Erfolgreiche Suche im „Quanten-Heuhaufen“

Physikalisches Neuland haben Forscher des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) jetzt betreten. Einem Team um Prof. Dr. Rudolf Grimm und Dr. Florian Schreck gelang ein Durchbruch bei fermionischen Quantengasen.
Die Arbeitsgruppe um Prof. Rudolf Grimm (2.v.li.) und Dr. Florian Schreck (re.) in ih …
Die Arbeitsgruppe um Prof. Rudolf Grimm (2.v.li.) und Dr. Florian Schreck (re.) in ihrem Labor. [Foto: IQOQI]

Den Innsbrucker Forschern gelang es  fermionische Elemente zu finden und sie gemeinsam mit amerikanischen und niederländischen Physikern zu charakterisieren. Damit eröffnen die Wissenschaftler ein neues Feld für die Erforschung fundamentaler Fragen der Quantenphysik.

 

Fermionische Teilchen sind Einzelgänger und werden nur dann gesellig, wenn man sie zu Paaren zusammenschließt. Ein Beispiel aus der Natur sind die sogenannten Cooper-Paare, zwei durch starke Wechselwirkung verbundene Elektronen (Fermionen), die für die Supraleitung in sehr stark abgekühlten Materialien verantwortlich sind. Dieses Phänomen des verlustfreien Flusses von elektrischem Strom zu verstehen, ist eines der großen Ziele der modernen Physik. Mit der Herstellung der ersten Bose-Einstein-Kondensate aus Fermionen hat die Forschungsgruppe um Wittgenstein-Preisträger Rudolf Grimm bereits im Jahr 2003 einen international beachteten Durchbruch erzielt. Nun ist es dem Team erstmals gelungen, eine ultrakalte fermionische Gasmischung aus zwei verschiedenen Elementen, Lithium-6 und Kalium-40, herzustellen und jene Feshbach-Resonanzen zu charakterisieren, an denen die Teilchen besonders stark miteinander wechselwirken. Sie berichten darüber in der vergangenen Freitag, erschienenen Ausgabe der Fachzeitschrift Physical Review Letters.

 

Suche nach Nadeln im Heuhaufen

„Wir haben die Wechselwirkung von Lithium-6 und Kalium-40 Atomen bei extrem tiefen Temperaturen aufgeklärt“, erläutert Dr. Florian Schreck. „Das ist das fundamental Neue an unserem Experiment.“ Die quantenmechanischen Wechselwirkungen zwischen diesen Teilchen waren bisher unbekannt und konnten auch theoretisch nicht vorhergesagt werden. In monatelangen Messungen haben die Forscher sich auf die Suche nach so genannten Feshbach-Resonanzen begeben. „Das ist mit der Suche nach vielen, sehr kleinen Nadeln in einem Heuhaufen zu vergleichen“, erklärt Rudolf Grimm. Am Ende waren es 13 solcher Resonanzen, die sie finden konnten. Sind die Feshbach-Resonanzen eines Systems bekannt, können die Physiker durch die Veränderung des angelegten Magnetfeldes die Wechselwirkung der Teilchen beliebig verändern und so zum Beispiel gezielt Moleküle oder Cooper-Paare erzeugen.

 

Internationale Zusammenarbeit

Bevor es aber so weit ist, mussten die Forscher die gefundenen Resonanzen zunächst richtig verstehen. „Das hat uns enormes Kopfzerbrechen bereitet, da anfangs keines der vorhandenen theoretischen Modelle richtig passen wollte“, sagt Prof. Grimm. „Um das Problem zu knacken, bedurfte es einer engen Zusammenarbeit mit Forschern des NIST in Gaithersburg, USA, und niederländischen Physikern an der Universität Amsterdam sowie der Technischen Universität Eindhoven.“ Die Theoretiker entwickelten ein neues Modell, mit dem die Messergebnisse aus Innsbruck interpretiert werden konnten. „Mit diesem Rechenmodell können wir nun alle möglichen Feshbach-Resonanzen für Lithium-Kalium-Mischungen ermitteln“, betont Florian Schreck. Damit haben die Wissenschaftler ein fundamentales Werkzeug für die weitere Erforschung fermionischer Quantengase etabliert. „Als nächstes wollen wir nun stabile ultrakalte Moleküle aus Lithium- und Kaliumatomen herstellen und diese schließlich in ein Bose-Einstein-Kondensat umwandeln“, blickt Schreck in die Zukunft.

 

Supraleitung im Visier

Diese Experimente bilden die Grundlage für die weitere Erforschung fundamentaler Fragen der Physik. So könnten besondere Formen der Suprafluidität in Zukunft besser verstanden werden, wenn Experimente mit gemischten fermionischen Quantengasen erfolgreich sind. Die Physik kann heute zum Beispiel die Funktionsweise von Hochtemperatursupraleitern noch nicht erklären. Sie scheitert hier an den extrem komplexen Strukturen der Festkörper. „Unser Experiment bildet diese Systeme vereinfacht nach und lässt sich sehr genau kontrollieren. Im Wechselspiel mit den Theoretikern erhoffen wir uns daraus neue Erkenntnisse über die Supraleitung, und vielleicht führt das langfristig einmal zu besseren Supraleitern“, hofft Florian Schreck. Schon heute werden Supraleiter zum Beispiel in Kernspintomographen eingesetzt, um sehr starke Magnetfelder zu erzeugen. Für die Zukunft werden große Hoffnungen in die Beherrschung dieses physikalischen Phänomens gesetzt, gehen heute im Alltag doch enorme Mengen der erzeugten elektrischen Energie beim Transport verloren.

 

Diese Forschungsarbeit wurde am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) durchgeführt und vom österreichischen Wissenschaftsfonds (FWF) unterstützt.

 

 

Publikation: Exploring an Ultracold Fermi-Fermi Mixture: Interspecies Feshbach Resonances and Scattering Properties of 6Li and 40K. E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne. Phys. Rev. Lett. 100, 053201 (2008)

 

Text: Christian Flatz/ bearbeitet von Susanne Röck