition on \(B - B_{h/2} \).

5. Note that \(f_0 \) is an arbitrary initial value for the Strang splitting operator.
Consistency

Bounds

1. Compare the terms by employing a quadrature rules

2. We have to estimate e.g.

\[
\left[e^{hB_{h/2}} - \partial_2 E_B(h, f_0) \right] Af_0 = \partial_2 \left[e^{hB_{h/2}} - E_B(h, f_0) \right] Af_0
\]

3. Use Gröbner–Alekseev formula to get

\[
E_B(h, f_0) - e^{hB_{h/2}} f_0 = \int_0^h e^{(h-\tau)B_{h/2}} (B - B_{h/2}) E_B(\tau, f_0) \, d\tau
\]

4. Gives a condition on \(B - B_{h/2} \).

5. Note that \(f_0 \) is an arbitrary initial value for the Strang splitting operator.
Consistency

Bounds

1. Compare the terms by employing a quadrature rules.
2. We have to estimate e.g.
 \[
 \left[e^{hB_{h/2}} - \partial_2 E_B(h, f_0) \right] A f_0 = \partial_2 \left[e^{hB_{h/2}} - E_B(h, f_0) \right] A f_0
 \]
3. Use Gröbner–Alekseev formula to get
 \[
 E_B(h, f_0) - e^{hB_{h/2}} f_0 = \int_0^h e^{(h-\tau)B_{h/2}}(B - B_{h/2})E_B(\tau, f_0) \, d\tau
 \]
4. Gives a condition on \(B - B_{h/2} \).
5. Note that \(f_0 \) is an arbitrary initial value for the Strang splitting operator.
Consistency

Theorem (Consistency)

Suppose that $B_{h/2}$ is an approximation of order 1 to B and the estimates

\[
\| A^i e^{(h-s)B_{h/2}} (R_2 - i(B) - R_2 - i(B_{h/2})) E_B(s, f_0) \|_X \leq C, \quad i \in \{0, 1, 2\} \tag{1}
\]
\[
\| (R_1(B_{h/2}) - R_1(\partial_2 B f_0)) A f_0 \|_X \leq C, \tag{2}
\]
\[
\| A^{\delta i_2} B_{h/2}^{1+\delta i_0} \varphi_{1+\delta i_0}(h B_{h/2}) A^{1+\delta i_1} f_0 \|_X \leq C, \quad i \in \{0, 1, 2\} \tag{3}
\]
\[
\| A^{\delta i_2} R_{1+\delta i_0} (\partial_2 E_B(\cdot, f_0)) A^{1+\delta i_1} f_0 \|_X \leq C, \quad i \in \{0, 1, 2\} \tag{4}
\]

hold uniformly in t and in $s \in [0, h]$. In addition, suppose that for all $k_j \in \mathbb{N}$, with $\sum_{j=1}^{i+1} k_j = 3 - i$, the estimates

\[
\left\| \left(\prod_{j=1}^{i} D_j^{k_j} \partial_2 E_B(s_j, f(\sigma_j)) A \right) \partial_{s_{i+1}}^{k_{i+1}} E_B(s_{i+1}, f_0) \right\|_X \leq C, \quad i \in \{1, 2\} \tag{5}
\]
\[
\left\| \left(\prod_{k=1}^{3} \partial_2 E_B(s_k - \sigma_k, f(\sigma_k)) A \right) f(s) \right\|_X \leq C, \tag{6}
\]
\[
\left\{ A, \left\{ A, \left\{ A, e^{\frac{s}{2}} A e^{h B_{h/2}} e^{\frac{s}{2}} A \right\} \right\} \right\} f_0 \right\|_X \leq C, \tag{7}
\]

hold uniformly in t as well as in $s \in [0, h]$, $s_j \in [0, h]$, and $\sigma_j \in [0, h]$, where $D_j^{k_j}$ is a differential operator of order k_j in the variables s_j and σ_j. Then Strang splitting is consistent of order 2.
Vlasov–Poisson equations

Definition (Vlasov–Poisson equations in 1+1 dimensions)

\[
\begin{align*}
\partial_t f(t, x, v) &= -v \partial_x f(t, x, v) - E(f(t, \cdot, \cdot), x) \partial_v f(t, x, v) \\
\partial_x E(f(t, \cdot, \cdot), x) &= \int_{\mathbb{R}} f(t, x, v) \, dv - 1 \\
f(0, x, v) &= f_0(x, v),
\end{align*}
\]

Theorem (Uniqueness, existence, and regularity)

Assume that \(f_0 \in C_{\text{per}, c}^m \) is non-negative, then \(f \in C^m(0, T; C_{\text{per}, c}^m) \) and \(E(f(t, \cdot, \cdot), x) \) as a function of \((t, x)\) lies in \(C^m(0, T; C_{\text{per}}^m) \).

In addition, we can find a \(Q(T) \) such that for all \(t \in [0, T] \) and \(x \in \mathbb{R} \) it holds that \(\text{supp} f(t, x, \cdot) \subset [-Q(T), Q(T)] \).
Definition (Vlasov–Poisson equations in 1+1 dimensions)

\[
\begin{align*}
\partial_t f(t, x, v) &= -v \partial_x f(t, x, v) - E(f(t, \cdot, \cdot), x) \partial_v f(t, x, v) \\
\partial_x E(f(t, \cdot, \cdot), x) &= \int_{\mathbb{R}} f(t, x, v) \, dv - 1 \\
f(0, x, v) &= f_0(x, v),
\end{align*}
\]

Theorem (Uniqueness, existence, and regularity)

Assume that \(f_0 \in C^m_{\text{per}, c} \) is non-negative, then \(f \in C^m(0, T; C^m_{\text{per}, c}) \) and \(E(f(t, \cdot, \cdot), x) \) as a function of \((t, x) \) lies in \(C^m(0, T; C^m_{\text{per}}) \). In addition, we can find a \(Q(T) \) such that for all \(t \in [0, T] \) and \(x \in \mathbb{R} \) it holds that \(\text{supp} f(t, x, \cdot) \subset [-Q(T), Q(T)] \).
Derivative with respect to the initial value

Problem

1. To bound

\[\int_0^h \int_0^{\tau_1} \int_0^{\tau_2} \left(\prod_{k=0}^2 \partial_2 E_B(\tau_k - \tau_{k+1}, f(\tau_{k+1}))A \right) f(\tau_3) \, d\tau_1 \, d\tau_2 \, d\tau_3, \]

investigate \(\partial_2 E_B(t, u_0)g \) as a function of \(u_0 \) and \(g \)

2. Methods of characteristics expresses solution in the form

\[V'_{u_0}(t) = E(u(t, \cdot, \cdot), x) \]
\[u(t, x, v) = u_0(x, V_{u_0}(t)(x, v)). \]

Theorem

The following function is well defined

\[C^m_{\text{per}, c} \times C^n_{\text{per}, c} \rightarrow C^\text{min}(m-1,n)_{\text{per}, c} \]
\[(u_0, g) \mapsto \partial_2 E_B(t, u_0)g. \]
Derivative with respect to the initial value

Problem

1. To bound
\[
\int_0^h \int_0^{\tau_1} \int_0^{\tau_2} \left(\prod_{k=0}^{2} \partial_2 E_B(\tau_k - \tau_{k+1}, f(\tau_{k+1}))A \right) f(\tau_3) \, d\tau_1 \, d\tau_2 \, d\tau_3,
\]
investigate \(\partial_2 E_B(t, u_0)g\) as a function of \(u_0\) and \(g\)

2. Methods of characteristics expresses solution in the form
\[
V'_{u_0}(t) = E(u(t, \cdot, \cdot), x);
\]
\[
u(t, x, v) = u_0(x, V_{u_0}(t)(x, v)).
\]

Theorem

The following function is well defined
\[
C^m_{\text{per},c} \times C^n_{\text{per},c} \to C^{\min(m-1,n)}_{\text{per},c}
\]
\[
(u_0, g) \mapsto \partial_2 E_B(t, u_0)g.
\]
Derivative with respect to the initial value

Problem

1. To bound
\[\int_0^h \int_0^{\tau_1} \int_0^{\tau_2} \left(\prod_{k=0}^{2} \partial_2 E_B(\tau_k - \tau_{k+1}, f(\tau_{k+1})) A \right) f(\tau_3) d\tau_1 d\tau_2 d\tau_3, \]
investigate \(\partial_2 E_B(t, u_0) g \) as a function of \(u_0 \) and \(g \)

2. Methods of characteristics expresses solution in the form
\[V'_{u_0}(t) = E(u(t, \cdot, \cdot), x) \]
\[u(t, x, v) = u_0(x, V_{u_0}(t)(x, v)). \]

Theorem

The following function is well defined

\[C_{\text{per},c}^m \times C_{\text{per},c}^n \rightarrow C_{\text{per},c}^{\min(m-1,n)} \]
\((u_0, g) \mapsto \partial_2 E_B(t, u_0) g. \)
Convergence

Consistency
1. Application of A, B, $B_{h/2}$ are maps from $C^m_{\text{per,c}}$ to $C^{m-1}_{\text{per,c}}$.
2. Control derivatives of $Bf(t)$ with respect to time.
3. Control the derivative $\partial_2 E_B(t, u_0)g$.

Stability
Rewrite splitting step, for example, as

$$e^{-hE(f_{h/2}, x)} \partial_v f_0(x, v) = f_0(x, v - E(f_{h/2}, x)h).$$

Theorem (Convergence)
Suppose $f_0 \in C^3_{\text{per,c}}$, f_0 is non-negative and $f_{h/2}$ is an approximation to $f(h/2)$ of order 1. Then Strang splitting for the Vlasov–Poisson equations is convergent of order 2 (with respect to the L^1 norm).
Convergence

Consistency

1. Application of A, B, $B_{h/2}$ are maps from $C_{\text{per, } c}^m$ to $C_{\text{per, } c}^{m-1}$
2. Control derivatives of $Bf(t)$ with respect to time
3. Control the derivative $\partial_2 E_B(t, u_0)g$

Stability

Rewrite splitting step, for example, as

$$e^{-hE(f_{h/2}, x)} \partial_v f_0(x, v) = f_0(x, v - E(f_{h/2}, x)h).$$

Theorem (Convergence)

Suppose $f_0 \in C_{\text{per, } c}^3$, f_0 is non-negative and $f_{h/2}$ is an approximation to $f(h/2)$ of order 1. Then Strang splitting for the Vlasov–Poisson equations is convergent of order 2 (with respect to the L^1 norm).
Convergence

Consistency

1. Application of $A, B, B_{h/2}$ are maps from $C_{\text{per},c}^m$ to $C_{\text{per},c}^{m-1}$
2. Control derivatives of $Bf(t)$ with respect to time
3. Control the derivative $\partial_2 E_B(t, u_0)g$

Stability

Rewrite splitting step, for example, as

$$e^{-hE(f_{h/2},x)} \partial_v f_0(x, v) = f_0(x, v - E(f_{h/2}, x)h).$$

Theorem (Convergence)

Suppose $f_0 \in C_{\text{per},c}^3$, f_0 is non-negative and $f_{h/2}$ is an approximation to $f(h/2)$ of order 1. Then Strang splitting for the Vlasov–Poisson equations is convergent of order 2 (with respect to the L^1 norm).
Convergence

Consistency

1. Application of A, B, $B_{h/2}$ are maps from $C_{\text{per,c}}^m$ to $C_{\text{per,c}}^{m-1}$
2. Control derivatives of $Bf(t)$ with respect to time
3. Control the derivative $\partial_2 E_B(t, u_0)g$

Stability

Rewrite splitting step, for example, as

$$e^{-hE(f_{h/2},x)}\partial_v f_0(x, v) = f_0(x, v - E(f_{h/2}, x)h).$$

Theorem (Convergence)

Suppose $f_0 \in C_{\text{per,c}}^3$, f_0 is non-negative and $f_{h/2}$ is an approximation to $f(h/2)$ of order 1. Then Strang splitting for the Vlasov–Poisson equations is convergent of order 2 (with respect to the L^1 norm).
Convergence

Consistency

1. Application of A, B, $B_{h/2}$ are maps from $C_{\text{per,c}}^m$ to $C_{\text{per,c}}^{m-1}$
2. Control derivatives of $Bf(t)$ with respect to time
3. Control the derivative $\partial_2 E_B(t, u_0)$

Stability

Rewrite splitting step, for example, as

$$e^{-hE(f_{h/2}, x)} \partial_v f_0(x, v) = f_0(x, v - E(f_{h/2}, x)h).$$

Theorem (Convergence)

Suppose $f_0 \in C_{\text{per,c}}^3$, f_0 is non-negative and $f_{h/2}$ is an approximation to $f(h/2)$ of order 1. Then Strang splitting for the Vlasov–Poisson equations is convergent of order 2 (with respect to the L^1 norm).
Definition (Landau damping in 1+1 dimensions)

The Vlasov–Poisson equations together with the initial value

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} e^{-v^2/2} (1 + \alpha \cos(0.5x)) \]

on the domain \([0, 4\pi] \times \mathbb{R}\).
Definition (Landau damping in 1+1 dimensions)

The Vlasov–Poisson equations together with the initial value

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} e^{-v^2/2} (1 + \alpha \cos(0.5x)) \]

on the domain \([0, 4\pi] \times \mathbb{R}\).

Landau damping

1. **Popular test problem**
2. **Linear Landau damping** (\(\alpha = 0.01\))
3. **Non-linear Landau damping** (\(\alpha = 0.5\))
Definition (Landau damping in 1+1 dimensions)

The Vlasov–Poisson equations together with the initial value

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} e^{-v^2/2} (1 + \alpha \cos(0.5x)) \]

on the domain \([0, 4\pi] \times \mathbb{R}\).
Introduction Convergence VP Numerical experiments

Landau damping

Definition (Landau damping in 1+1 dimensions)
The Vlasov–Poisson equations together with the initial value

\[f_0(x, v) = \frac{1}{\sqrt{2\pi}} e^{-v^2/2} (1 + \alpha \cos(0.5x)) \]

on the domain \([0, 4\pi] \times \mathbb{R}\).

Landau damping

1. Popular test problem
2. Linear Landau damping (\(\alpha = 0.01\))
3. Non-linear Landau damping (\(\alpha = 0.5\))
Non-linear Landau damping

Figure: Approximation compared to a reference solution at $t = 1$. Discontinuous Galerkin approximation in space (order 2, $N_x, N_v = 80$).
Linear Landau damping

Figure: Approximation compared to a reference solution at $t = 1$. Discontinuous Galerkin approximation in space (order 2, $N_x, N_v = 80$).
Convergence analysis of Strang splitting

Thank you for your attention