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Abstract

The increasing incidence of mass developments of Cyanobacteria in fresh- and brackish water is 
a matter of growing concern due to the production of toxins that threaten human and livestock 
health.  The toxins that are produced by freshwater Cyanobacteria comprise hepatotoxins (cyclic 
peptides such as microcystins and nodularin, as well as alkaloids such as cylindrospermopsin) and 
neurotoxins (alkaloids such as anatoxin-a, anatoxin-a(S) and saxitoxins).  The variation in toxicity 
between and within species of Cyanobacteria has been recognised for a long time.  However, the 
toxic and non-toxic genotypes within a species cannot be discriminated under the microscope, 
which has been a major obstacle in identifying those factors that influence toxin production both 
in the laboratory and in the field.  During the last decade, major advances were achieved due to 
the elucidation and functional characterisation of genes, such as the gene cluster encoding the 
synthesis of the hepatotoxic heptapeptide, microcystin.  Genetic techniques, in particular, have 
been used to explore (i) the genetic basis, biosynthesis pathways, and physiological regulation of 
toxin (microcystin) production, (ii) gene loss processes resulting in a patchy distribution of the 
microcystin synthetase gene cluster among genera and species, as well as (iii) the distribution and 
abundance of the microcystin genes in the environment.  In recent years, experience in detecting 
microcystin genes directly in the field has increased enormously and robust protocols for the 
extraction of DNA and the subsequent detection of genes by PCR (polymerase chain reaction)- 
based methods are now available.  Due to the high sensitivity of PCR, it is possible to detect toxic 
genotypes long before a toxic cyanobacterial bloom may occur.  Consequently, waterbodies that 
are at risk of toxic bloom formation can be identified early on in the growing season along with 
environmental factors that can potentially influence the abundance of toxin producing genotypes.

Keywords: Microcystin; nodularin; cylindrospermopsin; saxitoxin; physiological regulation; evolution; 
environmental regulation; real-time PCR; monitoring.

Introduction

Cyanobacteria (blue-green algae) constitute the most 

primitive and ancient organisms with oxygen-generating 
photosynthesis on earth.  They occur in both aquatic and 
terrestrial habitats, dominate extreme environments such 
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as ultraoligotrophic oceans or the soil crusts of semi-arid 
areas, and in freshwater systems they frequently dominate 
and form surface blooms due to a number of adaptations 
rendering them competitively superior to other 
phytoplankton (Dokulil & Teubner, 2000).  The increasing 
incidence of mass developments of Cyanobacteria is a 
matter of growing concern, however, due to the production 
of toxins (so-called ‘cyanotoxins’) that threaten humans 
and livestock (Chorus & Bartram, 1999; Chorus et al., 2000; 
Carmichael, 2001).

For many years cyanotoxins have been classified 
according to their symptoms as observed in humans 
and vertebrates: heptatotoxins (such as microcystins, 
nodularin and cylindrospermopsin), neurotoxins (such 
as anatoxin-a, anatoxin-a(S) and saxitoxins) and irritant-
dermal toxins (Carmichael, 2001).  The human exposure 
routes include drinking water, dialysis, recreational 
activities (Chorus et al., 2000) and the transfer of the 
toxins via the food chain, i.e. through fish, mussels and 
larger crustaceans (Ibelings & Chorus, 2007).  To help in 
the assessment of health and environmental risk, in 1997 
the World Health Organization (WHO) published a first 
guideline on the tolerable concentration of the hepatotoxic 
microcystin-LR in drinking water (Chorus & Bartram, 
1999).  Most of the naturally occurring chemicals for which 
the guideline values were derived are inorganic.  The 
only organic chemical is microcystin-LR (WHO 2006).

The first chemical structures of the toxins that 
are produced by Cyanobacteria were derived in the 
period 1970–1990: Devlin et al. (1977) described the 
structure of the neurotoxin anatoxin-a and Botes et 
al. (1984) were the first to describe the structure of the 
hepatotoxin microcystin-LA.  Subsequently, the number 
of fully characterised toxin variants greatly increased 
(Carmichael, 1992; Rinehart et al., 1994; Sivonen & Jones, 
1999; Harada et al., 2004).  In parallel, the molecular 
mechanisms of toxification were elucidated (MacKintosh 
et al., 1990; Carmichael, 1994; Goldberg et al., 1995; Kuiper-
Goodman et al., 1999).  Later progress was achieved in 
the detection and quantification of cyanobacterial toxins 
in the environment (Codd et al., 1989; Codd et al., 1994; 

Harada et al., 1996) as well as in the global distribution and 
occurrence of toxic Cyanobacteria (Sivonen & Jones, 1999).

Since 1996, the identification of the genes that are 
involved in toxin synthesis, such as microcystin synthesis in 
Cyanobacteria, opened a new avenue of research (Meißner 
et al., 1996; Dittmann et al., 1997).  While it had been known 
for a long time that toxic and non-toxic strains coexist in 
surface water (Carmichael & Gorham, 1981), these could 
not be distinguished under the microscope.  It was now 
possible, however, to investigate the genetic basis of this 
phenomenon and techniques now allow the detection 
of toxic genotypes.  It is our aim to review the available 
information on the genetic basis of toxin production 
and how genetic techniques have been used to elucidate 

the regulation of toxin production, 
gene loss processes contributing to the patchy 
distribution of the genes involved in toxin production, 
and 
the distribution and abundance of the genes encoding 
toxin production in the environment.  

Since the mcy gene cluster encoding the synthesis of the 
toxic heptapeptide microcystin was the first that was 
characterised, most results up to date have been obtained 
on this group of hepatotoxins.  However, analogous 
applications may arise for other toxins in the near future.  
It is beyond the present scope to review all the studies that 
have been conducted on the detection and regulation of the 
genes that are involved in toxin production.  Instead, the 
reader is referred to recent reviews (Ouellette & Wilhelm, 
2003; Dittmann & Börner, 2005; Neilan et al., 2008; Pearson 
& Neilan, 2008; Sivonen, 2008; Sivonen & Börner, 2008).  
In this review, we focus on the hepatotoxins microcystin, 
nodularin and cylindrospermopsin, and the neurotoxin 
saxitoxin. 

The genetic basis of microcystin 
and nodularin production

Microcystins are produced by the planktonic freshwater 
genera Microcystis, Anabaena, Anabaenopsis, Planktothrix and 
Nostoc (Sivonen & Jones, 1999).  Microcystin production 
has also been documented, however, in a broad range of 

1.
2.

3.
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terrestrial genera (Honkanen et al., 1995), for 
example in Hapalosiphon (Prinsep et al., 1992), 
and recently in the fresh- and brackish water 
genera Arthrospira, Oscillatoria, Phormidium, 
Plectonema, Pseudanabaena, Synechococcus 
and Synechocystis (Sivonen & Börner, 2008).  
In contrast, the closely related nodularin has 
been characterised from the brackish water 
species Nodularia spumigena only, while in 
the marine sponge, Theonella swinhoei, a 
nodularin analogue called motuporin has 
been found (Sivonen & Jones, 1999).

Microcystins are cyclic heptapeptides 
and share the common structure cyclo 
(- D-Ala(1) - X(2) - D-MAsp(3) - Z(4) - Adda(5) 
- D-Glu(6) - Mdha(7)), where X and Z are 
variable L-amino acids (e.g. microcystin 
(MC)-LR refers to leucine and arginine 
in the variable positions), D-MAsp is D-
erythro-β-iso-aspartic acid, Adda is (2S, 3S, 
8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-
10-phenyldeca-4,6-dienoic acid, and Mdha 
is N-methyl-dehydroalanine (Carmichael et 
al., 1988).  Considerable structural variation 
has been reported most frequently in 
positions 2, 4, and 7 of the molecule and 
more than 65 structural variants have been 
characterised (molecular weight between  
909 da and 1115 da) either from field samples 
or from isolated strains (Diehnelt et al., 
2006).  Nodularin (824 da) and motuporin 
(812 da) are both pentapeptides containing 
N-methyl-dehydrobutyrine (Mdhb) instead 
of Mdha(7), and lack D-Ala(1) and X(2) when compared 
with microcystin.  Nodularin differs from motuporin 
due to the substitution of L-Arg(4) by L-Val(4) (Fig. 1).

Microcystins and nodularins are synthesised by the 
thiotemplate mechanism characteristic for non-ribosomal 
peptide synthesis (NRPS), polyketide synthesis (PKS) 
and fatty acid synthesis (Fischbach & Walsh, 2006).  The 
microcystin (mcy) gene cluster contains peptide synthetases, 
polyketide synthases and tailoring enzymes that are 

encoded by ten (Microcystis, Anabaena) or nine (Planktothrix, 
Nodularia) genes (Fig. 2, Tillett et al., 2000).  Each module 
of the multifunctional peptide synthetase contains specific 
functional domains for activation (aminoacyl adenylation 
domain) and thioesterification (peptide carrier domain) 
of the amino acid substrate and for the elongation  
(condensation domain) of the growing peptide (Tillett et al., 
2000).  Up to date, the mcy gene clusters from Microcystis, 
Planktothrix, Anabaena (Nishizawa et al., 1999, 2000; Tillett et 

a)

b)

c) d)

Fig. 1.  Chemical structures of the cyanotoxins for which the genetic basis has been 
identified: the cyclic hepatotoxic peptides microcystin (a) and nodularin (b), the 
hepatotoxic alkaloid cylindrospermopsin (c) and the tricyclic neurotoxic alkaloid 
saxitoxin (d).
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al., 2000; Christiansen et al., 2003; Rouhiainen et al., 2004), and 
the closely related nodularin (nda) synthetase gene cluster 
from Nodularia (Moffitt & Neilan, 2004) have been sequenced.

Functional proof for the putative involvement of 
mcy genes in microcystin synthesis has been obtained by 
insertional inactivation in Microcystis aeruginosa PCC7806 
(Dittmann et al., 1997), i.e. by inserting foreign DNA into 
a specific gene to inactivate it.  The mcy gene knock-out 
mutant was totally impaired in microcystin production in 
comparison with the wild type strain, and by this approach 
it could be demonstrated that one gene cluster is encoding 
the production of various structural variants (Dittmann 
et al., 1997).  In these experiments, the transformation 
construct contains a selection marker that is flanked by 
homologous sequences on both 5  ́ and 3  ́ ends, and is 
introduced into the cell by conjugation or other techniques 
(Thiel, 1994).  In general, however, very few Cyanobacteria 
are amenable to genetic manipulation (Flores et. al., 2008), 
with Planktothrix agardhii being one of the rare cases of 

toxin-producing Cyanobacteria that have been genetically 
manipulated repeatedly (Christiansen et al., 2003; Ishida 
et al., 2007; Philmus et al., 2008).  Other species amenable 
to genetic manipulation include the red-pigmented 
P. rubescens; for example, in our laboratory the insertional 
inactivation of the mcyD gene of the P. rubescens strain 
No21/2 resulted in the complete inactivation of microcystin 
synthesis when compared with the wild type (Fig. 3). 

The genetic basis of 
cylindrospermopsin production

The structure of cylindrospermopsin was first described 
from Cylindrospermopsis (Ohtani et al., 1992).  Later on it 
was described from Umezakia natans isolated from a lake in 
Japan as well as Aphanizomenon ovalisporum, Aphanizomenon 
flos-aquae, Anabaena bergii and Raphidiopsis curvata (Sivonen 
& Börner, 2008).

Fig. 2.  Scheme of the structural organisation of the microcystin (mcy) gene clusters from Microcystis (Nishizawa et al., 1999, 2000; Tillett et al., 
2000), Planktothrix (Christiansen et al., 2003) and Anabaena (Rouhiainen et al., 2004) and of the nodularin (nda) synthetase gene cluster from 
Nodularia (Moffitt & Neilan, 2004).  Arrows indicate the direction of transcription, in which the (bi)-directional promoter sites have been 
indicated.  The scale indicates the length of the gene clusters in kilo base pairs (kbp).  



DOI: 10.1608/FRJ-2.1.2

35The genetic basis of toxin production in Cyanobacteria

Freshwater Reviews (2008) 2, pp. 31-50

Cylindrospermopsin is a cyclic guanidine alkaloid 
hepatotoxin (molecular weight 415 da).  In contrast to the 
microcystins, the structural variability is much lower, i.e. 

three variants of the cylindrosper-
mopsin molecule have been described 
(Sivonen & Börner, 2008).  Inspection 
of the structure of cylindrospermopsin 
suggested a polyketide origin of the 
alkaloid (Fig. 1, Burgoyne et al., 2000).  
Indeed, isotope-labelled precursor 
feeding experiments revealed the 
incorporation of five acetate units 
with guanidinoacetic acid serving as 
the starter unit (Burgoyne et al., 2000).  
A screening of 13 Cylindrospermopsis 
strains revealed that the presence 
of PKS and NRPS genes was linked 
to cylindrospermopsin production 
(Schembri et al., 2001).  Subsequently, 
Shalev-Alon et al. (2002) identified an 
amidinotransferase in Aphanizomenon 
ovalisporum that has been suggested 
to transfer the amidino group from 
L-arginine to glycine in the starter 
unit.  Most recently the putative 
cylindrospermopsin biosynthesis 
gene cluster encoding an amidi-
notransferase (CyrA), one mixed 
PKS/NRPS module (CyrB), four 
PKS modules (CyrC-CyrF) and 
additional tailoring enzymes has 
been described and a pathway 
of cylindrospermopsin synthesis 
has been proposed (Kellmann  
et al., 2006; Mihali et al., 2008).  
Biochemical proof for the role of the cyr 
gene cluster in cylindrospermopsin 
biosynthesis is lacking.  However, 
the screening of 17 Cylindrospermopsis 
strains revealed that cyrJ, encoding 
a sulphotransferase putatively 
catalysing the sulphation of the C-12 

atom, was present only in cylindrospermopsin-producing 
strains indicating the involvement of the cyr gene cluster 
in cylindrospermopsin synthesis (Mihali et al., 2008).

a) b)

c)

Fig. 3.  (a) Inactivation of the mcyD gene through insertional inactivation via homologous 
recombination.  The transformation construct (K.O.mcyDCmR) contains a selection 
marker (CmR, 1900 bp, in black ) that is flanked by homologous sequences on both 5  ́and 
3  ́ends.  (b) Testing the full segregation of the mcyD mutation in P. rubescens strain No21/2 
by PCR using primers specific to the flanking region of the construct inserted into mcyD 
(sequence position 10036–10521 of Access. No AJ441056, Christiansen et al., 2003, 2008).  
While the wildtype (WT) gives the calculated PCR product of 500 bp, the K.O. (knock 
out) mcyD mutant gives only an amplicon of 500 bp + 1900 bp (CmR fragment) = 2400 
bp.  (c) Analysis of the aqueous-methanolic extracts of WT P. rubescens strain No21/2 
(upper chromatogram) and K.O. mcyD mutant deficient in microcystin synthesis (lower 
chromatogram), by high performance liquid chromatography (Kurmayer et al., 2004).   
1, 2 represent microcystin-HtyR (17.9 min) and microcystin-LR (19.0 min), respectively.
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The genetic basis of saxitoxin 
production

Saxitoxins, better known as paralytic shellfish poisons 
(PSPs), are produced by certain genera of marine 
dinoflagellates (Landsberg 2002) and Cyanobacteria.  
Among Cyanobacteria, saxitoxins have been found 
in Aphanizomenon flos-aquae, Aphanizomenon sp., 
Aphanizomenon issatschenkoi, Anabaena circinalis, Cylindros-
permopsis raciborskii, Planktothrix sp. and benthic Lyngbya 
wollei (Sivonen & Börner, 2008).  A study on the distribution 
of PSPs among 234 diverse isolates of Australian freshwater 
and marine microalgae revealed five species containing 
PSPs, including only one freshwater cyanobacterium 
(Anabaena circinalis) (Negri et al., 2003).

Saxitoxins (Fig. 1, molecular weight 299 da) are a 
group of alkaloid tricyclic compounds that are either non-
sulphated (saxitoxins and neosaxitoxin), single sulphated 
(gonyautoxins), or doubly sulphated (C-toxins) resulting in 
more than 20 structural analogues (Shimizu, 1993; Sivonen 
& Jones, 1999; Kellmann & Neilan, 2007).  Isotope-labelled 
precursor feeding experiments suggested that the skeleton 
of the tricyclic ring system is formed by the Claisen-type 
condensation of acetate on the α-carbon of arginine with 
the loss of the carboxyl group of arginine and subsequent 
amidation and cyclisation (Shimizu et al., 1984; Shimizu, 
1993).  The side-chain carbon is derived from methionine 
via S-adenosylmethionine (SAM).  This has been 
confirmed by in vitro experiments (Kellmann & Neilan, 
2007).  Recently, a candidate saxitoxin (sxt) biosynthesis 
gene cluster comprising 31 open reading frames has been 
described from Cylindrospermopsis raciborskii (Kellmann 
et al., 2008).  Comparative sequence analysis of the sxtA 
gene revealed the occurrence of four catalytic domains, 
SxtA1–SxtA4, forming a new type of polyketide synthase 
which can putatively execute the methylation of acetate 
and a Claisen condensation reaction between propionate 
and arginine.  Biochemical proof for the role of this 
gene cluster in saxitoxin biosynthesis is lacking.  In the 
absence of suitable tools for genetic transformation, 
the functions of the open reading frames (ORFs) were 
bioinformatically inferred and this prediction was 

combined with the liquid chromatography-tandem mass 
spectrometry analysis of the biosynthetic intermediates.

Regulation of toxin production

It is generally accepted that the toxins that are produced 
by Cyanobacteria are secondary metabolites (Carmichael, 
1992), i.e. those compounds that are not used by the 
organism for its primary metabolism.  During the last 
two decades, the regulation of toxin net production has 
been addressed by a number of studies that quantified 
the effects of various environmental conditions on the 
toxin content for individual strains in the laboratory, 
e.g. temperature, irradiance, macronutrients (nitrate, 
ammonium, phosphate), trace elements (iron and others), 
salinity, CO2 and pH (Sivonen & Jones, 1999).  The toxins 
concerned commonly included were the microcystins, 
nodularin and anatoxin-a.  In the majority of these studies, 
the different environmental factors were indeed found to 
induce changes in the toxin content, but usually by a factor 
of no more than three to four.  In a few cases (Rapala et al., 
1997) up to a 30-fold variation under different temperature 
conditions was reported when the growth of the strains 
was poor.  In consequence, Orr & Jones (1998) suggested 
microcystin production to be coupled linearly to the cell 
division of the organism and concluded that – although 
microcystin is a secondary metabolite – it instead displays 
the attributes of essential intracellular nitrogenous 
compounds in Cyanobacteria.  This correlation does not 
necessarily imply that toxin synthesis is causally related 
to the cell division cycle (Kosol et al., 2009).  According to 
the Orr & Jones theory, however, the influence of all the 
possible environmental factors is indirect, through their 
effect on cell division and growth, whereas the direct 
effects on microcystin biosynthesis are of a relatively minor 
importance.

In parallel to the elucidation of the mcy gene cluster, 
the initiations and regulation of its transcription were also 
investigated.  Firstly, for the mcy gene cluster of Microcystis, 
the promoter region was found to be bi-directional with 
two different transcription initiation sites under high and 
low light conditions (Kaebernick et al., 2002).  In addition, 
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the promoter region was reported to contain binding 
regions for transcription factors, such as a ferric uptake 
regulator (Fur) that usually represses gene expression in 
the presence of Fe2+ (Martin-Luna et al., 2006a).  Indeed 
the Fur protein was shown to bind the promoter region in 
vitro, by protein-DNA gel retardation assays (Martin-Luna 
et al., 2006b).  Notably, an in vivo inter-relationship between 
the extracellular iron availability and mcy transcription 
rate has been reported recently (Sevilla et al., 2008).

Nishizawa et al. (1999) and Kaebernick et al. (2000) 
emphasised direct effects of irradiance, i.e. high light vs. 
low light or dark conditions, on the transcription of the mcy 
genes encoding microcystin biosynthesis in Microcystis.  
Most importantly, an increased transcription of mcy 
genes under high light (68 µmol m-2 s-1) and red light was 
documented while the transcription rates became reduced 
under low light (16 µmol m-2 s-1) and dark conditions 
(Kaebernick et al., 2000).  Blue light and artificial stress 
factors also reduced the mcy transcription, however it is 
important to note that mcy transcription never ceased.  The 
same positive relationship between mcy transcription rates 
and irradiance was observed for Planktothrix agardhii (Tonk 
et al., 2005), although the mcy transcription rates decreased 
at the highest light conditions (> 100 µmol m-2 s-1).  Tonk 
et al. (2005) were the first to report a positive relationship 
between the mcyA transcript level and the total microcystin 
net production rate as determined under continuous culture 
conditions.  When studying the influence of irradiance 
and temperature, the interrelationship between both 
factors on the mcy transcript level was observed (Kim et al., 
2005).  Taken together, the transcriptional results confirm 

the view that the synthesis of microcystin is related to cell 
division and growth, although the amount of microcystin 
that is produced is regulated in response to environmental 
factors such as light (Wiedner et al., 2003; Tonk et al., 2005) 
and macronutrients (Lee et al., 2000; Long et al., 2001).

Evolution of toxin genes

The high similarity of the mcy synthesis gene cluster 
between genera is remarkable (Fig. 2).  Except for the 
tailoring enzymes mcyI (a 2-hydroxy-acid hydrogenase, 
Pearson et al., 2007), mcyF (an aspartate racemase, Sielaff et 
al., 2003) and mcyT (a type II thioesterase, Christiansen et al., 
2008), all other genes mcyABCDEGHJ are always present.  
The horizontal transfer of the total or partial mcy gene 
cluster has been suggested, not least because of the patchy 
distribution of the mcy gene cluster among the strains 
and genera, but also because elements that are putatively 
involved in horizontal transfer such as transposases have 
been identified at the downstream 3  ́ end of the gene 
clusters (Tillett et al., 2000; Tillet et al., 2001; Moffitt & 
Neilan, 2004).  A type IV pilus system that has been shown 
to be involved in DNA uptake in many bacteria has been 
described in Microcystis and it has been suggested that this 
system may allow for the receiving of the mcy gene cluster 
via lateral transfer (Nakasugi et al., 2007).

Other evidence, however, supports the role of vertical 
inheritance and gene loss processes.  Surprisingly, the 
phylogenetic tree calculated from the housekeeping 
genes 16S rDNA and rpoC1 showed congruency with the 
phylogenetic tree as calculated from the genes mcyA, mcyD 

Fig. 4.  Phylogenetic congruence between housekeeping and microcystin synthetase genes.  Congruence between the topology as revealed 
from housekeeping genes of the producer organism (16S rRNA, rpoC1, rpoB, tufA, rbcL) on the left and the microcystin synthetase genes 
(mcyD, mcyE, and mcyG) on the right.  Bootstrap values above 50 % from 1000 replicates are given at the nodes.  Redrawn from Fewer et al. 
(2007).  Copyright © BioMed Central [BMC Evolutionary Biology, 7, 183].
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and mcyE of the microcystin synthetase gene cluster for 
all genera (Rantala et al., 2004; Fewer et al., 2007, Fig. 4).  
Phylogenetic trees that are derived from different genes 
are congruent only if reproduction is strictly clonal and 
vertical inheritance is of major importance when compared 
with intra- or extrachromosomal genetic recombination 
(Maynard Smith et al., 2000).  Consequently, several 
deletion events of the mcy gene cluster must be invoked in 
order to explain the patchy distribution of the mcy genes 
among the different genera of the Cyanobacteria that 
produce microcystin today: section I (sensu Rippka et al., 
1979, including unicellular species such as Microcystis, 
Synechocystis, Synechococcus etc), section III (including 
filamentous species such as Planktothrix (Oscillatoria), 
Phormidium etc) and sections IV, V (including filamentous 
organisation and the formation of heterocysts, Anabaena, 
Nodularia, Nostoc and Hapalosiphon).  The hypothesis that 
Cyanobacteria share a common microcystin-producing 
ancestor implies that potentially all Cyanobacteria are 
able to produce microcystin and indeed the number of 
cyanobacterial genera discovered to produce microcystin 
continues to increase (Sivonen & Börner, 2008).  Rantala et 
al. (2004) further concluded that a common ancestor of a 
cyanobacterium containing the mcy gene cluster must have 
existed before the mesoproterozoic (1000–1600 million years), 

which was considerably before the time of the emergence of 
eukaryotic organisms potentially feeding on Cyanobacteria.

Other reports on the occurrence of the inactive mcy 
genotypes of Planktothrix spp. (Kurmayer et al., 2004) can 
be taken to support the mcy gene loss hypothesis, as can 
the discovery of relatively large deletions and insertions of 
transposable elements affecting mcy genes (Christiansen 
et al., 2006).  According to Rantala et al. (2004), the patchy 
distribution of mcy genes among the strains of a single 
species is also the result of the loss processes of the mcy gene 
cluster, although these loss processes must have occurred 
over a much shorter evolutionary timescale.  We recently 
screened a larger number of Planktothrix strains that lack 
the mcy gene cluster for the presence of remnants of the mcy 
genes, which are indicative of a putative gene loss event 
(Christiansen et al., 2008).  To minimise the chance that the 
same Planktothrix population has been sampled repeatedly, 
25 non-toxic strains isolated from eight European countries 
were selected.  Notably, in all 25 non-toxic strains the 
flanking regions of the mcy gene clusters occurred with 
mcy remnants flanked by identical copies of a transposable 
element.  The majority of those non-toxic strains still 
contain mcyT, a type II thioesterase that was shown to be 
involved in microcystin synthesis (Fig. 5, Christiansen et 
al., 2008).  These results provide clear evidence against the 

Fig. 5.  Schematic view of the mcy operon remnants and flanking regions in strains of Planktothrix that lost the mcy gene cluster.  The four 
types (I–IV) of gene cluster deletion events are shown. Vertical straight lines enclose the identical 5  ́and 3  ́ends.  The grey regions represent 
the remnants of insertion elements (197 bp) containing short terminal inverted repeats (IR in black) that probably caused the inactivation of 
the mcy gene cluster and subsequently its deletion.  The dotted lines indicate the deleted areas.  From Christiansen et al. (2008).  Copyright 
© Oxford University Press [Molecular Biology and Evolution, 25, 1695-1704].



DOI: 10.1608/FRJ-2.1.2

39The genetic basis of toxin production in Cyanobacteria

Freshwater Reviews (2008) 2, pp. 31-50

role of horizontal transfer of the mcy gene cluster causing 
its patchy distribution among the strains of Planktothrix 
agardhii and Planktothrix rubescens.  The localisation and 
characterisation of the remnants of the mcy gene cluster, 
however, provide the potential to explore the mechanism 
and frequency of mcy gene loss in other Cyanobacteria.

As an alternative to the direct comparison of the mcy 
genes, the sequencing of multiple housekeeping loci has 
been applied to explore the distribution of mcy genes 
among the clades of strains of cyanobacterial species.  
In general, the sequences from multiple housekeeping 
loci from a larger number of strains are concatenated to 
construct a dendrogram (Maynard-Smith et al., 2000).  
Usually the genetic variation on seven gene loci (involved 
in primary metabolism) is recorded, while the ability to 
resolve genotypic clusters also requires large numbers of 
strains (Hanage et al., 2006).  For Microcystis aeruginosa it 
could be shown that within 164 strains the distribution 
of microcystin production shows a clonal dependence, 
i.e. microcystin production occurred in two clades only, 
excluding a recent horizontal transfer of the mcy gene 
cluster between the different phylogenetic branches 
(Tanabe et al., 2007).  This conclusion has been confirmed 
independently by a partial comparison of the flanking 
regions of the mcy gene cluster among nine toxic and seven 
non-toxic strains of M. aeruginosa (Tooming-Klunderud 
et al., 2008).  These results indicate that there is also no 
reason to conclude a frequent horizontal transfer of the 
complete mcy gene cluster between strains of M. aeruginosa.

On the other hand, the homologous recombination of 
shorter gene fragments (< 1000 bp (base pairs)) contributed 
significantly to the incongruent dendrograms obtained 
from specific enzyme domains as a part of the mcy gene 
cluster.  For example, Tanabe et al. (2004) demonstrated 
the occurrence of intragenic and intergenic recombination 
events for the first adenylation domain containing the 
N-methyltransferase located in mcyA of Microcystis, but 
did not find the recombination of genetic regions for the 
O-methyltransferase of mcyJ, the adenylation domain 
of mcyG, and a dehydratase located in mcyD.  Similarly, 
frequent recombination and gene duplication events 
were observed within the adenylation domains of the 

mcyB and mcyC genes in M. aeruginosa (Mikalsen et al., 
2003; Fewer et al., 2007; Tooming-Klunderud et al., 2008) 
and Planktothrix spp. (Kurmayer & Gumpenberger, 2006), 
while the adjacent condensation domains seem to be much 
less affected by genetic recombination (Fewer et al., 2007).  
In summary, these results imply that while horizontal gene 
exchange contributes to the mosaic structure as seen for 
the adenylation domains of the mcyA and mcyB genes, it 
cannot account for the sporadic distribution of the mcy gene 
cluster within the genera of Microcystis and Planktothrix.

Abundance and distribution of toxic 
genotypes in the environment

It has been suggested that specific environmental 
parameters may influence the microcystin concentration 
in surface water through their overall effects on the 
rate of increase or decline in cell numbers of a specific 
culture or strain rather than by individual and specific 
influences on the microcystin biosynthetic pathways (Orr 
& Jones, 1998).  In order to identify those environmental 
factors influencing the abundance of toxin-producing 
genotypes, PCR (polymerase chain reaction) assays 
specified to amplify both the total population of a species 
as well as part of the mcy gene cluster have been designed 
(Kurmayer et al., 2003, 2004; Rantala et al., 2006; Hotto et 
al., 2007).  Rantala et al. (2006) analysed the distribution 
of mcy genes in relation to environmental factors, e.g. 
macronutrients, lake size, phytoplankton biomass and 
secchi depth, among 70 lakes in Finland.  In the majority of 
the samples, mcyE genotypes of the three genera Anabaena, 
Planktothrix, Microcytis occurred.  In contrast to oligotrophic 
and mesotrophic systems, in which one or two genera of 
mcyE genotypes were usually present, a co-occurrence of 
mcyE genotypes of all three genera was found in eutrophic 
and hypertrophic systems.  It is unclear as to whether this 
positive relationship between mcyE occurrence and trophy 
is due to selective factors that favour mcyE genotype 
occurrence or other factors not directly related to the mcyE 
gene.

The sensitivity of PCR, in general, allows for the 
detection of mcy genes in single filaments or colonies 
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of Cyanobacteria that are directly isolated from the 
environment (Kurmayer et al., 2002; Kurmayer et al., 
2004).  Isolating single filaments/colonies of Cyanobacteria 
and describing the genetic structure of cyanobacterial 
populations has become an accepted technique (Barker et 
al., 2000; Hayes et al., 2002; Kurmayer et al., 2004; Lodders 
et al., 2005).  Testing of colonies/filaments of Cyanobacteria 
in parallel with species identification according to 
morphological criteria allows the distribution of specific 
genotypes among specific morphotypes of a cyanobacterial 
species to be investigated.  For example, it has been shown 
that specific morphotypes of Microcystis differ significantly 
in the proportion containing mcy genes (Kurmayer et al., 
2002; Via Odorika et al., 2004).  Typically, morphotypes 
assigned to M. aeruginosa have a high proportion of mcy 
genotypes (> 70 %) while the proportion of mcy genotypes 
among other morphotypes is much lower: M. ichthyoblabe 
(< 20 %) and M. wesenbergii (0 %).  Consequently, the 
variation in abundance of those morphotypes results 
in significant differences in microcystin net production, 
this occurring both along a gradient in the Microcystis 
colony size (Kurmayer et al., 2003) and during the 
seasonal increase and decrease of the total Microcystis 
population (Park et al., 1993; Harada et al., 2001).

In order to directly quantify the toxin genes in a 
given volume of water, quantitative real-time PCR 
assays were developed (Kurmayer & Kutzenberger, 
2003; Vaitomaa et al., 2003; Rinta-Kanto et al., 2005; 
Koskenniemi et al., 2007).  In particular, the Taq nuclease 
assay (TNA) has been introduced, which is based on 

the quantification of the total population of a specific 
cyanobacterium by a TNA targeted to a housekeeping 
gene (i.e. the intergenic spacer region within the 
phycocyanin operon) and; 
another TNA targeted to the mcy-containing 
subpopulation (Kurmayer & Kutzenberger, 2003).  

This principle has been applied to control for uncertainties 
in quantifying toxic genotypes; for example, due to a 
physiological variation of the genome copy number 
(Kurmayer & Kutzenberger, 2003).  Although there are 
limitations to the accuracy of this technique in estimating 
genotype proportions, relating to the semi-logarithmic 
calibration curves, the real-time PCR technique is the only 
quantitative technique available.

A recent interlaboratory comparison of TNAs 
between three different real-time PCR instruments 
(ABI7300, GeneAmp5700, ABI7500) revealed that 

1.

2.

a) b)

Fig. 6.  (a) Proportion of Microcystis mcyB genotypes in hypertrophic Lake Wannsee (Berlin, Germany) from July 1999 to October 2000 
determined via the Taq Nuclease assay using three instruments (ABI7300, GeneAmp5700, ABI7500), mean (± SE).  The cell number 
determined in the microscope is shown by the black dots and the solid line (y-axis on the right).  (b) Box-plots showing the median and the 
5 % and 95 % percentiles during the same period.  From Schober et al. (2007).  Copyright © Elsevier [Journal of Microbiological Methods, 
69, 122-128].
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all of the research groups were able to follow the 
variation in mcy genotype proportion, both within the 
mixtures of strains in the laboratory as well as in field 
samples, and;
the proportions of mcy genotypes were overestimated 
or underestimated by 0–72 % and 0–50 %, respectively 
(Schober et al., 2007).  

However, the averaged mcy genotype proportions showed 
correspondence between the three instruments resulting 
in the same conclusion, i.e. that the proportion of mcy-
containing genotypes in a population of Microcystis in 
Lake Wannsee (Berlin, Germany) was low (10–20% of the 
population, Fig. 6).  Yoshida et al. (2007) also reported a 
low percentage, but continuous occurrence, of the mcyA 
genotype in Lake Mikata, Japan (between 0.5 % and 35 %).  
Similarly, in the much larger southern and western basin 
of Lake Erie, the proportion of Microcystis mcyD genotypes 
that was calculated from the estimated gene copies and cell 
abundances was found to be relatively low: 0.4 % to 32 % 
(mean 8.2 % ± SE 2.7 %) based on Microcystis 16S rDNA 
gene copies, and 0.3 % to 136 % (mean 29 % ± 11 %) based 
on Microcystis cell numbers (Table 5 in Rinta-Kanto et al., 
2005).  The relatively low proportion of mcy genotypes 
in Microcystis that can be observed across the Northern 

1.

2.

hemisphere implies that only a small part of the Microcystis 
population is of relevance for the microcystin net production in 
lake water (Kurmayer et al., 2003; Hotto et al., 2008).  The 
relatively low proportion of mcy genotypes in populations 
in general could be explained if the mcy gene cluster loss 
events, as described in the above section, occurred not 
relatively recently but a long time ago during the evolution 
from a common microcystin-producing ancestor of the 
Cyanobacteria that is assigned to Microcystis today.  Indeed, 
for the green-pigmented Planktothrix agardhii occurring in 
shallow lakes throughout Europe, we estimated that the 
loss of the mcy gene cluster took place at least 3.6 million 
years ago (Christiansen et al., 2008).

On a seasonal scale, the mcy genotype proportion in 
the Microcystis population in Lake Wannsee was found 
to vary within weeks of sampling (minimum 1 % to 
maximum 38 %), but the average mcy proportions from 
June 1999 to October 2000 were found to be fairly constant 
(mean ± 95% C.L., 11.4 % ± 2.6 %, n = 46) (Kurmayer & 
Kutzenberger, 2003).  No seasonal differences in mcy 
genotype proportion were detected (Fig. 7a).  Accordingly, 
the mcy genotype number was found to increase in 
parallel to the total population as estimated from another 
independent TNA via the phycocyanin gene (Fig. 7b).  

a) b)

Fig. 7.  (a) Proportion of Microcystis mcyB genotypes during different seasonal growth periods periods in Lake Wannsee from June 1999 
to October 2000 (box-plots showing the median and the 5 % and 95 % percentiles).  (b) Comparison between the cell number determined 
under the microscope (x-axis) and that determined via Taq Nuclease assay for the phycocyanin gene PC (black) and mcyB (white) of the 
same population (mean ± 1SE).  From Kurmayer & Kutzenberger (2003).  Copyright © American Society for Microbiology [Applied and 
Environmental Microbiology, 69, 6723-6730, 2003].
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This implies that the abundance of mcy genotypes mainly 
depended on the increase of the total population over a 
range in population density from 102 to 5×105 cells ml- 1 
(Kurmayer & Kutzenberger, 2003).  At present, the 
factors causing the variation in mcy genotype proportion 
in the short-term are poorly investigated, although it 
has been suggested that cyanophages may select phage 
resistant genotypes and indirectly affect a shift between 
mcy-containing and mcy-free genotypes in Microcystis 
(Yoshida et al., 2008).  Theoretical models, however, have 
predicted that these phage-mediated dynamics do not 
lead to the complete extinction of a particular genotype 
but instead to an oscillating abundance of phage resistant 
and less phage resistant clones (Thingstad & Lignell, 1997).  
Notably, the same genotype of Microcystis aeruginosa strain 
PCC7806 was re-isolated 36 years after its isolation from 
Braakman reservoir (The Netherlands) in 1972 (Guljamow 
et al., 2007).  In Lake Steinsfjorden (Norway), the same 
microcystin-producing strains of Planktothrix were isolated 
over a period of 33 years (Rohrlack et al., 2008).  The co-
existence of microcystin-producing and non-microcystin 
producing strains over decades again implies that the 
evolution of microcystin synthesis was relatively slow.

Application of genetic methods in 
monitoring

The potential consequences of cyanobacterial toxins to users 
of recreational waters and in drinking water mean that those 
charged with the management of waters for recreational 
use or water supply require efficient methods to detect the 
toxins and their producers.  Several efficient and sensitive 
chemical analytical methods and bioassays have been 
developed to detect toxins, which are currently applied 
during routine monitoring.  For example, immunoassays 
such as ELISA (Enzyme Linked Immunosorbent Assay) 
are able to estimate very low toxin concentrations 
(ng L- 1) within minutes to hours (Lawton & Edwards, 
2008; Sivonen, 2008).  The sampling effort, including the 
sampling preparation, travel time, and sample extraction 
is still the most limiting factor for the timely identification 
of a potential health risk, this being particularly relevant for 

authorities with large monitoring programmes.  In such 
cases, surveillance protocols comprising initial microscopic 
analysis of the phytoplankton followed by toxin analysis 
triggered only above a specified threshold cell density, have 
proved to be an efficient and effective way of monitoring 
cyanotoxin risks (Watzin et al., 2006).

Monitoring for toxin producers must detect all 
Cyanobacteria that are known to produce a specific toxin.  
For the mcy gene cluster, primers have been derived from 
conserved gene regions located within mcyA and mcyE 
that are able to detect the microcystin and nodularin 
genes of all microcystin/nodularin-producing genera 
(Hisbergues et al., 2003; Rantala et al., 2004; Jungblut & 
Neilan, 2006).  Similarly, gene probes for the detection 
of cylindrospermopsin producers have been developed 
(Schembri et al., 2001; Kellmann et al., 2006).  In general, 
this approach consists of three mandatory steps (Fig. 8): 

DNA extraction from phytoplankton collected on 
filters or single colonies/filaments that have been 
isolated under the microscope (Tillett & Neilan, 2000; 
Schober & Kurmayer, 2006; Srivastava et al., 2007);
(real-time) PCR amplification of genes indicative of 
toxin production; 
detection of PCR products using either agarose gel 
electrophoresis, fluorescence (via real-time PCR), or 
the ligation detection reaction (LDR) linked to a DNA 
microarray (Rantala et al., 2008).

Such an approach could be adopted in parallel with 
routine microscopic inspection of phytoplankton, the 
DNA being extracted from filters or pellets and then used 
as a template in PCR targeted to amplify toxin genes as  
described above.  In order to check for the presence and 
quality of the DNA, each sample is analysed for the 
phycocyanin gene (PC-ITS region, Neilan et al., 1995) 
simultaneously, which is used as a positive control  
(Kurmayer et al., 2002).  Alternatively, a multiplex 
PCR technique that is able to simultaneously detect 
the presence of microcystin-producing Cyanobacteria 
and also Microcystis during one PCR has been 
proposed (Saker et al., 2007).  A multiplex PCR assay 
has also been developed to rapidly identify cylindros-

1.

2.

3.
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permopsin-producing Cyanobacteria, specifically 
Cylindrospermopsis raciborskii (Fergusson & Saint, 2003). 

Due to the high sensitivity of PCR based methods, 
there is the potential to detect toxic genotypes in water a 
long time before the occurrence of a cyanobacterial bloom 
and detectable toxin concentrations.  ‘Cryptic’ toxin-
producing Cyanobacteria, for example those not forming 
a visible surface bloom or those growing on the sediments 
of lakes and rivers, could also be identified by PCR based 
methods.  Consequently, waterbodies or habitats at risk 
of toxic bloom formation could be identified early on 
in the growing season.  Although genetic methods are 
only able to indicate the potential of toxin synthesis, this 
early warning could result in more efficient surveillance 

of waterbodies, with monitoring effort being focused on 
those waterbodies that have been found to have both toxin-
producing genotypes and a high risk of cyanobacterial 
bloom formation.  A few studies have indeed shown 
a significant relationship between the abundance of 
specific toxin genotypes and the concentration of the 
respective toxin: in one, the concentration of nodularin 
was found to be related to the ndaF gene copy number 
(Koskenniemi et al., 2007) and in another, the concentration 
of microcystin was found to be linearly related to the 
concentration of the mcyD genotype in Microcystis 
(Hotto et al., 2008).  More investigations are needed, 
however, to confirm the significance of the relationship 

Fig. 8.  Work flow of a genetic analysis of water samples or isolated colonies of Cyanobacteria to aid risk assessment: 1) extraction of the 
DNA from phytoplankton and benthic algae collected on filters or single cyanobacterial filaments or colonies isolated under the microscope; 
2) PCR amplification using short oligonucleotides (primers) targeted to gene fragments indicative of toxin production; 3) visualisation of 
PCR products by means of DNA staining and agarose gel separation, quantitative real-time PCR, or the ligation detection reaction (LDR) 
coupled to a DNA chip (NTC, nontemplate control).
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between genotype numbers and the respective toxin 
concentration in recreational water and in drinking water.

As an alternative to the manual set-up of PCR, the 
automation of genetic methods, including DNA isolation 
from field samples and the quantitative detection of 
genotypes via real-time PCR, might be possible in the 
near future.  Recently, Rasmussen et al. (2008) developed 
a real-time PCR assay, detecting Cylindrospermopsis and 
three genes encoding cylindrospermopsin production, 
that was optimised both on a fixed and a portable device.  
Their results showed that the reliable limit of detection for 
the assay was 100 copies per reaction or 1000 cells ml-1.  
Fully automated real-time PCR systems, providing results 
within 3 h, are available for monitoring concentrations of  
pathogens such as Legionella and Salmonella in the 
environment.  If these techniques were also applicable 
to Cyanobacteria in the field, results could be transferred 
directly from the sampling site to surveillance authorities and 
reduce the time and effort required for sample processing.

Conclusions

The recent finding that microcystin synthesis evolved  
during ancient times and has not been influenced by 
horizontal gene transfer events recently but has a clonal 
dependence, has important implications for environmental 
studies, water management and risk assessment.  One 
implication is that geographic patterns in microcystin 
production may occur due to linkage disequilibrium 
(predominantly clonal growth).  Linkage disequilibrium 
has already been observed among microcystin/nodularin-
producing Cyanobacteria both across distances of 
hundreds of kilometres (Barker et al., 2000; Tanabe et al., 
2007; Christiansen et al., 2008) as well as over short distances 
of a few kilometres (Kurmayer & Gumpenberger, 2006).

Since the evolution of the microcystin synthesis 
gene clusters appears to be relatively slow, it follows 
that the same mcy genotype can occur within a single 
waterbody for many years.  Possible seasonal shifts in mcy-
containing and mcy-free genotypes among populations of 
Cyanobacteria may occur, however they are not necessarily 
related directly to microcystin production (Christiansen 

et al., 2008; Yoshida et al., 2008).  It is unlikely that in a 
single habitat a population of a cyanobacterial species 
changes from microcystin-producing to completely non 
microcystin-producing and vice versa during seasonal 
development within short periods (months) of time. 

Although knowledge concerning the application of 
genetic techniques to cyanotoxins has increased enormously 
during the last decade, the use of these techniques for 
environmental studies, water management and risk 
assessment is still in its infancy.  Since it is the prerequisite 
for all PCR based methods that the respective biosynthetic  
genes are known, the elucidation of gene clusters  
encoding the synthesis pathways of cyanotoxins 
other than microcystin will provide the basis for 
widening the genetic approach.  The development 
of automated and field-applicable methods will 
contribute to a more simplified integration of 
genetic tools into routine monitoring programmes.
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